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AN APPLICATION OF MITTAG-LEFFLER LEMMA TO

THE L.F ALGEBRA OF C(∞) N-TEMPERED FUNCTIONS

ON R+

M. HEMDAOUI

Abstract. In this note, we show that a C(∞) N -tempered function f

on R+ can be extended as a C(∞) function f̃ in ]− ρ,+∞[+Ri (∀ρ > 0)
such that

Dα ∂

∂z
f̃(z)|{z=x} = 0, ∀α = (α1, α2) ∈ N2, ∀x ∈ R+.

To get this result, we use Mittag-Leffler Lemma.

1. Introduction

Let f be a C(∞) function on R+ and N be a positive integer. f is N -
tempered if

sup
x∈R+

δN0 (x)|f (n)(x)| < +∞, ∀n ∈ N,

where δ0(x) =
1√

1 + x2
.

It is clair that the vector space denoted C(∞)
N (R+, δ0,C) of N -tempered

functions on R+ equipped with the family of norms (‖ ‖N,n)n∈N defined by

f ∈ C(∞)
N (R+, δ0,C)→ ‖f‖N,n = sup

0≤k≤n
sup
x∈R+

δN0 (x)|f (k)(x)|

is a Frèchet space.
Let N , N ′ be two positive integers such that N ≤ N ′, the natural injection

mapping

ΠN,N ′ : C(∞)
N (R+, δ0,C) ↪→ C(∞)

N ′ (R+, δ0,C)

is obviously continuous.
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Consider the bilinear mapping

(f, g) ∈ C(∞)
N (R+, δ0,C)× C(∞)

N ′ (R+, δ0,C)→ f · g ∈ C(∞)
N+N ′(R

+, δ0,C).

Applying Leibniz formula

Dn
(
f(x)g(x)) =

n∑
p=0

(
n
p

)
f (n−p)(x) · g(p)(x).

So

δN+N ′

0 (x)|Dn(f(x)g(x))| ≤ Cn sup
x∈R+

sup
0≤k≤n

δN0 (x)|f (k)(x)∣∣ sup
x∈R+

sup
0≤p≤n

δN
′

0 (x)|g(p)(x)
∣∣.

Then
‖f · g‖N+N ′ ≤ Cn‖f‖N · ‖g‖N ′ ,

where

Cn =
n∑
p=0

(
n
p

)
and

(
n
p

)
is the combination coefficient.

The inequality just above shows the continuity of the bilinear mapping

(f, g) ∈ C(∞)
N (R+, δ0,C)× C(∞)

N ′ (R+, δ0,C)→ f · g ∈ C(∞)
N+N ′(R

+, δ0,C).

Consider the vector space C(∞)
N (R+, δ0,C) =

⋃
N∈N C

(∞)
N (R+, δ0,C) of

C(∞) N-tempered functions on R+ equipped with the inductive limit topo-

logy of Frèchet spaces C(∞)
N (R+, δ0,C) is an L.F space. It is also a unital

commutative complex topological algebra since the bilinear mapping

(f, g) ∈
⋃
N∈N
C(∞)
N (R+, δ0,C)

×
⋃
N∈N
C(∞)
N (R+, δ0,C)→ f · g ∈

⋃
N∈N
C(∞)
N (R+, δ0,C)

is continuous.
First, for k ∈ N∗ we establish that a C(∞) function f on an nonempty

bounded open interval ]a, b[⊂ R can be extended as a function f̃k of class

C(k) in ]a, b[+Ri such that

Dα ∂

∂z
f̃k(z)|{z=x} = 0,∀α = (α1, α2) ∈ N2, /|α| = α1 +α2 ≤ k−1,∀x ∈]a, b[,

where

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
) and Dα =

∂|α|

∂xα1∂yα2
, α = (α1, α2) ∈ N2.
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At second, we use Mittag-Leffler lemma to get a C(∞) extension f̃∞ of f
in ]a, b[+Ri such that

Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀α = (α1, α2) ∈ N2,∀x ∈]a, b[. (1.1)

At last, we apply the result to the topological algebra
⋃
N∈N C

(∞)
N (R+, δ0,C).

