

**AN APPLICATION OF MITTAG-LEFFLER LEMMA TO
 THE L.F ALGEBRA OF $\mathcal{C}^{(\infty)}$ N-TEMPERED FUNCTIONS
 ON \mathbb{R}^+**

M. HEMDAOUI

ABSTRACT. In this note, we show that a $\mathcal{C}^{(\infty)}$ N -tempered function f on \mathbb{R}^+ can be extended as a $\mathcal{C}^{(\infty)}$ function \tilde{f} in $] -\rho, +\infty[+ \mathbb{R}i$ ($\forall \rho > 0$) such that

$$D^\alpha \frac{\partial}{\partial z} \tilde{f}(z)|_{\{z=x\}} = 0, \quad \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, \quad \forall x \in \mathbb{R}^+.$$

To get this result, we use Mittag-Leffler Lemma.

1. INTRODUCTION

Let f be a $\mathcal{C}^{(\infty)}$ function on \mathbb{R}^+ and N be a positive integer. f is N -tempered if

$$\sup_{x \in \mathbb{R}^+} \delta_0^N(x) |f^{(n)}(x)| < +\infty, \quad \forall n \in \mathbb{N},$$

$$\text{where } \delta_0(x) = \frac{1}{\sqrt{1+x^2}}.$$

It is clear that the vector space denoted $\mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$ of N -tempered functions on \mathbb{R}^+ equipped with the family of norms $(\| \cdot \|_{N,n})_{n \in \mathbb{N}}$ defined by

$$f \in \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \rightarrow \|f\|_{N,n} = \sup_{0 \leq k \leq n} \sup_{x \in \mathbb{R}^+} \delta_0^N(x) |f^{(k)}(x)|$$

is a Fréchet space.

Let N, N' be two positive integers such that $N \leq N'$, the natural injection mapping

$$\Pi_{N,N'} : \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \hookrightarrow \mathcal{C}_{N'}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$$

is obviously continuous.

2010 *Mathematics Subject Classification.* 46A04, 46A13, 46J05, 46J10,

Key words and phrases. Fréchet spaces - Fréchet algebras.

Copyright © 2017 by ANUBIH.

Consider the bilinear mapping

$$(f, g) \in \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \times \mathcal{C}_{N'}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \rightarrow f \cdot g \in \mathcal{C}_{N+N'}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}).$$

Applying Leibniz formula

$$D^n(f(x)g(x)) = \sum_{p=0}^n \binom{n}{p} f^{(n-p)}(x) \cdot g^{(p)}(x).$$

So

$$\begin{aligned} \delta_0^{N+N'}(x) |D^n(f(x)g(x))| &\leq C_n \sup_{x \in \mathbb{R}^+} \sup_{0 \leq k \leq n} \delta_0^N(x) |f^{(k)}(x) \\ &\quad \left| \sup_{x \in \mathbb{R}^+} \sup_{0 \leq p \leq n} \delta_0^{N'}(x) |g^{(p)}(x)| \right|. \end{aligned}$$

Then

$$\|f \cdot g\|_{N+N'} \leq C_n \|f\|_N \cdot \|g\|_{N'},$$

where

$$C_n = \sum_{p=0}^n \binom{n}{p} \text{ and } \binom{n}{p} \text{ is the combination coefficient.}$$

The inequality just above shows the continuity of the bilinear mapping

$$(f, g) \in \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \times \mathcal{C}_{N'}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \rightarrow f \cdot g \in \mathcal{C}_{N+N'}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}).$$

Consider the vector space $\mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) = \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$ of $\mathcal{C}^{(\infty)}$ \mathbb{N} -tempered functions on \mathbb{R}^+ equipped with the inductive limit topology of Fréchet spaces $\mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$ is an L.F space. It is also a unital commutative complex topological algebra since the bilinear mapping

$$\begin{aligned} (f, g) \in \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \\ \times \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \rightarrow f \cdot g \in \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \end{aligned}$$

is continuous.

