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f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS

OF PRODUCT SPACES

FATMA KARACA AND CIHAN ÖZGÜR

Abstract. We consider f -biharmonic and bi-f -harmonic submanifolds
of the product of two real space forms. We find the necessary and
sufficient conditions for a submanifold to be f -biharmonic and bi-f -
harmonic in a product of two real space forms.

1. Introduction

Let (M, g) and (N,h) be two Riemannian manifolds. ϕ : M → N is called
a harmonic map if it is a critical point of the energy functional

E(ϕ) =
1

2

∫
Ω
‖dϕ‖2 dνg,

where Ω is a compact domain of M . The Euler-Lagrange equation of E(ϕ)
is

τ(ϕ) = tr(∇dϕ) = 0,

where τ(ϕ) is the tension field of ϕ [3]. The map ϕ is said to be biharmonic
if it is a critical point of the bienergy functional

E2(ϕ) =
1

2

∫
Ω
‖τ(ϕ)‖2 dνg,

where Ω is a compact domain of M . In [4], Jiang obtained the Euler-
Lagrange equation of E2(ϕ). This gives us

τ2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ
∇)τ(ϕ)− tr(RN (dϕ, τ(ϕ))dϕ) = 0, (1.1)

where τ2(ϕ) is the bitension field of ϕ and RN is the curvature tensor of
N . The map ϕ is said to be f -biharmonic if it is a critical point of the
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f -bienergy functional

E2,f (ϕ) =
1

2

∫
Ω
f ‖τ(ϕ)‖2 dνg,

where Ω is a compact domain of M [5]. The Euler-Lagrange equation for
the f -bienergy functional is defined by

τ2,f (ϕ) = fτ2(ϕ) + (∆f) τ(ϕ) + 2∇ϕ
gradfτ(ϕ) = 0, (1.2)

where τ2,f (ϕ) is the f -bitension field of ϕ [5]. From the definition, it is trivial
that any harmonic map is f -biharmonic. If the f -biharmonic map is neither
harmonic nor biharmonic then we call it by proper f -biharmonic and if f is
a constant, an f -biharmonic map turns into a biharmonic map [5].

An f -harmonic map with a positive function f : M
C∞→ R is a critical

point of the f -energy

Ef (ϕ) =
1

2

∫
Ω
f ‖dϕ‖2 dνg,

where Ω is a compact domain of M . The Euler-Lagrange equation for the
f -energy functional gives us the f -tension field τf (ϕ) (see [1], [8]) by

τf (ϕ) = fτ(ϕ) + dϕ(gradf) = 0. (1.3)

The map ϕ is said to be bi-f -harmonic if it is a critical point of the
bi-f -energy functional

E2
f (ϕ) =

1

2

∫
Ω
‖τf (ϕ)‖2 dνg,

where Ω is a compact domain of M . The Euler-Lagrange equation gives the
bi-f -harmonic map equation

τ2
f (ϕ) = fJϕ (τf (ϕ))−∇ϕ

gradfτf (ϕ) = 0, (1.4)

where τ2
f (ϕ) is the bi-f -tension field of ϕ and Jϕ is the Jacobi operator of

the map defined by Jϕ (X) = −
[
Trg∇ϕ∇ϕX −∇ϕ

∇MX −RN (dϕ,X) dϕ
]

[8]. It is trivial that any f -harmonic map is bi-f -harmonic [8].
Eells and Sampson studied harmonic mappings of Riemannian manifolds

[3]. Jiang defined biharmonic maps by using the first and second varia-
tional formulas of bienergy functional [4]. In [5], Lu defined the notion
of f -biharmonic maps. He obtained the f -biharmonic map equation and
studied f -biharmonicity of some special maps. In [7], Ou studied on some
properties of f -biharmonic maps and f -biharmonic submanifolds. Course
defined f -harmonic maps in [1]. Later, Ouakkas, Nasri and Djaa obtained
some properties for f -harmonic maps between two Riemannian manifolds
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and defined bi-f -harmonic maps [8]. In [11], Zegga, Cherif and Djaa consid-
ered bi-f -harmonic maps and submanifolds. In [9], Roth studied biharmonic
submanifolds of the product of two space forms. Motivated by the above
studies, in this paper, we consider f -biharmonic and bi-f -harmonic sub-
manifolds of the product of two space forms and obtain the necessary and
sufficient conditions for a submanifold to be f -biharmonic and bi-f -harmonic
in a product of two real space forms.