B.Drost[2] used other technics to study extensions of ultra-differentiable
functions satisfying(1.1) on totally real compact submanifolds of open sets
in Cn.

In a future note, we will show that the algebra
⋃
N∈N C

(∞)
N (R+, δ0,C)

equipped with its natural vector bornology is useful for functional calculus.

2. Notations and preliminary results

Let ]a, b[⊂ R be a nonempty bounded open interval and k ∈ N∗. C(∞)

(]a, b[,C) denotes the vector space of C(∞) functions on ]a, b[ equipped with
its natural topology. It is a Frèchet space.

Qh(k)∞ (]a, b[+Ri,C) denotes the vector space of functions f of class C(k)
(k ∈ N∗) in ]a, b[+Ri such that

(1) f |]a,b[ ∈ C(∞)(]a, b[,C).

(2) Dα ∂

∂z
f(z)|{z=x} = 0, ∀α = (α1, α2) ∈ N2, /|α| = α1 + α2 ≤ k −

1,∀x ∈]a, b[.

On Qh(k)∞ (]a, b[+Ri,C), we consider the family of semi-norms defined by

f ∈ Qh(k)∞ (]a, b[+Ri,C)→ ‖f‖n,K1,K2

= sup
0≤p≤n

sup
x∈K1

|f (p)(x)|+ sup
|α|≤k−1

sup
z∈K2

|Dα ∂

∂z
f(z)|

where n ∈ N, K1 is a compact set in ]a, b[, K2 is a compact set in ]a, b[+Ri.
Qh(k)∞ (]a, b[+Ri,C) equipped with the family of semi-norms ‖ ‖n,K1,K2 is

a Frèchet space. The restriction mapping

Rk : Qh(k)∞ (]a, b[+Ri,C)→ C(∞)(]a, b[,C)

is obviously continuous.
We will show that the restriction Rk is surjective.

Lemma 2.1. Let ϕ be a C(∞) function with compact support in ] − 1,+1[
equal one on [−1

2 ,+
1
2 ] and (λn)n∈N be a sequence of strictly increasing pos-

itive real numbers such that limn→+∞ λn = +∞. Then, there exists a se-
quence of C(∞) functions (ϕn)n∈N satisfying

(1) ϕn ∈ C(∞)

(
]− 1

λn
,+ 1

λn
[

)
(∀n ∈ N) with compact support.
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(2) ϕn(x) = 1 if |x| ≤ 1
2λn

, (∀n ∈ N).

(3) supp(ϕn+1) ⊂ supp(ϕn),∀n ∈ N.

Proof. For each positive integer n, consider the function defined by

ϕn(x) = ϕ(λn · x).

The sequence of functions (ϕn)n∈N satisfies Lemma 2.1. �

Lemma 2.2. Let f ∈ C(∞)(]a, b[,C) with compact support K ⊂]a, b[ and

k ∈ N∗. Then, f can be extended as a function f̃k in Qh(k)∞ (]a, b[+Ri,C).

Proof. For each positive integer n ∈ N, put

Mn = sup
x∈K
|f (n)(x)|.

Let (δn)n∈N be a sequence of positive real numbers satisfying

δn > sup(1,Mn), ∀n ∈ N.

For n ∈ N and fix k ∈ N∗. Consider the sequence

λn,k =
n+k∑
i=0

δi.

Then lim
n→+∞

λn,k = +∞.

Let (ϕn,k)n∈N be a sequence of C(∞) functions satisfying Lemma 2.1 above
constructed with the sequence of positive real numbers (λn,k)n∈N above.

Consider the series

+∞∑
n=0

1

n!
f (n)(x)ϕn,k(y)(y · i)n.

The series is locally finite. It converges at each point z = x+ yi ∈]a, b[+Ri.
So it defines a function f̃k on ]a, b[+Ri.
Obviously, if y = 0, we have f̃k(x) = f(x), ∀x ∈]a, b[.

Since the series is locally finite, f̃k is a C(∞) function at each point z = x+yi
such that y 6= 0.