First, for $k \in \mathbb{N}^*$ we establish that a $\mathcal{C}^{(\infty)}$ function f on an nonempty bounded open interval $]a, b[\subset \mathbb{R}$ can be extended as a function \tilde{f}_k of class $\mathcal{C}^{(k)}$ in $]a, b[+ \mathbb{R}i$ such that

$$D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_k(z)|_{\{z=x\}} = 0, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, / |\alpha| = \alpha_1 + \alpha_2 \leq k-1, \forall x \in]a, b[,$$

where

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \text{ and } D^\alpha = \frac{\partial^{|\alpha|}}{\partial x^{\alpha_1} \partial y^{\alpha_2}}, \quad \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2.$$

At second, we use Mittag-Leffler lemma to get a $\mathcal{C}^{(\infty)}$ extension \tilde{f}_∞ of f in $]a, b[+ \mathbb{R}i$ such that

$$D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_\infty(z)|_{\{z=x\}} = 0, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, \forall x \in]a, b[. \quad (1.1)$$

At last, we apply the result to the topological algebra $\bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$.

B.Drost[2] used other technics to study extensions of ultra-differentiable functions satisfying(1.1) on totally real compact submanifolds of open sets in \mathbb{C}^n .

In a future note, we will show that the algebra $\bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$ equipped with its natural vector bornology is useful for functional calculus.

2. NOTATIONS AND PRELIMINARY RESULTS

Let $]a, b[\subset \mathbb{R}$ be a nonempty bounded open interval and $k \in \mathbb{N}^*$. $\mathcal{C}^{(\infty)}(]a, b[, \mathbb{C})$ denotes the vector space of $\mathcal{C}^{(\infty)}$ functions on $]a, b[$ equipped with its natural topology. It is a Fréchet space.

$\mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C})$ denotes the vector space of functions f of class $\mathcal{C}^{(k)}$ ($k \in \mathbb{N}^*$) in $]a, b[+ \mathbb{R}i$ such that

$$(1) \quad f|_{]a, b[} \in \mathcal{C}^{(\infty)}(]a, b[, \mathbb{C}).$$

$$(2) \quad D^\alpha \frac{\partial}{\partial \bar{z}} f(z)|_{\{z=x\}} = 0, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, |\alpha| = \alpha_1 + \alpha_2 \leq k - 1, \forall x \in]a, b[.$$

On $\mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C})$, we consider the family of semi-norms defined by

$$\begin{aligned} f \in \mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C}) &\rightarrow \|f\|_{n, K_1, K_2} \\ &= \sup_{0 \leq p \leq n} \sup_{x \in K_1} |f^{(p)}(x)| + \sup_{|\alpha| \leq k-1} \sup_{z \in K_2} |D^\alpha \frac{\partial}{\partial \bar{z}} f(z)| \end{aligned}$$

where $n \in \mathbb{N}$, K_1 is a compact set in $]a, b[$, K_2 is a compact set in $]a, b[+ \mathbb{R}i$.

$\mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C})$ equipped with the family of semi-norms $\|\cdot\|_{n, K_1, K_2}$ is a Fréchet space. The restriction mapping

$$\mathcal{R}_k : \mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C}) \rightarrow \mathcal{C}^{(\infty)}(]a, b[, \mathbb{C})$$

is obviously continuous.

We will show that the restriction \mathcal{R}_k is surjective.

Lemma 2.1. *Let φ be a $\mathcal{C}^{(\infty)}$ function with compact support in $] -1, +1[$ equal one on $[-\frac{1}{2}, +\frac{1}{2}]$ and $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence of strictly increasing positive real numbers such that $\lim_{n \rightarrow +\infty} \lambda_n = +\infty$. Then, there exists a sequence of $\mathcal{C}^{(\infty)}$ functions $(\varphi_n)_{n \in \mathbb{N}}$ satisfying*

$$(1) \quad \varphi_n \in \mathcal{C}^{(\infty)}\left(\left]-\frac{1}{\lambda_n}, +\frac{1}{\lambda_n}\right[\right) \quad (\forall n \in \mathbb{N}) \text{ with compact support.}$$

- (2) $\varphi_n(x) = 1$ if $|x| \leq \frac{1}{2\lambda_n}$, ($\forall n \in \mathbb{N}$).
- (3) $supp(\varphi_{n+1}) \subset supp(\varphi_n)$, $\forall n \in \mathbb{N}$.

