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AN APPLICATION OF MITTAG-LEFFLER LEMMA TO
THE L.F ALGEBRA OF C(*®) N-TEMPERED FUNCTIONS
ON Rt

M. HEMDAOUI

ABSTRACT. In this note, we show that a C(°) N-tempered function f
on R can be extended as a C(® function f in | — p, +oo[+Ri (Vp > 0)
such that

Da%f('z)‘{zzz} =0, Va = (a17a2) € Nza Vo € R+-

To get this result, we use Mittag-Leffler Lemma.

1. INTRODUCTION

Let f be a C(*) function on RT and N be a positive integer. f is N-
tempered if
sup &) (2)|f™(2)| < 400, Vn €N,
z€eRT
1
V1+a?
It is clair that the vector space denoted C](VOO) (R*, 89, C) of N-tempered
functions on R equipped with the family of norms (|| || nn)nen defined by

where dp(x) =

FeCCIRY,50,C) = [ fllvn = sup sup 6 ()| fP(a)]
0<k<n zeR*

is a Frechet space.
Let N, N’ be two positive integers such that N < N’, the natural injection
mapping
1_IN,N’ : C](VOO) (R+7 507 (C) — C](VOIO) (R+7 507 (C)
is obviously continuous.
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Consider the bilinear mapping
(f,9) € CSY (R, 60,C) x C7 (RT,80,C) — f-g € C5 (R, 60, C).
Applying Leibniz formula

D (f(a)gle)) = 3 ( " ) S () - g ().

p=0 P
So
SN (@)D" (f(x)g(x))] < Cp sup sup 8 ()] f P (x)
zeRT 0<k<n
| sup sup &) (2)|g"”(x)].
zeR+ 0<p<n
Then
1f - gllven < Cullfliv - llgllne,
where

n

C, = Z n and v is the combination coeflicient.
p p

p=0

The inequality just above shows the continuity of the bilinear mapping
(£,9) € CR7(R*,60,C) x €37 (R*,60,C) = f - g € O, (R, 69, C).

Consider the vector space Céloo)(RJr,do,C) = Unen C](VOO)(R+,5O,(C) of
C(*) N-tempered functions on R equipped with the inductive limit topo-
logy of Frechet spaces CJ(VOO) (R*,6p,C) is an L.F space. It is also a unital

commutative complex topological algebra since the bilinear mapping

(£.9) € |J ¥ (R*,8,C)
NeN
< | cCRY,50,C) = f-g € | 5 RT,6,C)
NeN NeN
is continuous.
First, for & € N* we establish that a C(>) function f on an nonempty

bounded open interval |a,b[C R can be extended as a function fj of class
C™*) in Ja, b[+Ri such that

0 ~
Daaifk(z)’{z:z} =0,Va = (061,052) € N2,/‘Ot| =at+ax <k—1,Vrx G]a,b[,

where
o 1,0 .0 olel

N W’ o = (041,042) S NQ.
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At second, we use Mittag-Leffler lemma to get a C(*) extension foo of f
in Ja, b[+Ri such that

Daaﬁfw(z)y{zzx} —0,Ya = (a1,00) € N2 Yz €la b, (1.1)

At last, we apply the result to the topological algebra | J ¢y C](VOO) (R*, 6g, C).
B.Drost[2] used other technics to study extensions of ultra-differentiable
functions satisfying(1.1) on totally real compact submanifolds of open sets
in C™.
In a future note, we will show that the algebra Jycy CI%OO) (RT, 8o, C)
equipped with its natural vector bornology is useful for functional calculus.

