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f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS
OF PRODUCT SPACES

FATMA KARACA AND CIHAN OZGUR

ABSTRACT. We consider f-biharmonic and bi- f-harmonic submanifolds
of the product of two real space forms. We find the necessary and
sufficient conditions for a submanifold to be f-biharmonic and bi-f-
harmonic in a product of two real space forms.

1. INTRODUCTION

Let (M, g) and (N, h) be two Riemannian manifolds. ¢ : M — N is called
a harmonic map if it is a critical point of the energy functional

1
B(e) = 5 | el dv,

where (2 is a compact domain of M. The Euler-Lagrange equation of E(y)
is

7(p) = tr(Vdyp) =0,

where 7(¢p) is the tension field of ¢ [3]. The map ¢ is said to be biharmonic
if it is a critical point of the bienergy functional

Bae) = 5 [ (@) dv,

where 2 is a compact domain of M. In [4], Jiang obtained the Euler-
Lagrange equation of Fy(¢). This gives us

Ta(p) = tr(VPV? = V&)1 (p) — tr(RN (dp, 7(p))dep) =0, (1.1)

where T5(¢p) is the bitension field of ¢ and RN is the curvature tensor of
N. The map ¢ is said to be f-biharmonic if it is a critical point of the
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f-bienergy functional

Paste) = 5 [ £,

where Q) is a compact domain of M [5]. The Euler-Lagrange equation for
the f-bienergy functional is defined by

72,1(6) = F12(9) + (AF) 7(0) + 2%, 1 7(0) = 0, (1.2)

where 73 () is the f-bitension field of ¢ [5]. From the definition, it is trivial
that any harmonic map is f-biharmonic. If the f-biharmonic map is neither
harmonic nor biharmonic then we call it by proper f-biharmonic and if f is
a constant, an f-biharmonic map turns into a biharmonic map [5].

An f-harmonic map with a positive function f : M “Y R is a critical
point of the f-energy

1
Bi(e) =3 | 1l dv,

where €2 is a compact domain of M. The Euler-Lagrange equation for the
f-energy functional gives us the f-tension field T;(p) (see [1], [8]) by

Tr(p) = f1(p) + dp(gradf) = 0. (1.3)

The map ¢ is said to be bi-f-harmonic if it is a critical point of the
bi- f-energy functional

1
B3(0) = 3 [ sl d,

where € is a compact domain of M. The Euler-Lagrange equation gives the
bi- f-harmonic map equation

TH(9) = FI7 (14(9)) = Viraapr(#) =0, (1.4)
where TJ? () is the bi- f-tension field of ¢ and J¥ is the Jacobi operator of
the map defined by J% (X) = — [TryV¥V¥X — VEuX — RY (dg, X) dy]

[8]. It is trivial that any f-harmonic map is bi- f-harmonic [8].

Eells and Sampson studied harmonic mappings of Riemannian manifolds
[3]. Jiang defined biharmonic maps by using the first and second varia-
tional formulas of bienergy functional [4]. In [5], Lu defined the notion
of f-biharmonic maps. He obtained the f-biharmonic map equation and
studied f-biharmonicity of some special maps. In [7], Ou studied on some
properties of f-biharmonic maps and f-biharmonic submanifolds. Course
defined f-harmonic maps in [1]. Later, Ouakkas, Nasri and Djaa obtained
some properties for f-harmonic maps between two Riemannian manifolds
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and defined bi- f-harmonic maps [8]. In [11], Zegga, Cherif and Djaa consid-
ered bi- f-harmonic maps and submanifolds. In [9], Roth studied biharmonic
submanifolds of the product of two space forms. Motivated by the above
studies, in this paper, we consider f-biharmonic and bi-f-harmonic sub-
manifolds of the product of two space forms and obtain the necessary and
sufficient conditions for a submanifold to be f-biharmonic and bi- f-harmonic
in a product of two real space forms.