2. Preliminaries

Let Mn1(c1) and Mn2(c2) be two real space forms of constant curvatures
c1, c2 with dimensions n1 and n2, respectively. Let us consider the product
space (Mn1(c1)×Mn2(c2), g̃). Assume that (Mm, g) be a Riemannian man-
ifold isometrically immersed into the product space (Mn1(c1)×Mn2(c2), g̃).

Denote by ∇̃ and F the Levi-Civita connection of Mm and the product
structure of the product space (Mn1(c1) ×Mn2(c2), g̃), respectively. The
product structure F : TMn1(c1) × TMn2(c2) −→ TMn1(c1) × TMn2(c2) is
a (1, 1)-tensor field defined by

F (X1 +X2) = X1 −X2

for any vector field X = X1 +X2, X1, X2 denote the parts of X tangent to
the first and second factors, respectively. It is easy to see that F satisfies

F 2 = I (and F 6= I), (2.1)

g̃(FX, Y ) = g̃(X,FY ), (2.2)

∇̃F = 0, (2.3)

(see [10]). By an easy calculation, we obtain the curvature tensor of (Mn1(c1)
×Mn2(c2), g̃) as

R̃(X,Y )Z = a[g(Y, Z)X − g(X,Z)Y + g(FY,Z)FX − g(FX,Z)FY ]

+b[g(Y,Z)FX − g(X,Z)FY + g(Y, FZ)X − g(X,FZ)Y ] (2.4)

with a = c1+c2
4 and b = c1−c2

4 [2].

Now let X ∈ TMm and ξ ∈ T⊥Mm. The decompositions of FX and Fξ
into tangent and normal components can be written as

FX = kX + hX and Fξ = sξ + tξ, (2.5)

where k : TMm −→ TMm, h : TMm −→ T⊥Mm, s : T⊥Mm −→ TMm,
and t : T⊥Mm −→ T⊥Mm are (1, 1)-tensor fields. From equations (2.1) and
(2.2), it is easy to see that k and t are symmetric and satisfy the following
properties:

k2X = X − shX, (2.6)



118 FATMA KARACA AND CIHAN ÖZGÜR

t2ξ = ξ − hsξ, (2.7)

ksξ + stξ = 0, (2.8)

hkX + thX = 0, (2.9)

g̃(hX, ξ) = g̃(X, sξ), (2.10)

(for more details see [10]).

3. f-biharmonic submanifolds of product spaces

Let ϕ : Mm −→ (Mn1(c1) × Mn2(c2), g̃) be an isometric immersion
from an m-dimensional Riemannian manifold (Mm, g) into the product
of two space forms Mn1(c1) and Mn2(c2) of constant curvatures c1, c2

with dimensions n1 and n2. We shall denote by B, A, H,∆ and ∆⊥ the
second fundamental form, the shape operator, the mean curvature vector
field, the Laplacian and the Laplacian on the normal bundle of Mm in
N = (Mn1(c1)×Mn2(c2), g̃), respectively.