2. NOTATIONS AND PRELIMINARY RESULTS

Let Ja,b[C R be a nonempty bounded open interval and k € N*. ()
(Ja,b[, C) denotes the vector space of C(* functions on |a, b[ equipped with
its natural topology. It is a Frechet space.

oy (Ja,b[+Ri, C) denotes the vector space of functions f of class C*)
(k € N*) in ]a, b[+R: such that

(1) Sl € € (Ja, 0], C).
(2) D% f(2)l(z=a} = O,V = (a1, 02) € N Jla| = a1+ ay < k—
1,Vx €la,b].
On oh) (Ja, b[+Ri, C), we consider the family of semi-norms defined by
1 € Ohl)(Ja. bR, C) = || lln,rc,
0
= swp sup [/P()| + sup sup (D f(:)
0<p<nzeK; |a|§k—1 zeKo z
where n € N, K is a compact set in ]a, b[, K2 is a compact set in ]a, b[+Ri.
onl®) (Ja, b[+Ri, C) equipped with the family of semi-norms || ||, x, &, is
a Frechet space. The restriction mapping
Ry : Q¥ (Ja, b[+Ri, C) — € (]a, b], C)
is obviously continuous.

We will show that the restriction R is surjective.

Lemma 2.1. Let ¢ be a c() function with compact support in | — 1,+1]
equal one on [—5,+1] and (Ay)nen be a sequence of strictly increasing pos-
itive real numbers such that limy, 400 Ay = +00. Then, there exists a se-

quence of C(®) functions (n)nen satisfying

(1) @n € C() <] — ﬁ, —1—)\171[) (Vn € N) with compact support.
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(2) @n(x) =1 if 2| < 5=, (Vn € N).
(3) supp(ni1) C supp(en),¥n € N.

Proof. For each positive integer n, consider the function defined by
en(z) = ©(An - 3).
The sequence of functions (¢, )nen satisfies Lemma 2.1. O

Lemma 2.2. Let f € C®)(Ja,b[,C) with compact support K Cla,b[ and
k € N*. Then, f can be extended as a function fi in ony (Ja, b[+Ri, C).

Proof. For each positive integer n € N, put

M, = sup | f™(z)|.
zeK

Let (0y)nen be a sequence of positive real numbers satisfying
On > sup(l, My,), VYneN.

For n € N and fix k € N*. Consider the sequence

n+k

A=Y _ b
=0

Then lim M\, = +oo.
n—+oo

Let (¢n,k)nen be a sequence of C (°°) functions satisfying Lemma 2.1 above
constructed with the sequence of positive real numbers (A, )nen above.
Consider the series

400 1
> gf(") (@) ok (Y)(y - 0"
n=0

The series is locally finite. It converges at each point z = = + yi €la, b[+Ri.
So it defines a function f; on ]a, b[+Ri.

Obviously, if y = 0, we have fy(z) = f(x), Vz €la,b|.

Since the series is locally finite, fk is a C(>) function at each point z = z +yi
such that y # 0.

At each point z = z + yi such that y = 0, fk is of class C(%). In fact:

Let a = (a1, a2) € N2 / |a| = a1 + ag < k — 1. The derivative of order o of

the general term of the series is

D <f<"> (x)wn,my)(yi)") = ) (2) DO (0 () ().
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By Leibniz formula we have

D (pnir(y)y") = < . ) 2Py n(n— 1) (n—1—p)y" P,

p=0 p

where ( O; > is the combination coefficient.

So,
| D% (on(y)y")|
k—1 n+l—k
k-1 1
< n![ sup sup ‘So(p)()\n,k‘ : Z/)|] ( P > ()\ )
So

1 n+1—k
An,k:) ’

_ k—1
where C), = Supye[fﬁ,ﬁ] SUPg<p<k ’gp(p)(An’k . y)‘ ZI;:(I) < » )
And so ‘ Y

| D2 (@n 1 (y)y") | < nlCy (

i’Da(f(n)($) (y)( )n)| <M C i e < C, 1\"*
nl Pn k\Y)\Y? > Mpta Uk )\ k 50 .

The series 372 LD (F™ (@) onr(y

n=0 nl ‘ is dominated by the conver-

k+1
gent geometrical series Cj, > 720 (& 3 )” Ck (%%) T

So, the series
+o0

> 20 (1 @ens)o i)

n=0

converges uniformly in K + Ri, Vo = (a1, a2) € N?/|a| = a1 + az < k.
Thus f, is of class C*) in ]a, b[+Ri.