2. PRELIMINARIES

Let M™ (c1) and M"™2(c2) be two real space forms of constant curvatures
c1, co with dimensions n; and ne, respectively. Let us consider the product
space (M™ (c1) x M™(cz),g). Assume that (M™, g) be a Riemannian man-
ifold isometrically immersed into the product space (M™ (c1) x M"™2(c2),9).-
Denote by V and F the Levi-Civita connection of M™ and the product
structure of the product space (M"™(c1) x M™(c2),q), respectively. The
product structure F' : TM™ (¢1) x TM™(cg) — TM™ (c1) x TM"™(cg) is
a (1,1)-tensor field defined by

FXi+Xo)=X1—-Xo

for any vector field X = X1 + X, X, Xs denote the parts of X tangent to
the first and second factors, respectively. It is easy to see that F' satisfies

F?=1 (and F # I), (2.1)

J(FX,)Y)=9g(X,FY), (2.2)

VF =0, (2.3)

(see [10]). By an easy calculation, we obtain the curvature tensor of (M"™ (¢;)

xM"(c2), ) as

R(X.Y)Z = alg(Y, Z)X — g(X, 2)Y + g(FY.Z)FX — g(FX, Z)FY]
with @ = 942 and b = 952 [2].
Now let X € TM™ and & € T*M™. The decompositions of FX and F¢
into tangent and normal components can be written as
FX =kX +hX and F¢ = s€ + L&, (2.5)

where k : TM™ — TM™, h : TM™ — T+M™, s : T*M™ — TM™,
and t : T-M™ — T+ M™ are (1,1)-tensor fields. From equations (2.1) and
(2.2), it is easy to see that k and t are symmetric and satisfy the following
properties:

E°X = X — shX, (2.6)
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t2¢ = € — hs¢, (2.7)
ks& 4 st& = 0, (2.8)
hkX +thX =0, (2.9)
g(hX, &) = g(X,s§), (2.10)

(for more details see [10]).

3. f—BIHARMONIC SUBMANIFOLDS OF PRODUCT SPACES

Let ¢ : M™ — (M™(c1) X M™(c2),g) be an isometric immersion
from an m-dimensional Riemannian manifold (M™,g) into the product
of two space forms M™ (c;) and M"™(cg) of constant curvatures cp, ¢
with dimensions n; and no. We shall denote by B, A, H,A and A~ the
second fundamental form, the shape operator, the mean curvature vector
field, the Laplacian and the Laplacian on the normal bundle of M™ in
N = (M"™(c1) x M"™(cq),q), respectively.

Firstly we have the following theorem:

Theorem 3.1. Let M™ be a Riemannian manifold isometrically immersed
into the product space N = (M™ (¢1) x M"™(ca),g). Then M™ is f-bihar-
monic if and only if the following two equations hold:

A
AH 4B Au () = SLH = 2V H

=a(mH — hsH +tr(k)tH) + b(mtH + tr(k)H) (3.1)
and
%grad |H|? + 2tr(AgL ) + 2Amgradin f
= a(—ksH +tr(k)sH) +b(m — 1)sH. (3.2)
Proof. Let us denote by V¥, V the Levi-Civita connections on N and M™,
respectively. Let {e;}, 1 < i < m be a local geodesic orthonormal frame at
p€ M™. Then
7(p) = tr(Vdyp) = mH. (3.3)
From (1.1) and (3.3), we have
tr(

7o) = tr(VOV? = VE)T(p) — tr(RY (dp, 7(¢))dyp)

m

Z(V“" Ve - V%el_ei)mH - Z RN (dp(e;), mH)dp(e;)
i=1 i=1

=-m {AH +) RN (dp(es), H)dQO(ez‘)} : (3.4)

=1
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By (2.4), we find

m

> (BY(dp(es), H)do(er)

i=1
=a[-mH + F(FH)" —tr(k)FH] +b[-mFH + (FH)" —tr(k)H] .
Using (2.5) in the above equality, we get
Z(RN(ahp(ei),H)dw(ei)):a FmH + ksH +hsH —tr(k)sH —tr(k)tH]
i=1

+b[—msH —mtH + sH —tr(k)H]. (3.5)

By the use of the Gauss and Weingarten formulas, we have

AH=-) (VEVEH) = - (V& (—Ape; + VL H)
i=1 i=1
= — Z {—VeiAHei — B(ei, AHeZ-) — Ave;Hei + VéVéH}
i=1
= Z Ve,-AHei + Z B(ei,AHei) + ZAVé,Hei — Z VéVéH
i=1 i=1 i=1 i=1
=tr(V.Ag-) +trB(-, Ag-) + tr(Agry) + AtH. (3.6)

Now we shall compute tr(V.Ag-). In view of Gauss and Weingarten formu-
las, we obtain

