Convergence of the Generalized Steffensen Method in Riemannian Manifolds
DOI:
https://doi.org/10.5644/SJM.20.02.13Keywords:
Vector fields, Riemannian manifolds, Lipschitz condition, Generalized Steffensen methodAbstract
In this article, we present semilocal convergence of the generalized Steffensen method in Riemannian manifolds to find the singular points of a vector field. We establish the convergence under the Kantarovich–Ostrowski’s conditions. Finally, two examples are given to show the applicability of our convergence analysis.
Downloads
References
[1] I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008.
[2] I. K. Argyros, Y. J. Cho, S. Hilout, Numerical Methods for Equations and Variational Inclusions, CRC Press/Taylor and Francis Group, New York, 2012.
[3] I. K. Argyros, S. Hilout, M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, Nova Publishers, New York, 2011.
[4] W. Li, F. Szidarovszky, Y. Kuang, Notes on the stability of dynamic economic systems, Appl. Math. Comput., 108 (2000), 85-89.
[5] M. A. Tabatabai, W. M. Eby, K. P. Singh, Hyperbolastic modeling of wound healing, Math. Comput. Modell., 53 (2011), 755-768.
[6] J. P. Dedieu, P. Priouret, G. Malajovich, Newton’s method on Riemannian manifolds: covariant alpha theory, IMA J Numer Anal., 23 (3) (2003), 395-419.
[7] O. Ferreira, B. Svaiter, Kantorovich’s Theorem on Newton’s Method in Riemannian manifolds, Journal of Complexity, 18 (1) (2002), 304-329.
[8] I. K. Argyros, An improved unifying convergence analysis of Newton’s method in Riemannian manifolds, J. Appl. Math. Comput., 25 (2007), 345-351.
[9] I. K. Argyros, Newton’s method on Lie groups, Journal of Applied Mathematics and Computing, 31 (2009), 217-228.
[10] J. He, J. Wang, Jen-Chih Yao, Convergence criteria of Newton’s method on Lie groups, Fixed Point Theory and Applications, 2013.
[11] C. Li, J. Wang, Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition, IMA J. Numer. Anal., 26 (2) (2006), 228-251.
[12] S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, Traub-type high order iterative procedures on Riemannian manifolds, SeMA Journal, 63 (2014), 27-52.
[13] S. Amat, S. Busquier and V. Candela, A class of quasi-Newton generalized Steffensen methods on Banach spaces, Journal of computational and applied mathematics, 149 (2) (2002), 397-406.
[14] S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, Newton-type methods on Riemannian manifolds under Kantorovich-type conditions, Applied Mathematics and Computation, 227 (2014), 762-787.
[15] H. Kumar and P. K. Parida, On Semilocal convergence of Two step Kurchatov method, International Journal of Computer Mathematics, 96(8) (2019), 1548-1566.
[16] H. Kumar and P. K. Parida, Three step Kurchatov method for Nondifferentiable operators, International Journal of Applied and Computational Mathematics, 3 (2017), 3683-3704.