Proof. For each positive integer n , consider the function defined by

$$\varphi_n(x) = \varphi(\lambda_n \cdot x).$$

The sequence of functions $(\varphi_n)_{n \in \mathbb{N}}$ satisfies Lemma 2.1. \square

Lemma 2.2. *Let $f \in \mathcal{C}^{(\infty)}(]a, b[, \mathbb{C})$ with compact support $K \subset]a, b[$ and $k \in \mathbb{N}^*$. Then, f can be extended as a function \tilde{f}_k in $\mathcal{Q}h_\infty^{(k)}(]a, b[+ \mathbb{R}i, \mathbb{C})$.*

Proof. For each positive integer $n \in \mathbb{N}$, put

$$M_n = \sup_{x \in K} |f^{(n)}(x)|.$$

Let $(\delta_n)_{n \in \mathbb{N}}$ be a sequence of positive real numbers satisfying

$$\delta_n > \sup(1, M_n), \quad \forall n \in \mathbb{N}.$$

For $n \in \mathbb{N}$ and fix $k \in \mathbb{N}^*$. Consider the sequence

$$\lambda_{n,k} = \sum_{i=0}^{n+k} \delta_i.$$

Then $\lim_{n \rightarrow +\infty} \lambda_{n,k} = +\infty$.

Let $(\varphi_{n,k})_{n \in \mathbb{N}}$ be a sequence of $\mathcal{C}^{(\infty)}$ functions satisfying Lemma 2.1 above constructed with the sequence of positive real numbers $(\lambda_{n,k})_{n \in \mathbb{N}}$ above.

Consider the series

$$\sum_{n=0}^{+\infty} \frac{1}{n!} f^{(n)}(x) \varphi_{n,k}(y) (y \cdot i)^n.$$

The series is locally finite. It converges at each point $z = x + yi \in]a, b[+ \mathbb{R}i$. So it defines a function \tilde{f}_k on $]a, b[+ \mathbb{R}i$.

Obviously, if $y = 0$, we have $\tilde{f}_k(x) = f(x)$, $\forall x \in]a, b[$.

Since the series is locally finite, \tilde{f}_k is a $\mathcal{C}^{(\infty)}$ function at each point $z = x + yi$ such that $y \neq 0$.

At each point $z = x + yi$ such that $y = 0$, \tilde{f}_k is of class $\mathcal{C}^{(k)}$. In fact:

Let $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$ / $|\alpha| = \alpha_1 + \alpha_2 \leq k - 1$. The derivative of order α of the general term of the series is

$$D^\alpha \left(f^{(n)}(x) \varphi_{n,k}(y) (yi)^n \right) = f^{(n+\alpha_1)}(x) D^{\alpha_2} (\varphi_{n,k}(y) (yi)^n).$$

By Leibniz formula we have

$$D^{\alpha_2}(\varphi_{n,k}(y)y^n) = \sum_{p=0}^{\alpha_2} \binom{\alpha_2}{p} \varphi_{n,k}^{(\alpha_2-p)}(y) \cdot n(n-1) \cdots (n-1-p)y^{n-p},$$

where $\binom{\alpha_2}{p}$ is the combination coefficient.

So,

$$\begin{aligned} & |D^{\alpha_2}(\varphi_{n,k}(y)y^n)| \\ & \leq n! \left[\sup_{y \in [-\frac{1}{\lambda_{n,k}}, \frac{1}{\lambda_{n,k}}]} \sup_{0 \leq p \leq k} |\varphi^{(p)}(\lambda_{n,k} \cdot y)| \right] \sum_{p=0}^{k-1} \binom{k-1}{p} \left(\frac{1}{\lambda_{n,k}} \right)^{n+1-k}. \end{aligned}$$

So

$$|D^{\alpha_2}(\varphi_{n,k}(y)y^n)| \leq n! C_k \left(\frac{1}{\lambda_{n,k}} \right)^{n+1-k},$$

where $C_k = \sup_{y \in [-\frac{1}{\lambda_{n,k}}, \frac{1}{\lambda_{n,k}}]} \sup_{0 \leq p \leq k} |\varphi^{(p)}(\lambda_{n,k} \cdot y)| \sum_{p=0}^{k-1} \binom{k-1}{p}$.

And so

$$\frac{1}{n!} |D^\alpha(f^{(n)}(x)\varphi_{n,k}(y)(yi)^n)| \leq M_{n+\alpha_1} C_k \left(\frac{1}{\lambda_{n,k}} \right)^{n+1-k} \leq C_k \left(\frac{1}{\delta_0} \right)^{n-k}.$$

The series $\sum_{n=0}^{+\infty} \frac{1}{n!} |D^\alpha(f^{(n)}(x)\varphi_{n,k}(y)(yi)^n)|$ is dominated by the convergent geometrical series $C_k \sum_{n=0}^{+\infty} \left(\frac{1}{\delta_0} \right)^{n-k} = C_k \frac{(\delta_0)^{k+1}}{\delta_0 - 1}$.