Z Vez.AHei = Zg(veiAHei, ej)ej = Zeig(AHei, €j)€j
i=1 i ¥
= Zeig(B(ei,ej),H)ej = Zeig(ijei,H)ej
¥ ¥
= {g(vgvgei, H)e; + 9(VE e, ng)ej}
i,J
= Z {g(Vfinjei, H)ej + g(B(ei, ej), VeliH)ej}
b,J

= 9(VEVE ei, He, +2Avéﬂ(ei). (3.7)

1,J
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Then, using the definition of the curvature tensor of N we have

Zg (VEVE e, H Zg (er,e5)ei + VEVEe; +VE  ei H)
= mg(vejH7 H)
m 2
= EgradHHH . (3.8)

Substituting (3.8) into (3.7) and then using (3.7) into (3.6), we get
AH = %grad |H|? + trB(-, Ap) + 2tr(Agi ) + A H. (3.9)
In view of equations (3.9) and (3.5) into (3.4), we obtain
() = —m {%grad IH|? + trB(-, Ap) + 2tr(Ags ) + ATH
+a|-mH + ksH + hsH — tr(k)sH — tr(k)tH]
+b[—msH — mtH + sH — tr(k)H|} . (3.10)
Using Weingarten formula and equation (3.3), we have
Ve aasT0) = Vi ggmH =m (= Apgradf + Vi H) . (3.11)

Finally substituting equations (3.3), (3.10) and (3.11) into equation (1.2),
we obtain

—fm{ gradHHH + trB(, AH-)+2tr(AV;H-)+AJ‘H

+a|-mH + ksH + hsH — tr(k)sH — tr(k)tH]
+b[—msH — mtH + sH — tr(k)H]|

A
ffH + 2Axgradln f — 2V;adlnfﬂ} =0.
Hence comparing the tangential and the normal parts, we obtain the desired
result. O

Corollary 3.2. Let M™ be a Riemannian manifold isometrically immersed
into the product space N = (M™ (c1) x M™(c2),q).
1) If FH is tangent to M™, then M™ is f-biharmonic if and only if

A
ALH 4+ 0rB(, Ap() - 2 H - OV am H — [a(m — 1) + btr(k)] H = 0,

f
(3.12)
%gmd |H|? + 2tr(AgLy) +2Apgradin f — [atr(k) +b(m — 1)) FH = 0.
(3.13)



f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS OF PRODUCT SPACES121

2) If FH is normal to M™, then M™ is f-biharmonic if and only if

A
AtH + tTB(,AH()) - ffH - 2vé_radlan

— [am + btr(k)]| H — [atr(k) +bm] FH =0, (3.14)
%grad IH|? + 2tr(Ags ) + 2Aggradin f = 0. (3.15)

Proof. 1) If FH is tangent to M™, then by the use of (2.5) we have FH = sH
and tH = 0. So from (2.7), we have hsH = H and by Theorem 3.1 we find
(3.12) and (3.13).

2) If FH is normal to M™, then sH = 0 and tH = FFH. Hence from
Theorem 3.1 we get (3.14) and (3.15). O

Corollary 3.3. Let M™ be a submanifold of SP(r) x S"™P(r) of dimension
m > 2 with non-zero constant mean curvature such that FH is tangent to
M™.

1) If M™ is proper f-biharmonic, then

A (m—1)+ &L
0<HHH2§inf{2’“2( m) LY. (3.16)

2) Assume that f is an eigenfunction of the Laplacian A corresponding
to real eigenvalue X. Hence the equality in (3.16) occurs and M™ is proper
f-biharmonic if and only if M™ is pseudo-umbilical,

V1H =0,

1
2Aggradln f — ﬁtr(k)FH =0

and

2r2(

Proof. We assume that F'H is tangent to M™, then in view of (2.5) we have
FH = sH and tH = 0. Hence by (2.7), we have hsH = H. By the use of
(3.12) we have

trB(-, Ap-) = [1 m—1) +)\] H.