Firstly we have the following theorem:

Theorem 3.1. Let Mm be a Riemannian manifold isometrically immersed
into the product space N = (Mn1(c1) ×Mn2(c2), g̃). Then Mm is f -bihar-
monic if and only if the following two equations hold:

∆⊥H + trB(·, AH(·))− ∆f

f
H − 2∇⊥grad ln fH

= a(mH − hsH + tr(k)tH) + b(mtH + tr(k)H) (3.1)

and

m

2
grad ‖H‖2 + 2tr(A∇⊥· H ·) + 2AHgrad ln f

= a(−ksH + tr(k)sH) + b(m− 1)sH. (3.2)

Proof. Let us denote by ∇ϕ, ∇ the Levi-Civita connections on N and Mm,
respectively. Let {ei}, 1 ≤ i ≤ m be a local geodesic orthonormal frame at
p ∈Mm. Then

τ(ϕ) = tr(∇dϕ) = mH. (3.3)

From (1.1) and (3.3), we have

τ2(ϕ) = tr(∇ϕ∇ϕ −∇ϕ
∇)τ(ϕ)− tr(RN (dϕ, τ(ϕ))dϕ)

=
m∑
i=1

(∇ϕ
ei∇

ϕ
ei −∇

ϕ
∇eiei

)mH −
m∑
i=1

RN (dϕ(ei),mH)dϕ(ei)

= −m

{
∆H +

m∑
i=1

RN (dϕ(ei), H)dϕ(ei)

}
. (3.4)
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By (2.4), we find

m∑
i=1

(RN (dϕ(ei), H)dϕ(ei))

= a
[
−mH + F (FH)T − tr(k)FH

]
+ b

[
−mFH + (FH)T − tr(k)H

]
.

Using (2.5) in the above equality, we get

m∑
i=1

(RN (dϕ(ei), H)dϕ(ei))=a [−mH + ksH +hsH −tr(k)sH −tr(k)tH]

+ b [−msH −mtH + sH − tr(k)H] . (3.5)

By the use of the Gauss and Weingarten formulas, we have

∆H = −
m∑
i=1

(∇ϕ
ei∇

ϕ
eiH) = −

m∑
i=1

(∇ϕ
ei(−AHei +∇⊥eiH)

= −
m∑
i=1

{
−∇eiAHei −B(ei, AHei)−A∇⊥eiHei +∇⊥ei∇

⊥
eiH

}
=

m∑
i=1

∇eiAHei +
m∑
i=1

B(ei, AHei) +
m∑
i=1

A∇⊥eiH
ei −

m∑
i=1

∇⊥ei∇
⊥
eiH

= tr(∇·AH ·) + trB(·, AH ·) + tr(A∇⊥· H ·) + ∆⊥H. (3.6)

Now we shall compute tr(∇·AH ·). In view of Gauss and Weingarten formu-
las, we obtain

m∑
i=1

∇eiAHei =
∑
i,j

g(∇eiAHei, ej)ej =
∑
i,j

eig(AHei, ej)ej

=
∑
i,j

eig(B(ei, ej), H)ej =
∑
i,j

eig(∇ϕ
ejei, H)ej

=
∑
i,j

{
g(∇ϕ

ei∇
ϕ
ejei, H)ej + g(∇ϕ

ejei,∇
ϕ
eiH)ej

}
=
∑
i,j

{
g(∇ϕ

ei∇
ϕ
ejei, H)ej + g(B(ei, ej),∇⊥eiH)ej

}
=
∑
i,j

g(∇ϕ
ei∇

ϕ
ejei, H)ej +

∑
i

A∇⊥eiH
(ei). (3.7)
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Then, using the definition of the curvature tensor of N we have∑
i,j

g(∇ϕ
ei∇

ϕ
ejei, H)ej =

∑
i,j

g(RN (ei, ej)ei +∇ϕ
ej∇

ϕ
eiei +∇ϕ

[ei,ej ]ei, H)

= mg(∇ejH,H)

=
m

2
grad ‖H‖2 . (3.8)

Substituting (3.8) into (3.7) and then using (3.7) into (3.6), we get

∆H =
m

2
grad ‖H‖2 + trB(·, AH ·) + 2tr(A∇⊥· H ·) + ∆⊥H. (3.9)