So, the series

$$\sum_{n=0}^{+\infty} \frac{1}{n!} D^\alpha \left(f^{(n)}(x)\varphi_{n,k}(y)(y \cdot i)^n \right)$$

converges uniformly in $K + \mathbb{R}i$, $\forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2 / |\alpha| = \alpha_1 + \alpha_2 \leq k$.

Thus \tilde{f}_k is of class $\mathcal{C}^{(k)}$ in $]a, b[+ \mathbb{R}i$.

From the calculation

$$\begin{aligned} & \frac{\partial}{\partial \bar{z}} \tilde{f}_k(x + yi) = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \tilde{f}_k(x + yi) \\ & = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{1}{n!} f^{(n+1)}(x) (\varphi_{n,k}(y) - \varphi_{n+1,k}(y)) (iy)^n + \frac{i}{2} \sum_{n=0}^{+\infty} \frac{1}{n!} f^{(n)}(x) \varphi'_{n,k}(y) (iy)^n. \end{aligned}$$

we get

$$(1) \quad \tilde{f}_k|_{]a,b[} = f.$$

$$(2) \quad D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_k(z)|_{\{z=x\}} = 0, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, / |\alpha| = \alpha_1 + \alpha_2 \leq k - 1, \forall x \in]a, b[.$$

This ends the proof of Lemma 2.2. \square

Theorem 2.3. *The restriction mapping*

$$\mathcal{R}_k : \mathcal{Q}h_{\infty}^{(k)}([a, b[+ \mathbb{R}i, \mathbb{C}) \rightarrow \mathcal{C}^{(\infty)}([a, b[, \mathbb{C})$$

is surjective.

Proof. Let $(U_j)_{j \in J}$ be a locally finite covering of the interval $[a, b[$. Each U_j is relatively compact in $[a, b[$ and $(\phi_j)_{j \in J}$ be a partition of unity subordinated to the covering $(U_j)_{j \in J}$.

Let $f \in \mathcal{C}^{(\infty)}([a, b[, \mathbb{C})$ and $j \in J$. Put $\phi_j \cdot f = f_j$.

f_j is a $\mathcal{C}^{(\infty)}$ function in $[a, b[$ with compact support. By lemma 2.2, f_j can be extended as a $\tilde{f}_{k,j} \in \mathcal{Q}h_{\infty}^{(k)}([a, b[+ \mathbb{R}i, \mathbb{C})$.

The function $\tilde{f}_k = \sum_{j \in J} \tilde{f}_{k,j} \in \mathcal{Q}h_{\infty}^{(k)}([a, b[+ \mathbb{R}i, \mathbb{C})$. \square

We want an extension \tilde{f}_{∞} of f of class $\mathcal{C}^{(\infty)}$ in $[a, b[+ \mathbb{R}i$ satisfying

$$D^{\alpha} \frac{\partial}{\partial z} \tilde{f}_{\infty}(z) |_{\{z=x\}} = 0, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2, \forall x \in [a, b[.$$

To get this result, we need the following Mittag-Leffler Lemma.

Lemma 2.4. *For $n \in \mathbb{N}$, let E_n'' , E_n , E_n' be Fréchet spaces. $i_n : E_n'' \rightarrow E_n$; $s_n : E_n \rightarrow E_n'$ be continuous linear mappings such that for each positive integer $n \in \mathbb{N}$ the following sequence*

$$0 \rightarrow E_n'' \rightarrow E_n \rightarrow E_n' \rightarrow 0$$

is exact.

Let $u_n'' : E_{n+1}'' \rightarrow E_n''$; $u_n : E_{n+1} \rightarrow E_n$; $u_n' : E_{n+1}' \rightarrow E_n'$ be continuous linear mappings such that

$$u_n \circ i_{n+1} = i_n \circ u_n'', \quad u_n' \circ s_{n+1} = s_n \circ u_n.$$

If each linear mapping u_n'' has a dense range, then the following sequence

$$0 \rightarrow \varprojlim_n E_n'' \rightarrow \varprojlim_n E_n \rightarrow \varprojlim_n E_n' \rightarrow 0$$

is exact.