A 1
ATH 4+ trB(., A (.)) — ffH ~ 2V i s H — 5a(m—1DH=0. (3.17)

Then taking the scalar product of (3.17) with H, we find
A
oA H ) + gt B An (). 1)~ Lot 1)

1
— 29 (V;‘mdlan,H> — ﬁ(m — 1)g(H,H) =0.
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Since ||H|| is a constant, we have

Af 1
g(ATH, H) = N IH | = |Am]* + 52(m—1) 1H*.
Using the Bochner formula, we get
2 Af 1
I 2 2
HH AP = |2l + -] 1|2 1
[+ 1l = [+ 5ratm = v 121) (3.18)

By the use of Cauchy-Schwarz inequality, we have |Ag||* > m | H|* (see
[9]). Hence we find

A 1
AF
f2r
Since || H|| is a non-zero constant, we can write
A
Tf + 5z (m — 1)}

m

2
(m 1)} VEIP = m |+ |V E| = m | (319)

0 < ||H|? < inf [ (3.20)

Now, if f is an eigenfunction of the Laplacian A corresponding to the real
eigenvalue A, then % = . We can write

[)\ + ﬁ(m — 1)]

- )
Assume that M™ is proper f-biharmonic. From (3.19), first we have V* H =
0. Moreover substituting the equation (3.21) into (3.19) we find

2
m .

That is, M™ is pseudo-umbilical. Then from (3.13) we have

1H]* = (3.21)

1
2Aggradln f — ﬁtr(k)FH = 0.
T

In this case (3.12) turns into

trB(-, Ay-) = [A + %ﬁ(m - 1)] H.

This completes the proof. ([l

Now we consider f-biharmonic hypersurface M™ of SP(r) x S"7P(r) such
that F'H is tangent to M™. Firstly we have:
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Proposition 3.4. Let M™ ! be a hypersurface of SP(r) x S"7P(r) with
non-zero constant mean curvature such that FH is tangent to M™ . Then
M"™ 1 s f-biharmonic if and only if

1
Aggradln f = —tr(k)FH

and

-2 A

5 T 7f

2r f

Proof. Assume that M™~! is a hypersurface of SP(r) x S"P(r) with non-
zero constant mean curvature such that FH is tangent to M™~!. Then from
(3.12) we get

I1BII* =

Af 1
Then, by taking the scalar product with H, we have
n—1
Af 1 2
> o Bles Awed. 1) = |5 + g =2y,
n—1
Af 1 2
> ouen Ane) = |5+ a0 =2)| 1)
and
Af
4l = |5 4 5130 - 2] 1P
f
From ([10], page 71), we know that ||Ag||* = ||B||*. Hence we find
n—2 Af
B —. 22

1Bl oz T (3.22)

So the equation (3.13) is reduced to
1
Apggradln f = @tr(k)FH.

This completes the proof of the proposition. O

Proposition 3.5. Let M1 be a proper f-biharmonic hypersurface of SP(r)
x S"~Y(r) with non-zero constant mean curvature such that FH is tangent
to M™Y. Then the scalar curvature of M™ ! is given by

Af

Scalypm-1 = 52 { n—1)(n—3)— (n—2) +tr(k)*} + (n—1)> |H|? - 7
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Proof. By the use of the Gauss equation, we can write

Scalpn-1 = Zg N(eirei)ej, e —|—Zg (ei,€:), B(ej, ej))
i=1
m

— Zg(B(ej,ei),B(ej,ei)) .

i=1
Then we compute

Scalyns =3 g (B (es,e)ep ei) + (n— D2 [HIP = B>, (3.23)
i=1

Using (2.4) we write

m 1 m m
> g (RN (ei,e5)ej, ) = 273{ > alej ei)glenen) =Y gleiej)gleie))
=1 =1 =1
+Y g(Feje;)g(Feie;) = > g(Fei,e;)g(Fe, ej)}-
=1 =1

Hence we find
1
Zg N(es ej)ej,e) = Tﬂ{(n—l)(n—3)+tr(kz)2}. (3.24)

Fimally7 in view of equations (3.24) and (3.22) into (3.23), we get
1 A
Scalypnr = 5 5 {(n—1)(n—3) — (n—2) +tr(k)*} +(n—1)*||H|* - ff

This proves the proposition. O

4. BI- f-HARMONIC SUBMANIFOLDS OF PRODUCT SPACES

In this section, we consider bi- f-harmonic submanifolds of product of two
real space forms. We firstly state the following theorem:

Theorem 4.1. Let M™ be a Riemannian manifold isometrically immersed
into the product space N = (M"™(c1) x M"™(¢2),g). Then M™ is bi-f-
harmonic if and only if the following two equations hold:

(ms?) (A=H) + (mf?) trB(, A () = fm(Af) H = (3m) Vgraar H
—ftrB (-, V.gradf)— ftrV:B (-, gradf)—m ||gradf|* H— B (gradf, gradf)
= (mfz) {a[mH — hsH + tr(k)tH + tr(k)hgradf + hkgradf]
+b[mtH + tr(k)H + (m — 1)hgradfl]}
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and
2
(mf) grad HHH2 +2 (mf2) tr(AgLy) +3(mf) Aggradf

2
. 1
+fRicei™ (gradf) + fgrad (Af) + fir Ap( graap) () = 5rad (llgradf|)

(mf2) {a [—ksH +tr(k)sH + (m — 1)gradf + tr(k)kgradf — k‘QQTadf]
+b[(m — 1)sH + m (kgradf) + tr(k)gradf]} .