In view of equations (3.9) and (3.5) into (3.4), we obtain

τ2(ϕ) = −m
{m

2
grad ‖H‖2 + trB(·, AH ·) + 2tr(A∇⊥· H ·) + ∆⊥H

+a [−mH + ksH + hsH − tr(k)sH − tr(k)tH]

+b [−msH −mtH + sH − tr(k)H]} . (3.10)

Using Weingarten formula and equation (3.3), we have

∇ϕ
gradfτ(ϕ) = ∇ϕ

gradfmH = m
(
−AHgradf +∇⊥gradfH

)
. (3.11)

Finally substituting equations (3.3), (3.10) and (3.11) into equation (1.2),
we obtain

−fm
{m

2
grad ‖H‖2 + trB(·, AH ·) + 2tr(A∇⊥· H ·) + ∆⊥H

+a [−mH + ksH + hsH − tr(k)sH − tr(k)tH]

+b [−msH −mtH + sH − tr(k)H]

−∆f

f
H + 2AHgrad ln f − 2∇⊥grad ln fH

}
= 0.

Hence comparing the tangential and the normal parts, we obtain the desired
result. �

Corollary 3.2. Let Mm be a Riemannian manifold isometrically immersed
into the product space N = (Mn1(c1)×Mn2(c2), g̃).

1) If FH is tangent to Mm, then Mm is f -biharmonic if and only if

∆⊥H + trB(., AH(.))− ∆f

f
H − 2∇⊥grad ln fH − [a(m− 1) + btr(k)]H = 0,

(3.12)
m

2
grad ‖H‖2 + 2tr(A∇⊥· H ·) + 2AHgrad ln f − [atr(k) + b(m− 1)]FH = 0.

(3.13)
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2) If FH is normal to Mm, then Mm is f -biharmonic if and only if

∆⊥H + trB(., AH(.))− ∆f

f
H − 2∇⊥grad ln fH

− [am+ btr(k)]H − [atr(k) + bm]FH = 0, (3.14)

m

2
grad ‖H‖2 + 2tr(A∇⊥· H ·) + 2AHgrad ln f = 0. (3.15)

Proof. 1) If FH is tangent toMm, then by the use of (2.5) we have FH = sH
and tH = 0. So from (2.7), we have hsH = H and by Theorem 3.1 we find
(3.12) and (3.13).

2) If FH is normal to Mm, then sH = 0 and tH = FH. Hence from
Theorem 3.1 we get (3.14) and (3.15). �

Corollary 3.3. Let Mm be a submanifold of Sp(r)× Sn−p(r) of dimension
m ≥ 2 with non-zero constant mean curvature such that FH is tangent to
Mm.

1) If Mm is proper f -biharmonic, then

0 < ‖H‖2 ≤ inf

{
1

2r2
(m− 1) + ∆f

f

m

}
. (3.16)

2) Assume that f is an eigenfunction of the Laplacian ∆ corresponding
to real eigenvalue λ. Hence the equality in (3.16) occurs and Mm is proper
f -biharmonic if and only if Mm is pseudo-umbilical,

∇⊥H = 0,

2AHgrad ln f − 1

2r2
tr(k)FH = 0

and

trB(·, AH ·) =

[
1

2r2
(m− 1) + λ

]
H.

Proof. We assume that FH is tangent to Mm, then in view of (2.5) we have
FH = sH and tH = 0. Hence by (2.7), we have hsH = H. By the use of
(3.12) we have

∆⊥H + trB(., AH(.))− ∆f

f
H − 2∇⊥grad ln fH −

1

2r2
(m− 1)H = 0. (3.17)

Then taking the scalar product of (3.17) with H, we find

g(∆⊥H,H) + g(trB(., AH(.)), H)− ∆f

f
g(H,H)

− 2g
(
∇⊥grad ln fH,H

)
− 1

2r2
(m− 1)g(H,H) = 0.
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Since ‖H‖ is a constant, we have

g(∆⊥H,H) =
∆f

f
‖H‖2 − ‖AH‖2 +

1

2r2
(m− 1) ‖H‖2 .