We use Mittag-Leffler Lemma as follows:

Let K be a nonempty compact set in $[a, b[$, $\mathcal{C}_0^{(\infty)}(K, \mathbb{C})$ the Fréchet space of $\mathcal{C}^{(\infty)}$ functions with support in K and $\mathcal{Q}h_{\infty}^{(k)}(K + \mathbb{R}i, \mathbb{C})$ ($k \in \mathbb{N}^*$) the Fréchet space of functions f of class $\mathcal{C}^{(k)}$ with support in $K + \mathbb{R}i$ such that

$$(1) \quad f|_K \in \mathcal{C}_0^{(\infty)}(K, \mathbb{C}).$$

$$(2) \quad D^\alpha \frac{\partial}{\partial \bar{z}} f(z)|_{\{z=x\}} = 0, \forall x \in K, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2 / |\alpha| = \alpha_1 + \alpha_2 \leq k-1.$$

For each positive integer $k \in \mathbb{N}^*$, the restriction linear mapping

$$\mathcal{R}_k : \mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C}) \rightarrow \mathcal{C}_0^{(\infty)}(K, \mathbb{C})$$

is obviously continuous.

The kernel $\text{Ker}(\mathcal{R}_k)$ is a closed subspace of $\mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C})$. It is a Fréchet subspace of $\mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C})$.

Consider the following commutative diagram of exact sequences.

$$\begin{array}{ccccccc}
 & & u''_{k-1} & & u_{k-1} & & j \\
 & & \uparrow & & \uparrow & & \uparrow \\
 0 \longrightarrow & \text{Ker}(\mathcal{R}_k) & \xrightarrow{i_k} & \mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C}) & \xrightarrow{\mathcal{R}_k} & \mathcal{C}_0^{(\infty)}(K, \mathbb{C}) & \longrightarrow 0 \\
 & u''_k & \uparrow & u_k & \uparrow & j & \uparrow \\
 0 \longrightarrow & \text{Ker}(\mathcal{R}_{k+1}) & \xrightarrow{i_{k+1}} & \mathcal{Q}h_\infty^{(k+1)}(K + \mathbb{R}i, \mathbb{C}) & \xrightarrow{\mathcal{R}_{k+1}} & \mathcal{C}_0^{(\infty)}(K, \mathbb{C}) & \longrightarrow 0 \\
 & u''_{k+1} & \uparrow & u_{k+1} & \uparrow & j & \uparrow \\
 0 \longrightarrow & \vdots & \longrightarrow & \vdots & \longrightarrow & \vdots & \longrightarrow 0
 \end{array}$$

where

$u_k : \mathcal{Q}h_\infty^{(k+1)}(K + \mathbb{R}i, \mathbb{C}) \rightarrow \mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C})$ the continuous canonical injection.

$j : \mathcal{C}_0^{(\infty)}(K, \mathbb{C}) \rightarrow \mathcal{C}_0^{(\infty)}(K, \mathbb{C})$ the continuous identity mapping.

$u''_k : \text{Ker}(\mathcal{R}_{k+1}) \rightarrow \text{Ker}(\mathcal{R}_k)$ the continuous canonical injection.

$i_k : \text{Ker}(\mathcal{R}_k) \rightarrow \mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C})$ the continuous canonical injection.

These continuous morphisms satisfy for every positive integer $k \in \mathbb{N}^*$.

$$i_k \circ u''_k = u_k \circ i_{k+1} \quad \text{and} \quad \mathcal{R}_k \circ u_k = j \circ \mathcal{R}_{k+1}.$$

Each linear morphism u''_k ($k \in \mathbb{N}$) has obviously a dense range.

Using Mittag-Leffler lemma, we get the following exact sequence

$$0 \rightarrow \varprojlim_k \text{Ker}(\mathcal{R}_k) \rightarrow \varprojlim_k \mathcal{Q}h_\infty^{(k)}(K + \mathbb{R}i, \mathbb{C}) \rightarrow \mathcal{C}_0^{(\infty)}(K, \mathbb{C}) \rightarrow 0.$$

This means that each function $f \in \mathcal{C}_0^{(\infty)}(K, \mathbb{C})$ can be extended as a $\mathcal{C}^{(\infty)}$ function \tilde{f}_∞ in $K + \mathbb{R}i$ such that

$$D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_\infty(z)|_{\{z=x\}} = 0, \forall x \in K, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2.$$

Hence, $\tilde{f}_\infty \in \mathcal{Q}h_\infty^{(\infty)}(K + \mathbb{R}i, \mathbb{C})$.