At each point z = x+ yi such that y = 0, f̃k is of class C(k). In fact:
Let α = (α1, α2) ∈ N2 / |α| = α1 + α2 ≤ k − 1. The derivative of order α of
the general term of the series is

Dα

(
f (n)(x)ϕn,k(y)(yi)n

)
= f (n+α1)(x)Dα2

(
ϕn,k(y)(yi)n

)
.
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By Leibniz formula we have

Dα2
(
ϕn,k(y)yn

)
=

α2∑
p=0

(
α2

p

)
ϕ
(α2−p)
n,k (y) · n(n− 1) · · · (n− 1− p)yn−p,

where

(
α2

p

)
is the combination coefficient.

So,∣∣Dα2
(
ϕn,k(y)yn

)∣∣
≤ n!

[
sup

y∈[− 1
λn,k

, 1
λn,k

]

sup
0≤p≤k

∣∣ϕ(p)(λn,k · y)
∣∣] k−1∑

p=0

(
k − 1
p

)(
1

λn,k

)n+1−k
.

So ∣∣Dα2
(
ϕn,k(y)yn

)∣∣ ≤ n!Ck

(
1

λn,k

)n+1−k
,

where Ck = supy∈[− 1
λn,k

, 1
λn,k

] sup0≤p≤k
∣∣ϕ(p)(λn,k · y)

∣∣∑k−1
p=0

(
k − 1
p

)
.

And so

1

n!

∣∣Dα
(
f (n)(x)ϕn,k(y)(yi)n

)∣∣ ≤Mn+α1Ck

(
1

λn,k

)n+1−k
≤ Ck

(
1

δ0

)n−k
.

The series
∑+∞

n=0
1
n!

∣∣Dα
(
f (n)(x)ϕn,k(y)(yi)n

)∣∣ is dominated by the conver-

gent geometrical series Ck
∑+∞

n=0(
1
δ0

)n−k = Ck
(δ0)k+1

δ0−1 .
So, the series

+∞∑
n=0

1

n!
Dα

(
f (n)(x)ϕn,k(y)(y · i)n

)
converges uniformly in K + Ri, ∀α = (α1, α2) ∈ N2/|α| = α1 + α2 ≤ k.

Thus f̃k is of class C(k) in ]a, b[+Ri.
From the calculation

∂

∂z
f̃k(x+ yi) =

1

2

(
∂

∂x
+ i

∂

∂y

)
f̃k(x+ yi)

=
1

2

+∞∑
n=0

1

n!
f (n+1)(x)

(
ϕn,k(y)−ϕn+1,k(y)

)
(iy)n+

i

2

+∞∑
n=0

1

n!
f (n)(x)ϕ′n,k(y)(iy)n.

we get

(1) f̃k|]a,b[ = f.

(2) Dα ∂

∂z
f̃k(z)|{z=x} = 0, ∀α = (α1, α2) ∈ N2, /|α| = α1 + α2 ≤ k −

1, ∀x ∈]a, b[.
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This ends the proof of Lemma 2.2. �

Theorem 2.3. The restriction mapping

Rk : Qh(k)∞ (]a, b[+Ri,C)→ C(∞)(]a, b[,C)

is surjective.

Proof. Let (Uj)j∈J be a locally finite covering of the interval ]a, b[. Each Uj is
relatively compact in ]a, b[ and (φj)j∈J be a partition of unity subordinated
to the covering (Uj)j∈J .

Let f ∈ C(∞)(]a, b[,C) and j ∈ J . Put φj · f = fj .

fj is a C(∞) function in ]a, b[ with compact support. By lemma 2.2, fj can

be extended as a f̃k,j ∈ Qh
(k)
∞ (]a, b[+Ri,C).

The function f̃k =
∑
j∈J

f̃k,j ∈ Qh(k)∞ (]a, b[+Ri,C). �

We want an extension f̃∞ of f of class C(∞) in ]a, b[+Ri satisfying

Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀α = (α1, α2) ∈ N2,∀x ∈]a, b[.

To get this result, we need the following Mittag-Leffler Lemma.

