Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications
DOI:
https://doi.org/10.5644/SJM.20.02.09Keywords:
Operator monotone functions, Operator inequalities, Lipschitz type inequalitiesAbstract
We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given.
Downloads
References
[1] H. Araki and S. Yamagami, An inequality for Hilbert-Schmidt norm, Commun. Math. Phys., 81(1981), 89-96.
[2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl., 208/209(1994), 367-376.
[3] R. Bhatia, Perturbation bounds for the operator absolute value, Linear Algebra Appl., 226/228(1995), 639–645.
[4] R. Bhatia, D. Singh and K. B. Sinha, Differentiation of operator functions and perturbation bounds, Comm. Math. Phys., 191(1998), no. 3, 603–611.
[5] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.
[6] S. S. Dragomir, Operator monotonicity of an integral transform of positive operators in Hilbert spaces with applications, Preprint RGMIA Res. Rep. Coll., 23(2020), to appear.
[7] Yu. B. Farforovskaya, Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich-Rubinshtein metric (in Russian), Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom., 4(1967), 155-156.
[8] Yu. B. Farforovskaya, An estimate of the norm $| f (B) - f (A)|$ for self-adjoint operators A and B (in Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst., 56(1976), 143-162.
[9] Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz, 20(2008), no. 3, 224–242; translation in St. Petersburg Math. J., 20(2009), no. 3, 493–506.
[10] J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math., 1(1998), 301–306.
[11] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Lowner integral representation, Linear Algebra Appl., 429(2008), 972–980.
[12] T. Furuta, Precise lower bound of $f(A) - f(B)$ for $A > B > 0$ and non-constant operator monotone function $f$ on $[0,infty)$, J. Math. Inequal., 9(2015), no. 1, 47–52.
[13] F. Hansen, The fast track to Lowner’s theorem, Linear Algebra Appl., 438(2013), no. 11, 4557–4571.
[14] E. Heinz, Beitrage zur Störungsteorie der Spektralzerlegung, Math. Ann., 123(1951), 415–438.
[15] T. Kato, Continuity of the map $S to |S|$ for linear operators, Proc. Japan Acad., 49(1973), 143-162.
[16] K. Lowner, Über monotone Matrixfunktionen, Math. Z., 38(1934), 177–216.
[17] H. Najafi, M. S. Moslehian, M. Fujii and R. Nakamoto, Estimates of operator convex and operator monotone functions on bounded intervals, Hokkaido Mathematical Journal, 45(2016), p. 325–336.