Using the Bochner formula, we get∥∥∥∇⊥H∥∥∥2
+ ‖AH‖2 =

[
∆f

f
+

1

2r2
(m− 1)

]
‖H‖2 . (3.18)

By the use of Cauchy-Schwarz inequality, we have ‖AH‖2 ≥ m ‖H‖4 (see
[9]). Hence we find[

∆f

f
+

1

2r2
(m− 1)

]
‖H‖2 ≥ m ‖H‖4 +

∥∥∥∇⊥H∥∥∥2
≥ m ‖H‖4 . (3.19)

Since ‖H‖ is a non-zero constant, we can write

0 < ‖H‖2 ≤ inf


[

∆f
f + 1

2r2
(m− 1)

]
m

 . (3.20)

Now, if f is an eigenfunction of the Laplacian ∆ corresponding to the real
eigenvalue λ, then ∆f

f = λ. We can write

‖H‖2 =

[
λ+ 1

2r2
(m− 1)

]
m

. (3.21)

Assume that Mm is proper f -biharmonic. From (3.19), first we have∇⊥H =
0. Moreover substituting the equation (3.21) into (3.19) we find

‖AH‖2 =

[
λ+ 1

2r2
(m− 1)

]2
m

.

That is, Mm is pseudo-umbilical. Then from (3.13) we have

2AHgrad ln f − 1

2r2
tr(k)FH = 0.

In this case (3.12) turns into

trB(·, AH ·) =

[
λ+

1

2r2
(m− 1)

]
H.

This completes the proof. �

Now we consider f -biharmonic hypersurface Mm of Sp(r)×Sn−p(r) such
that FH is tangent to Mm. Firstly we have:
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Proposition 3.4. Let Mn−1 be a hypersurface of Sp(r) × Sn−p(r) with
non-zero constant mean curvature such that FH is tangent to Mn−1. Then
Mn−1 is f -biharmonic if and only if

AHgrad ln f =
1

4r2
tr(k)FH

and

‖B‖2 =
n− 2

2r2
+

∆f

f
.

Proof. Assume that Mn−1 is a hypersurface of Sp(r) × Sn−p(r) with non-
zero constant mean curvature such that FH is tangent to Mn−1. Then from
(3.12) we get

trB(·, AH ·) =

[
∆f

f
+

1

2r2
(n− 2)

]
H.

Then, by taking the scalar product with H, we have

n−1∑
i=1

g (B(ei, AHei), H) =

[
∆f

f
+

1

2r2
(n− 2)

]
‖H‖2 ,

n−1∑
i=1

g (AHei, AHei) =

[
∆f

f
+

1

2r2
(n− 2)

]
‖H‖2

and

‖AH‖2 =

[
∆f

f
+

1

2r2
(n− 2)

]
‖H‖2 .

From ([10], page 71), we know that ‖AH‖2 = ‖B‖2 . Hence we find

‖B‖2 =
n− 2

2r2
+

∆f

f
. (3.22)

So the equation (3.13) is reduced to

AHgrad ln f =
1

4r2
tr(k)FH.

This completes the proof of the proposition. �

Proposition 3.5. Let Mn−1 be a proper f -biharmonic hypersurface of Sp(r)
×Sn−1(r) with non-zero constant mean curvature such that FH is tangent
to Mn−1. Then the scalar curvature of Mn−1 is given by

ScalMn−1 =
1

2r2

{
(n− 1)(n− 3)− (n− 2) + tr(k)2

}
+ (n− 1)2 ‖H‖2− ∆f

f
.
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Proof. By the use of the Gauss equation, we can write

ScalMn−1 =
m∑
i=1

g
(
RN (ei, ej)ej , ei

)
+

m∑
i=1

g (B(ei, ei), B(ej , ej))

−
m∑
i=1

g (B(ej , ei), B(ej , ei)) .