Lemma 2.4. For n ∈ N, let E′′n, En, E′n be Frèchet spaces. in : E′′n → En;
sn : En → E′n be continuous linear mappings such that for each positive
integer n ∈ N the following sequence

0→ E′′n → En → E′n → 0

is exact.
Let u′′n : E′′n+1 → E′′n; un : En+1 → En; u′n : E′n+1 → E′n be continuous linear
mappings such that

un ◦ in+1 = in ◦ u′′n, u′n ◦ sn+1 = sn ◦ un.

If each linear mapping u′′n has a dense range, then the following sequence

0→ lim←
n

E′′n → lim←
n

En → lim←
n

E′n → 0

is exact.

We use Mittag-Leffler Lemma as follows:

Let K be a nonempty compact set in ]a, b[, C(∞)
0 (K,C) the Frèchet space

of C(∞) functions with support in K and Qh(k)∞ (K + Ri,C) (k ∈ N∗) the

Frèchet space of functions f of class C(k) with support in K + Ri such that

(1) f |K ∈ C(∞)
0 (K,C).
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(2) Dα ∂

∂z
f(z)|{z=x} = 0, ∀x ∈ K,∀α = (α1, α2) ∈ N2/|α| = α1 + α2 ≤

k − 1.

For each positive integer k ∈ N∗, the restriction linear mapping

Rk : Qh(k)∞ (K + Ri,C)→ C(∞)
0 (K,C)

is obviously continuous.

The kernel Ker(Rk) is a closed subspace of Qh(k)∞ (K+Ri,C). It is a Frèchet

subspace of Qh(k)∞ (K + Ri,C).
Consider the following commutative diagram of exact sequences.

0 // Ker(Rk)
ik //

u′′k−1

OO

Qh(k)∞ (K + Ri,C)
Rk //

uk−1

OO

C(∞)
0 (K,C) //

j

OO

0

0 // Ker(Rk+1)
ik+1//

u′′k

OO

Qh(k+1)
∞ (K + Ri,C)

Rk+1 //

uk

OO

C(∞)
0 (K,C) //

j

OO

0

0 // ... //

u′′k+1

OO

... //

uk+1

OO

... //

j

OO

0OO OO OO

where
uk : Qh(k+1)

∞ (K + Ri,C) → Qh(k)∞ (K + Ri,C) the continuous canonical in-
jection.

j : C(∞)
0 (K,C)→ C(∞)

0 (K,C) the continuous identity mapping.
u′′k : Ker(Rk+1)→ Ker(Rk) the continuous canonical injection.

ik : Ker(Rk)→ Qh
(k)
∞ (K + Ri,C) the continuous canonical injection.

These continuous morphisms satisfy for every positive integer k ∈ N∗.

ik ◦ u′′k = uk ◦ ik+1 and Rk ◦ uk = j ◦ Rk+1.

Each linear morphism u′′k (k ∈ N) has obviously a dense range.
Using Mittag-Leffler lemma, we get the following exact sequence

0→ lim←
k

Ker(Rk)→ lim←
k

Qh(k)∞ (K + Ri,C)→ C(∞)
0 (K,C)→ 0.
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This means that each function f ∈ C(∞)
0 (K,C) can be extended as a C(∞)

function f̃∞ in K + Ri such that

Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀x ∈ K,∀α = (α1, α2) ∈ N2.

Hence, f̃∞ ∈ Qh(∞)
∞ (K + Ri,C).

Theorem 2.5. Let f ∈ C(∞)(]a, b[,C). It can be extended as a C(∞) function

f̃∞ in ]a, b[+Ri such that:

Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀x ∈]a, b[,∀α = (α1, α2) ∈ N2.

Proof. Let (Uj)j∈J be a locally finite covering of the open interval ]a, b[ and
(ϕj)j∈J be a partition of unity subordinated to the covering (Uj)j∈J .

Let f ∈ C(∞)(]a, b[,C), and j ∈ J . Put fj = ϕj · f.
fj is C(∞) function with compact support. By Mittag-Leffler Lemma there

exists a function f̃∞,j of class C(∞) in supp(ϕj · f) + Ri such that

(1) f̃∞,j |supp(ϕj ·f) = f.

