On Killing Magnetic Curves in the Hyperboloid Model of $\widetilde{\mathrm{SL}}(2,\mathbb{R})$ Geometry
DOI:
https://doi.org/10.5644/SJM.20.02.11Keywords:
Magnetic curve, Killing vector field, SLf(2,R) geometryAbstract
A Killing magnetic curve is a trajectory of a charged particle on a Riemannian manifold under the action of a Killing magnetic field. In this paper we study Killing magnetic curves in the hyperboloid model of $\widetilde{\mathrm{SL}}(2,\mathbb{R})$ geometry.
Downloads
References
[1] M. Belkhalha, F. Dillen, J. Inoguchi: Parallel surfaces in the real special linear group ( SL(2,mathbb{R}) ), Bull. Austral. Math. Soc. 65 (2002), 183 – 189.
[2] B. Divjak, Z. Erjavec, B. Szabolcs, B. Szilagyi: Geodesics and geodesic spheres in ( SL^{2,mathbb{R}} ) geometry, Math. Commun 14 (2009), 413–424.
[3] S. L. Drut¸a-Romaniuc, M. I. Munteanu: Killing magnetic curves in a Minkowski 3-space, Nonlinear Analysis: Real World Appl. 14 (2013), 383 – 396.
[4] S. L. Drut¸a-Romaniuc, M. I. Munteanu: Magnetic curves corresponding to Killing magnetic fields in ( E^3 ), J. Math. Phys. 52 (2011), 113506.
[5] Z. Erjavec, J. Inoguchi: Killing magnetic curves in Sol space, Math. Phys. Anal. Geom. 21:15 (2018).
[6] Z. Erjavec: Generalizations of Cayley transform in 3D homogeneous geometries, Turk J Math 42 (2018), 2942 – 2952.
[7] Z. Erjavec: Minimal surfaces in ( SL^{2,mathbb{R}} ) geometry, Glasnik Mat 50 (2015), 207–221.
[8] Z. Erjavec: On Killing magnetic curves in ( SL(2,mathbb{R}) ) geometry, Rep. Math. Phys. 84 (3) (2019), 333 – 350.
[9] J. Inoguchi, M. I. Munteanu: Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23 (8) (2019), 2161 – 2205.
[10] J. Inoguchi: Invariant minimal surfaces in the real special linear group of degree 2, Ital. J. Pure Appl. Math. 16 (2004), 61 – 80.
[11] E. Molnar: The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage Algebra Geom. 38 (1997), 261 – 288.
[12] S. Montaldo, I. I. Onnis, A. Passos Passamani: Helix surfaces in the special linear group, Ann. Math. Pura Appl. 195 (20216), 59 – 77.
[13] M. I. Munteanu, A. I. Nistor: The classification of Killing magnetic curves in ( S^2 times R ), J. Geom. Phys. 62 (2012), 170 – 182.
[14] P. Scott: The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401 – 487.
[15] T. Sunada: Magnetic flows on a Riemann surface, Proc. KAIST.