Then we compute

ScalMn−1 =
m∑
i=1

g
(
RN (ei, ej)ej , ei

)
+ (n− 1)2 ‖H‖2 − ‖B‖2 . (3.23)

Using (2.4) we write

m∑
i=1

g
(
RN (ei, ej)ej , ei

)
=

1

2r2

{ m∑
i=1

g(ej , ej)g(ei, ei)−
m∑
i=1

g(ei, ej)g(ei, ej)

+
m∑
i=1

g(Fej , ej)g(Fei, ei)−
m∑
i=1

g(Fei, ej)g(Fei, ej)

}
.

Hence we find
m∑
i=1

g
(
RN (ei, ej)ej , ei

)
=

1

2r2

{
(n− 1)(n− 3) + tr(k)2

}
. (3.24)

Finally, in view of equations (3.24) and (3.22) into (3.23), we get

ScalMn−1 =
1

2r2

{
(n− 1)(n− 3)− (n− 2) + tr(k)2

}
+ (n− 1)2 ‖H‖2− ∆f

f
.

This proves the proposition. �

4. Bi-f-harmonic submanifolds of product spaces

In this section, we consider bi-f -harmonic submanifolds of product of two
real space forms. We firstly state the following theorem:

Theorem 4.1. Let Mm be a Riemannian manifold isometrically immersed
into the product space N = (Mn1(c1) × Mn2(c2), g̃). Then Mm is bi-f -
harmonic if and only if the following two equations hold:(

mf2
) (

∆⊥H
)

+
(
mf2

)
trB(·, AH(·))− fm (∆f)H − (3mf)∇⊥gradfH

−ftrB (·,∇·gradf)−ftr∇⊥· B (·, gradf)−m ‖gradf‖2H−B (gradf, gradf)

=
(
mf2

)
{a [mH − hsH + tr(k)tH + tr(k)hgradf + hkgradf ]

+b [mtH + tr(k)H + (m− 1)hgradf ]}
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and
(mf)2

2
grad ‖H‖2 + 2

(
mf2

)
tr(A∇⊥· H ·) + 3 (mf)AHgradf

+fRicciM (gradf) + fgrad (∆f) + ftrAB(·,gradf) (·)− 1

2
grad

(
‖gradf‖2

)
=
(
mf2

) {
a
[
−ksH + tr(k)sH + (m− 1)gradf + tr(k)kgradf − k2gradf

]
+b [(m− 1)sH +m (kgradf) + tr(k)gradf ]} .

Proof. Let us denote by ∇ϕ, ∇ the Levi-Civita connections on N and Mm,
respectively. Let {ei}, 1 ≤ i ≤ m be a local geodesic orthonormal frame at
p ∈Mm.

From the equations (1.3) and (3.3), we find

τf (ϕ) = fmH + dϕ (gradf) = fmH + gradf. (4.1)

Then, we can write

m∑
i=1

(RN (τf (ϕ), dϕ(ei))dϕ(ei)) = mf
m∑
i=1

(RN (H, dϕ(ei))dϕ(ei))

+

m∑
i=1

(RN (gradf, dϕ(ei))dϕ(ei)). (4.2)

Using the equation (2.4), we obtain

m∑
i=1

(RN (gradf, dϕ(ei))dϕ(ei))

= a
[
(m− 1) (gradf) + tr(k) (Fgradf)− F (Fgradf)T

]
+ b

[
(m− 1) (Fgradf) + tr(k) (gradf)− (Fgradf)T

]
.