From the calculation

%fk(:v +yi) = 1((% + z‘(.f)fk(x +yi)

2
:—Z:n'!fn—"_1 San( ) SDn—I—lk Z f Qpnk( )(Zy)n
we get
1) Frlap = f

0 ~
(2) Dagfk(z”{z:x} = 0,Va = (a17a2) € NQ,/|04’ =ot+a < k-
1,z €]a, bl.
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This ends the proof of Lemma 2.2. O
Theorem 2.3. The restriction mapping

Ry : QhF) (Ja, b[+Ri, C) — € (Ja, [, C)
1S surjective.

Proof. Let (Uj) e be alocally finite covering of the interval |a, b[. Each Uj is
relatively compact in |a, b] and (¢;),cs be a partition of unity subordinated
to the covering (Uj)je.
Let f € C©)(]a,b[,C) and j € J. Put ¢; - f = f;.
fj is a (> function in Ja, b[ with compact support. By lemma 2.2, f; can
be extended as a ﬁm e ond® (Ja, b[+Ri, C).
The function f = Z ]?kJ e 0h® (Ja, b[+Ri, C). O
Jje€J
We want an extension fos of f of class C(>) in a, b[+Ri satisfying

0 ~
Daa—fm(z)]{zzz} = 0,Ya = (a1, a2) € N2, Vz €a, b].

To get this result, we need the following Mittag-Leffler Lemma.

Lemma 2.4. Forn € N, let E!!, E,, E/, be Fréchet spaces. i, : E|! — E,;
sn + B, — E] be continuous linear mappings such that for each positive
integer n € N the following sequence

0—E—-E,—E,—0

18 exact.
Letup : E) y = El; up : Eyny1 — Ey;uy, By, | — E), be continuous linear
mappings such that
- - " /
Up O lpt1 = ip O Uy, Uy O Spyl = Sp O Up,.
If each linear mapping u!! has a dense range, then the following sequence
0= lmE’ - limE, - limFE — 0
~ - n <~ ~ - n
n n n

18 exact.

We use Mittag-Lefller Lemma as follows:
Let K be a nonempty compact set in |a, b, Céoo)(K ,C) the Frechet space
of C(*®) functions with support in K and thé)(K + Ri,C) (k € N¥) the
Fréchet space of functions f of class C*) with support in K + Ri such that

(1) flx € c™ (K, 0).
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0
(2) Da%f(z)‘{z:m} =0,Vz € K,Va = (a1, a2) € N*/|a| = a1 + as
k—1.

For each positive integer k € N*, the restriction linear mapping
Ri : QWP (K + Ri,C) — ¢ (K, C)

is obviously continuous.

67

<

The kernel Ker(Ry) is a closed subspace of thé)(K +Ri,C). It is a Frechet

subspace of thé) (K 4+ Ri,C).

Consider the following commutative diagram of exact sequences.

" .
Uk—1 Uk—1 J

0 — Ker(Ry,) —% on® (i + Ri, C) 2 ¢ (K, C) —— 0
uy! U j
igt1 Ri41

0—> Ker(Rps1) —= 0nE™ (K 4+ Ri, €) s ¢ (K,C) —>0

" .
Ukt Uk+1 J

where

Up : th’éﬂ)(K + Ri,C) — on® (K + Ri,C) the continuous canonical in-

jection.

j: C((]oo)(K, C) — C(()oo)(K, C) the continuous identity mapping.

uy : Ker(Ry41) — Ker(Ry) the continuous canonical injection.

iy : Ker(Ryg) — Qh(olf))(K + Ri, C) the continuous canonical injection.
These continuous morphisms satisfy for every positive integer k € N*.

ikoup =upoirry and Ryour=jo Riii.

Each linear morphism ) (k € N) has obviously a dense range.
Using Mittag-Leffler lemma, we get the following exact sequence

0— li%n Ker(Ry) — h%n oh®) (K +Ri,C) - ™ (K,C) — 0.
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This means that each function f € C(()OO)(K ,C) can be extended as a C(>)
function f in K 4 Ri such that

9 = 2
gfoo(z)“z:x} =0,Vz € K,Va = (a1,a3) € N°.

Hence, fo € QS (K + Ri, C).