(2) Dα ∂

∂z
f̃∞,j(z)|{z=x} = 0, ∀x ∈ supp(ϕj),∀α = (α1, α2) ∈ N2.

The function f̃∞ =
∑
j∈J

f̃∞,j ∈ Qh(∞)
∞ (]a, b[+Ri,C) and satisfies

(1) f̃∞|]a,b[ = f.

(2) Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀x ∈]a, b[, ∀α = (α1, α2) ∈ N2.

This ends the proof of theorem 2.5. �

3. Application to N-tempered function algebra C(∞)
N (R+, δ0,C)

As seen in introduction

C(∞)
N (R+, δ0,C) =

⋃
N∈N
C(∞)
N (R+, δ0,C) = lim→

N

C(∞)
N (R+, δ0,C).

It is the algebra of C(∞) N-tempered functions on R+ equipped with the

inductive limit topology of Frèchet spaces C(∞)
N (R+, δ0,C). An element f

in this algebra means that there exists a positive integer N such that f ∈
C(∞)
N (R+, δ0,C) and satisfies

∀n ∈ N, sup
x∈R+

δN0 (x)|f (n)(x)| < +∞.

The function f and all its derivative of any order have the same polynomially
growth at infinity.
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Theorem 3.1. Let f in C(∞)
N (R+, δ0,C). There exists a function f̃∞ of class

C(∞) in ]− ρ,+∞[+Ri (∀ρ > 0) such that:

(1) f̃∞|R+ = f.

(2) Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀x ∈ R+, ∀α = (α1, α2) ∈ N2.

Proof. Let f ∈
⋃
N∈N C

(∞)
N (R+, δ0,C) ⇒ ∃N ∈ N such that f ∈ C(∞)

N (R+,

δ0,C). By E. Borel theorem f can be extended as a C(∞) function f1 on R.

Let ϕ be a C(∞) function in R satisfying

ϕ(x) =

{
1 if x ≥ 0
0 if x ≤ −ρ (ρ > 0).

Multiply f1 by the function ϕ we get a function F of C(∞) with support in
]− ρ,+∞[.
Let ε ∈]0, 12 [ and consider the open interval ]1− ε, 2 + ε[.

For k ∈ Z, consider the open interval 2k]1− ε, 2 + ε[.
The sequence of open intervals (2k]1− ε, 2 + ε[)k∈Z satisfy

(1) 2n]1− ε, 2 + ε[
⋂

2m]1− ε, 2 + ε[= ∅ if |m− n| ≥ 3.

(2)
⋃
n∈Z

2n]1− ε, 2 + ε[=]0,+∞[.

Let φ be a positive function in C(∞)(R+,C) with compact support in the
interval ]1− ε, 2 + ε[ equal 1 on [1, 2].
For k ∈ Z and ρ ∈]0,+∞[, put

φk(x) = φ[2k(x+ ρ)].

The function ϕ(x) =
∑

k∈Z φk(x) is positive and of class C(∞) on its domain
of definition.
For k ∈ Z, put

νk(x) =
φk(x)∑

k′∈Z φk′(x)
.

Then ∑
k∈Z

νk(x) = 1, ∀x ∈]− ρ,+∞[.

(νn)n∈Z is a C(∞) partition of unity subordinated to the open covering

(2n]1− ε, 2 + ε[−ρ)n∈Z

of the open interval ]− ρ,+∞[.
Let n ∈ Z. Put f1,n = νn · F .

We get a C(∞) function with compact support in 2n]1− ε, 2 + ε[−ρ.
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So, by Theorem 2.5 above it can be extended as a C(∞) function f̃1,n in

Qh(∞)
∞
(
2n]1− ε, 2 + ε[−ρ+ Ri

)
.

The function f̃∞ =
∑

n∈Z f̃1,n satisfies

(1) f̃∞|R+ = f .

(2) Dα ∂

∂z
f̃∞(z)|{z=x} = 0,∀x ∈ R+, ∀α = (α1, α2) ∈ N2.

Hence the function f̃∞ ∈ Qh(∞)
∞
(
]− ρ,+∞[+Ri

)
.

This ends the proof of Theorem 3.1. �
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