Theorem 2.5. *Let $f \in \mathcal{C}^{(\infty)}(]a, b[, \mathbb{C})$. It can be extended as a $\mathcal{C}^{(\infty)}$ function \tilde{f}_∞ in $]a, b[+ \mathbb{R}i$ such that:*

$$D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_\infty(z)|_{\{z=x\}} = 0, \forall x \in]a, b[, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2.$$

Proof. Let $(U_j)_{j \in J}$ be a locally finite covering of the open interval $]a, b[$ and $(\varphi_j)_{j \in J}$ be a partition of unity subordinated to the covering $(U_j)_{j \in J}$.

Let $f \in \mathcal{C}^{(\infty)}(]a, b[, \mathbb{C})$, and $j \in J$. Put $f_j = \varphi_j \cdot f$.

f_j is $\mathcal{C}^{(\infty)}$ function with compact support. By Mittag-Leffler Lemma there exists a function $\widetilde{f}_{\infty, j}$ of class $\mathcal{C}^{(\infty)}$ in $\text{supp}(\varphi_j \cdot f) + \mathbb{R}i$ such that

- (1) $\widetilde{f}_{\infty, j}|_{\text{supp}(\varphi_j \cdot f)} = f$.
- (2) $D^\alpha \frac{\partial}{\partial \bar{z}} \widetilde{f}_{\infty, j}(z)|_{\{z=x\}} = 0, \forall x \in \text{supp}(\varphi_j), \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$.

The function $\tilde{f}_\infty = \sum_{j \in J} \widetilde{f}_{\infty, j} \in \mathcal{Q}h_\infty^{(\infty)}(]a, b[+ \mathbb{R}i, \mathbb{C})$ and satisfies

- (1) $\tilde{f}_\infty|_{]a, b[} = f$.
- (2) $D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_\infty(z)|_{\{z=x\}} = 0, \forall x \in]a, b[, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$.

This ends the proof of theorem 2.5. \square

3. APPLICATION TO \mathbb{N} -TEMPERED FUNCTION ALGEBRA $\mathcal{C}_\mathbb{N}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$

As seen in introduction

$$\mathcal{C}_\mathbb{N}^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) = \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) = \varinjlim_N \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}).$$

It is the algebra of $\mathcal{C}^{(\infty)}$ \mathbb{N} -tempered functions on \mathbb{R}^+ equipped with the inductive limit topology of Fréchet spaces $\mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$. An element f in this algebra means that there exists a positive integer N such that $f \in \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$ and satisfies

$$\forall n \in \mathbb{N}, \quad \sup_{x \in \mathbb{R}^+} \delta_0^N(x) |f^{(n)}(x)| < +\infty.$$

The function f and all its derivative of any order have the same polynomially growth at infinity.

Theorem 3.1. *Let f in $\mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$. There exists a function \tilde{f}_∞ of class $\mathcal{C}^{(\infty)}$ in $]-\rho, +\infty[+ \mathbb{R}i$ ($\forall \rho > 0$) such that:*

- (1) $\tilde{f}_\infty|_{\mathbb{R}^+} = f$.
- (2) $D^\alpha \frac{\partial}{\partial \bar{z}} \tilde{f}_\infty(z)|_{\{z=x\}} = 0, \forall x \in \mathbb{R}^+, \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$.

Proof. Let $f \in \bigcup_{N \in \mathbb{N}} \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C}) \Rightarrow \exists N \in \mathbb{N}$ such that $f \in \mathcal{C}_N^{(\infty)}(\mathbb{R}^+, \delta_0, \mathbb{C})$. By E. Borel theorem f can be extended as a $\mathcal{C}^{(\infty)}$ function f_1 on \mathbb{R} . Let φ be a $\mathcal{C}^{(\infty)}$ function in \mathbb{R} satisfying

$$\varphi(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x \leq -\rho \quad (\rho > 0). \end{cases}$$

Multiply f_1 by the function φ we get a function F of $\mathcal{C}^{(\infty)}$ with support in $]-\rho, +\infty[$.

Let $\epsilon \in]0, \frac{1}{2}[$ and consider the open interval $]1 - \epsilon, 2 + \epsilon[$.