Using (2.5) in the above equality, we get

m∑
i=1

(RN (gradf, dϕ(ei))dϕ(ei)) = a [(m− 1) (gradf) + tr(k) (kgradf)

+tr(k) (hgradf)− k2gradf + hkgradf
]

+ b [m (kgradf) + (m− 1) (hgradf) + tr(k)gradf ] . (4.3)

In view of equations (3.5) and (4.3) into equation (4.2), we obtain
m∑
i=1

(RN (τf (ϕ), dϕ(ei))dϕ(ei)) = a [mH − ksH − hsH + tr(k)sH + tr(k)tH

+(m− 1) (gradf) + tr(k) (kgradf) + tr(k) (hgradf)
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−k2gradf + hkgradf
]

+ b [msH +mtH − sH + tr(k)Hm (kgradf)

+(m− 1) (hgradf) + tr(k)gradf ] . (4.4)

By the use of the Gauss and Weingarten formulas, we have
m∑
i=1

(∇ϕ
ei∇

ϕ
eiτf (ϕ)−∇ϕ

∇eiei
τf (ϕ)) =

m∑
i=1

[
∇ϕ

ei∇
ϕ
ei (fmH + gradf)

]
= m

m∑
i=1

∇ϕ
ei

(
ei (f)H + f∇ϕ

eiH
)

+
m∑
i=1

∇ϕ
ei (∇eigradf +B (ei, gradf))

= m
m∑
i=1

{
ei (ei (f))H + 2ei (f)∇ϕ

eiH + f∇ϕ
ei∇

ϕ
eiH

}
+

m∑
i=1

∇ei∇eigradf

+
m∑
i=1

{
B (ei,∇eigradf)−AB(ei,gradf) (ei) +∇⊥eiB (ei, gradf)

}
. (4.5)

Using the equation (3.9), we can write
m∑
i=1

(∇ϕ
ei∇

ϕ
eiH) = −m

2
grad ‖H‖2− trB(·, AH ·)−2tr(A∇⊥· H ·)−∆⊥H. (4.6)

In view of equation (4.6) into (4.5), we obtain
m∑
i=1

(∇ϕ
ei∇

ϕ
eiτf (ϕ)−∇ϕ

∇eiei
τf (ϕ))=m (∆f)H + 2m

m∑
i=1

∇ϕ
gradfH

−m
2f

2
grad ‖H‖2 − (mf) trB(·, AH ·)− 2 (mf) tr(A∇⊥· H ·)

− (mf) ∆⊥H +
m∑
i=1

∇ei∇eigradf +
m∑
i=1

B (ei,∇eigradf)

−
m∑
i=1

AB(ei,gradf) (ei) +
m∑
i=1

∇⊥eiB (ei, gradf) . (4.7)

Using Gauss and Weingarten formulas, we have

∇ϕ
gradfτf (ϕ) = ∇ϕ

gradf (fmH + gradf)

= m ‖gradf‖2H − (mf)AHgradf + (mf)∇⊥gradfH

+
1

2
grad

(
‖gradf‖2

)
+B (gradf, gradf) . (4.8)

Finally substituting (4.4), (4.7) and (4.8) into equation (1.4) and comparing
the tangential and the normal parts, we obtain the desired result. �

Corollary 4.2. Let Mm be a Riemannian manifold isometrically immersed
into the product space N = (Mn1(c1)×Mn2(c2), g̃).
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1) If FH and Fgradf are tangent to Mm, then Mm is bi-f -harmonic if
and only if(

mf2
) (

∆⊥H
)

+
(
mf2

)
trB(·, AH(·))− fm (∆f)H − (3mf)∇⊥gradfH

−ftrB (·,∇·gradf)−ftr∇⊥· B (·, gradf)−m ‖gradf‖2H−B (gradf, gradf)

=
(
mf2

)
{a [(m− 1)H] + b [tr(k)H]}

and
(mf)2

2
grad ‖H‖2 + 2

(
mf2

)
tr(A∇⊥· H ·) + 3 (mf)AHgradf

+fRicciM (gradf) + fgrad (∆f) + ftrAB(·,gradf) (·)− 1

2
grad

(
‖gradf‖2

)
=
(
mf2

)
{a [tr(k) (Fgradf) + (m− 2)gradf + tr(k)FH]

