Convergence of the Generalized Steffensen Method in Riemannian Manifolds

Authors

  • Chandresh Prasad
  • Pradip Kumar Parida

DOI:

https://doi.org/10.5644/SJM.20.02.13

Keywords:

Vector fields, Riemannian manifolds, Lipschitz condition, Generalized Steffensen method

Abstract

In this article, we present semilocal convergence of the generalized Steffensen method in Riemannian manifolds to find the singular points of a vector field. We establish the convergence under the Kantarovich–Ostrowski’s conditions. Finally, two examples are given to show the applicability of our convergence analysis.

Downloads

Download data is not yet available.

References

[1] I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008.

[2] I. K. Argyros, Y. J. Cho, S. Hilout, Numerical Methods for Equations and Variational Inclusions, CRC Press/Taylor and Francis Group, New York, 2012.

[3] I. K. Argyros, S. Hilout, M. A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering, Nova Publishers, New York, 2011.

[4] W. Li, F. Szidarovszky, Y. Kuang, Notes on the stability of dynamic economic systems, Appl. Math. Comput., 108 (2000), 85-89.

[5] M. A. Tabatabai, W. M. Eby, K. P. Singh, Hyperbolastic modeling of wound healing, Math. Comput. Modell., 53 (2011), 755-768.

[6] J. P. Dedieu, P. Priouret, G. Malajovich, Newton’s method on Riemannian manifolds: covariant alpha theory, IMA J Numer Anal., 23 (3) (2003), 395-419.

[7] O. Ferreira, B. Svaiter, Kantorovich’s Theorem on Newton’s Method in Riemannian manifolds, Journal of Complexity, 18 (1) (2002), 304-329.

[8] I. K. Argyros, An improved unifying convergence analysis of Newton’s method in Riemannian manifolds, J. Appl. Math. Comput., 25 (2007), 345-351.

[9] I. K. Argyros, Newton’s method on Lie groups, Journal of Applied Mathematics and Computing, 31 (2009), 217-228.

[10] J. He, J. Wang, Jen-Chih Yao, Convergence criteria of Newton’s method on Lie groups, Fixed Point Theory and Applications, 2013.

[11] C. Li, J. Wang, Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition, IMA J. Numer. Anal., 26 (2) (2006), 228-251.

[12] S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, Traub-type high order iterative procedures on Riemannian manifolds, SeMA Journal, 63 (2014), 27-52.

[13] S. Amat, S. Busquier and V. Candela, A class of quasi-Newton generalized Steffensen methods on Banach spaces, Journal of computational and applied mathematics, 149 (2) (2002), 397-406.

[14] S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout and S. Plaza, Newton-type methods on Riemannian manifolds under Kantorovich-type conditions, Applied Mathematics and Computation, 227 (2014), 762-787.

[15] H. Kumar and P. K. Parida, On Semilocal convergence of Two step Kurchatov method, International Journal of Computer Mathematics, 96(8) (2019), 1548-1566.

[16] H. Kumar and P. K. Parida, Three step Kurchatov method for Nondifferentiable operators, International Journal of Applied and Computational Mathematics, 3 (2017), 3683-3704.

Downloads

Published

10.03.2025

How to Cite

Prasad, C., & Kumar Parida, P. (2025). Convergence of the Generalized Steffensen Method in Riemannian Manifolds. Sarajevo Journal of Mathematics, 20(2), 321–333. https://doi.org/10.5644/SJM.20.02.13

Issue

Section

Articles