Theorem 2.5. Let f € C(*®)(Ja,b[,C). It can be extended as a C(>) function

foo in Ja,b[+Ri such that:

a 0 = 2
£foo(2)’{z:x} =0,z €a,b[,Va = (a1, as) € N°.

Proof. Let (Uj) ;e be alocally finite covering of the open interval ]a, b[ and
(¢j)jes be a partition of unity subordinated to the covering (Uj) ;e

Let f € C(*®)(]a,b[,C), and j € J. Put f; = p; - f.

fjis C(*) function with compact support. By Mittag-Leffler Lemma there

DOC

D

exists a function ji.\o/] of class C(*°) in supp(p; - f) + Ri such that
(1) Fooilsuppeo,-r) = -
(2) Do‘ifm’j(zﬂ{z:x} = 0,Vz € supp(p;),Va = (a1, a2) € N2,
The function fo, = Z f;/] e Qh{®)(Ja, b[+Ri, C) and satisfies

jed
(1) Focljap) = /-
(2) Do‘%fw(z)hzzx} = 0,Vz €]a, b[,Va = (a1, a) € N2,
This ends the proof of theorem 2.5. (]

3. APPLICATION TO N-TEMPERED FUNCTION ALGEBRA CI(\IOO) (R, 6,C)

As seen in introduction
C (R, 80,C) = | €Y (®RY,8,C) = lim GV (RT, 60, ).
NEN N
It is the algebra of C(*) N-tempered functions on Rt equipped with the
inductive limit topology of Fréchet spaces C](VOO) (RT,80,C). An element f
in this algebra means that there exists a positive integer N such that f €
CJ(VOO) (R, 8, C) and satisfies
vneN, sup & (z)|f™(z)] < +oo.
zeRT

The function f and all its derivative of any order have the same polynomially
growth at infinity.
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Theorem 3.1. Let [ in CI(\IOO) (R*, 80, C). There exists a function foo of class
C(>®) in ] — p,+oo[+Ri (Vp > 0) such that:

(1) foohlgr = [
(2) Da%foo(zﬂ{z:x} =0,Vz € R+,va = (Oél,()ég) e N2

Proof. Let f € Uyen COV (R, 6,,C) = 3N € N such that f € C5V(RT,
d0, C). By E. Borel theorem f can be extended as a C(*) function f; on R.
Let o beaC () function in R satisfying

() = 1 if z>0
PEZY 0 if a<—p (p>0).

Multiply f; by the function ¢ we get a function F of C(°) with support in
] = p,+o0l.
Let € €]0, 1[ and consider the open interval |1 —€,2 + €[.
For k € Z, consider the open interval 2F]1 — ¢, 2 + €[.
The sequence of open intervals (2¥]1 — €,2 + €[)rez satisfy

(1) 2"l — €62+ €[N2M]1 —€¢,24¢€[=0 if |m—mn|>3.

2) |21 - &2+ ¢[=]0, +o0].

nez

Let ¢ be a positive function in C(*)(R*, C) with compact support in the
interval |1 —€,2 + €[ equal 1 on [1,2].
For k € Z and p €]0, +o0], put

() = ¢[2"(x + p)].

The function ¢(z) = 3", ., k() is positive and of class C(>) on its domain
of definition.
For k € Z, put

() = Prlz)
> ke Pr ()
Then
> wlw) =1, V€] —p,+ool
kEZ

(Vn)nez is aC (o) partition of unity subordinated to the open covering
(2"]1 = €,2+ e[—p)nez

of the open interval | — p, +00].
Let n € Z. Put fi1, = v, - F.
We get a €(*°) function with compact support in 2"1 — €,2 + €[—p.
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So, by Theorem 2.5 above it can be extended as a C(*°) function fl\; in
O (271 — €,2 + e[—p + Ri).
The function ﬁx, =Y nez f1n satisfies
(1) f<>0|Ra+ =/
(2) Da%foo(zﬂ{zzm} :O,Vﬂ?GR+, Vo = (a17a2) €N2

Hence the function fa, € on’) (] — p, +oo[+Rq).
This ends the proof of Theorem 3.1. O
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