+b [(m− 1)FH +m (Fgradf) + tr(k)gradf ]} .
2) If FH is tangent to Mm and Fgradf is normal to Mm, then Mm

is bi-f -harmonic if and only if(
mf2

) (
∆⊥H

)
+
(
mf2

)
trB(·, AH(·))− fm (∆f)H − (3mf)∇⊥gradfH

−ftrB (·,∇·gradf)−ftr∇⊥· B (·, gradf)−m ‖gradf‖2H−B (gradf, gradf)

=
(
mf2

)
{a [(m− 1)H + tr(k) (Fgradf)]

+b [tr(k)H + (m− 1) (Fgradf)]}
and

(mf)2

2
grad ‖H‖2 + 2

(
mf2

)
tr(A∇⊥· H ·) + 3 (mf)AHgradf

+fRicciM (gradf) + fgrad (∆f) + ftrAB(·,gradf) (·)− 1

2
grad

(
‖gradf‖2

)
=
(
mf2

)
{a [tr(k)FH + (m− 1)gradf ] + b [(m− 1)FH + tr(k)gradf ]} .

3) If FH is normal to Mm and Fgradf is tangent to Mm, then Mm

is bi-f -harmonic if and only if(
mf2

) (
∆⊥H

)
+
(
mf2

)
trB(·, AH(·))− fm (∆f)H − (3mf)∇⊥gradfH

−ftrB (·,∇·gradf)−ftr∇⊥· B (·, gradf)−m ‖gradf‖2H−B (gradf, gradf)

=
(
mf2

)
{a [mH + tr(k)FH] + b [mFH + tr(k)H]}

and
(mf)2

2
grad ‖H‖2 + 2

(
mf2

)
tr(A∇⊥· H ·) + 3 (mf)AHgradf

+fRicciM (gradf) + fgrad (∆f) + ftrAB(·,gradf) (·)− 1

2
grad

(
‖gradf‖2

)
=
(
mf2

)
{a [(m− 2)gradf + tr(k) (Fgradf)]
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+b [m (Fgradf) + tr(k)gradf ]} .
4) If FH and Fgradf are normal to Mm, then Mm is bi-f -harmonic

if and only if(
mf2

) (
∆⊥H

)
+
(
mf2

)
trB(·, AH(·))− fm (∆f)H − (3mf)∇⊥gradfH

−ftrB (·,∇·gradf)−ftr∇⊥· B (·, gradf)−m ‖gradf‖2H−B (gradf, gradf)

=
(
mf2

)
{a [mH + tr(k)FH + tr(k) (Fgradf)]

+b [mFH + tr(k)H + (m− 1)Fgradf ]}
and

(mf)2

2
grad ‖H‖2 + 2

(
mf2

)
tr(A∇⊥· H ·) + 3 (mf)AHgradf

+fRicciM (gradf) + fgrad (∆f) + ftrAB(·,gradf) (·)− 1

2
grad

(
‖gradf‖2

)
=
(
mf2

)
{a [(m− 1)gradf ] + b [tr(k)gradf ]} .

Proof. 1) If FH and Fgradf are tangent to Mm, then by the use of (2.5)
we have FH = sH, tH = 0, Fgradf = kgradf and hgradf = 0. So from
equations (2.6), (2.7) and (2.9), we have hsH = H, k2gradf = gradf and
hkgradf = 0. By Theorem 4.1 we find the result.

2) If FH is tangent and Fgradf is normal to Mm, then tH = 0, sH =
FH, H = hsH, ksH = 0, kgradf = 0 and Fgradf = hgradf . Hence from
Theorem 4.1, we get the result.

3) If FH is normal and Fgradf is tangent to Mm, then sH = 0, FH =
tH, Fgradf = kgradf, hgradf = 0, k2gradf = gradf and hkgradf = 0.
Using Theorem 4.1, we obtain the result.

4) If FH and Fgradf are normal to Mm, then sH = 0, FH = tH, kgradf
= 0 and Fgradf = hgradf. By Theorem 4.1 we find the result. �
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