Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications

Authors

  • Silvestru Sever Dragomir

DOI:

https://doi.org/10.5644/SJM.20.02.09

Keywords:

Operator monotone functions, Operator inequalities, Lipschitz type inequalities

Abstract

We introduce the following integral transform: \[ D^{(\mu)}(T) := -\int_{0}^{\infty} (\lambda+T)^{-1} d\mu(\lambda), \quad t > 0, \] where \(\mu\) is a positive measure on \((0,\infty)\) and the integral is assumed to exist for \(T\) as a positive operator on a complex Hilbert space \(H\). In this paper, we show, among other results, that if \( A \geq m_1 > 0 \) and \( B \geq m_2 > 0 \), then: \[ \| D^{(\mu)}(B) - D^{(\mu)}(A) \| \leq \| B - A \|_{[m_1,m_2]} D^{(\mu)}(\cdot), \] where \( D^{(\mu)}(\cdot) \) is a function of \( t \), and \( [m_1,m_2]D^{(\mu)}(\cdot) \) is its divided difference. If \( f: [0,\infty) \to \mathbb{R} \) is an operator monotone function with \( f(0) = 0 \), then: \[ \| f(A)A^{-1} - f(B)B^{-1} \| \leq \| B - A \|_{[m_1,m_2]} f(\cdot)(\cdot)^{-1}. \] Similar inequalities for operator convex functions and some particular examples of interest are also given.

Downloads

Download data is not yet available.

References

[1] H. Araki and S. Yamagami, An inequality for Hilbert-Schmidt norm, Commun. Math. Phys., 81(1981), 89-96.

[2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl., 208/209(1994), 367-376.

[3] R. Bhatia, Perturbation bounds for the operator absolute value, Linear Algebra Appl., 226/228(1995), 639–645.

[4] R. Bhatia, D. Singh and K. B. Sinha, Differentiation of operator functions and perturbation bounds, Comm. Math. Phys., 191(1998), no. 3, 603–611.

[5] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.

[6] S. S. Dragomir, Operator monotonicity of an integral transform of positive operators in Hilbert spaces with applications, Preprint RGMIA Res. Rep. Coll., 23(2020), to appear.

[7] Yu. B. Farforovskaya, Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich-Rubinshtein metric (in Russian), Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom., 4(1967), 155-156.

[8] Yu. B. Farforovskaya, An estimate of the norm $| f (B) - f (A)|$ for self-adjoint operators A and B (in Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst., 56(1976), 143-162.

[9] Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz, 20(2008), no. 3, 224–242; translation in St. Petersburg Math. J., 20(2009), no. 3, 493–506.

[10] J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math., 1(1998), 301–306.

[11] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Lowner integral representation, Linear Algebra Appl., 429(2008), 972–980.

[12] T. Furuta, Precise lower bound of $f(A) - f(B)$ for $A > B > 0$ and non-constant operator monotone function $f$ on $[0,infty)$, J. Math. Inequal., 9(2015), no. 1, 47–52.

[13] F. Hansen, The fast track to Lowner’s theorem, Linear Algebra Appl., 438(2013), no. 11, 4557–4571.

[14] E. Heinz, Beitrage zur Störungsteorie der Spektralzerlegung, Math. Ann., 123(1951), 415–438.

[15] T. Kato, Continuity of the map $S to |S|$ for linear operators, Proc. Japan Acad., 49(1973), 143-162.

[16] K. Lowner, Über monotone Matrixfunktionen, Math. Z., 38(1934), 177–216.

[17] H. Najafi, M. S. Moslehian, M. Fujii and R. Nakamoto, Estimates of operator convex and operator monotone functions on bounded intervals, Hokkaido Mathematical Journal, 45(2016), p. 325–336.

Downloads

Published

10.03.2025

How to Cite

Sever Dragomir, S. (2025). Lipschitz Type Inequalities for an Integral Transform of Positive Operators With Applications. Sarajevo Journal of Mathematics, 20(2), 263–280. https://doi.org/10.5644/SJM.20.02.09

Issue

Section

Articles