For $k \in \mathbb{Z}$, consider the open interval $2^k]1 - \epsilon, 2 + \epsilon[$.

The sequence of open intervals $(2^k]1 - \epsilon, 2 + \epsilon[)_{k \in \mathbb{Z}}$ satisfy

- (1) $2^n]1 - \epsilon, 2 + \epsilon[\cap 2^m]1 - \epsilon, 2 + \epsilon[= \emptyset \quad \text{if } |m - n| \geq 3$.
- (2) $\bigcup_{n \in \mathbb{Z}} 2^n]1 - \epsilon, 2 + \epsilon[=]0, +\infty[$.

Let ϕ be a positive function in $\mathcal{C}^{(\infty)}(\mathbb{R}^+, \mathbb{C})$ with compact support in the interval $]1 - \epsilon, 2 + \epsilon[$ equal 1 on $[1, 2]$.

For $k \in \mathbb{Z}$ and $\rho \in]0, +\infty[$, put

$$\phi_k(x) = \phi[2^k(x + \rho)].$$

The function $\varphi(x) = \sum_{k \in \mathbb{Z}} \phi_k(x)$ is positive and of class $\mathcal{C}^{(\infty)}$ on its domain of definition.

For $k \in \mathbb{Z}$, put

$$\nu_k(x) = \frac{\phi_k(x)}{\sum_{k' \in \mathbb{Z}} \phi_{k'}(x)}.$$

Then

$$\sum_{k \in \mathbb{Z}} \nu_k(x) = 1, \quad \forall x \in]-\rho, +\infty[.$$

$(\nu_n)_{n \in \mathbb{Z}}$ is a $\mathcal{C}^{(\infty)}$ partition of unity subordinated to the open covering

$$(2^n]1 - \epsilon, 2 + \epsilon[)_{n \in \mathbb{Z}}$$

of the open interval $]-\rho, +\infty[$.

Let $n \in \mathbb{Z}$. Put $f_{1,n} = \nu_n \cdot F$.

We get a $\mathcal{C}^{(\infty)}$ function with compact support in $2^n]1 - \epsilon, 2 + \epsilon[- \rho$.

So, by Theorem 2.5 above it can be extended as a $\mathcal{C}^{(\infty)}$ function $\widetilde{f}_{1,n}$ in $\mathcal{Q}h_{\infty}^{(\infty)}(2^n]1 - \epsilon, 2 + \epsilon[-\rho + \mathbb{R}i)$.

The function $\widetilde{f}_{\infty} = \sum_{n \in \mathbb{Z}} \widetilde{f}_{1,n}$ satisfies

- (1) $\widetilde{f}_{\infty}|_{\mathbb{R}^+} = f$.
- (2) $D^{\alpha} \frac{\partial}{\partial \bar{z}} \widetilde{f}_{\infty}(z)|_{\{z=x\}} = 0, \forall x \in \mathbb{R}^+, \quad \forall \alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$.

Hence the function $\widetilde{f}_{\infty} \in \mathcal{Q}h_{\infty}^{(\infty)}(] - \rho, +\infty[+ \mathbb{R}i)$.

This ends the proof of Theorem 3.1. \square

Acknowledgements: The author would like to express his thanks to the referee for his suggestions concerning the paper.

REFERENCES

- [1] J. Dieudonné, *Elément d'analyse Moderne, 80 Tome 1*, Gautier - Villard - Paris 1968.
- [2] B. Drost, *Holomorphic approximation of ultra differentiable functions*, Math. Ann., 257 (1981), 293–316.
- [3] M. Hemdaoui, *Calcul symbolique et l'opérateur de Laplace*, Doctorat: Université Libre de Bruxelles(ULB). Belgique. 03 Juin 1987.
- [4] Hikosaburo Komatsu, *Ultra distributions I, structure theorems and characterizations*, J. Fac. Sci. Univ. Tokyo Sec 1 A, 20 (1973), 25–105.
- [5] J. Horvarth, *Topological Vector Spaces and Distributions, Volume 1*, Addison-Wesley 2985.

(Received: January 5, 2016)

(Revised: September 4, 2016)

Laboratoire Analyse Géométrie
et Applications(LAGA)
Université Mohamed Premier Faculté des Sciences
Département de Mathématiques & Informatique
Oujda
Maroc
mhemdaoui@yahoo.fr