Proof. Let us denote by V¥, V the Levi-Civita connections on N and M™,
respectively. Let {e;}, 1 < i < m be a local geodesic orthonormal frame at

peM™.
From the equations (1.3) and (3.3), we find

7¢() = fmH + dy (gradf) = fmH + gradf.

(4.1)

Then, we can write

Y (BN (75(p), dp(en))dp(er)) = mf Y (RN (H, di(ei))dio(ei)

i=1

i=1
+ ) (RN(gradf,dp(e)de(er)). (42)
i=1
Using the equation (2.4), we obtain

> (RN (gradf, de(e;))di(e;))
=1

a [(m — 1) (gradf) + tr(k) (Fgradf) — F (Fgradf)T}
+0b [(m — 1) (Fgradf) + tr(k) (gradf) — (Fgradf)T} .

Using (2.5) in the above equality, we get

m

> (RN (gradf,de(e;))dp(ei)) = a(m — 1) (gradf) + tr(k) (kgradf)

=1

+tr(k) (hgradf) — k*gradf + hkgradf]
+ b[m (kgradf) + (m — 1) (hgradf) + tr(k)gradf]. (4.3)
In view of equations (3.5) and (4.3) into equation (4.2), we obtain

m

Z(RN(Tf(cp), dp(e;))de(e;)) = a[mH — ksH — hsH + tr(k)sH + tr(k)tH

i=1
+(m — 1) (gradf) + tr(k) (kgradf) + tr(k) (hgradf)
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—K*gradf + hk:gmdf] +b[msH +mtH — sH + tr(k)Hm (kgradf)

+(m — 1) (hgradf) + tr(k)gradf]. (4.4)
By the use of the Gauss and Weingarten formulas, we have

m m

S (VEVET(R) ~ VE 7y(9) = 3 [VEVE (fmH + grady)]
i=1 i=1

=my Vi (e (f)H+ [VEH) +) Vi (Vegradf + B (e, gradf))
i=1 i=1

=m Y {eilei(f) H+2e (f)VEH + fVEVEH}Y + > Ve, Ve gradf
=1 =1

+ > {B(er, Vegradf) = Ape,graar) (e) + VEB (ei,gradf) } . (45)
i=1

Using the equation (3.9), we can write

SN (VeEvEH) = —%grad |H|? = trB(-, Ag-) — 2tr(AgL ) — AL H. (4.6)
=1

In view of equation (4.6) into (4.5), we obtain

m

D (VEVETH(p) - Ve, o Tr(@)=m(Af) H + 2m > Vi arH
i=1 =1

m2f 2

——5grad||H|" = (mf)trB(, Ap) = 2 (mf) tr(Agiy)

— (mf)ATH + Zveiveigradf + ZB (€i, Ve, gradf)

i=1 i=1

m m
- Z AB(ei,gradf) (el) + Z VéB (eiv gradf) : (47)
i=1 i=1
Using Gauss and Weingarten formulas, we have

VY asTH(#) = VZ s (fmH + gradf)
=m|\gradf|> H — (mf) Apggradf + (mf) Vi H

1
+§g7“ad <||gradf|]2> + B(gradf, gradf) . (4.8)
Finally substituting (4.4), (4.7) and (4.8) into equation (1.4) and comparing
the tangential and the normal parts, we obtain the desired result. O

Corollary 4.2. Let M™ be a Riemannian manifold isometrically immersed
into the product space N = (M™ (c1) x M™(c2),q).
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1) If FH and Fgradf are tangent to M™, then M™ is bi-f-harmonic if
and only if

(mf?) (A H) + (mf?) trB(, Au()) = fm (Af) H = (3mf) Vo H

—ftrB (-, V.gradf)—ftrV,LB (-, gradf)—m ||gradf|| H— B (gradf, gradf)
= (mf?){al(m —1) H] +btr(k)H]}

and )
(m.f)
2
. 1

+fRicei™ (gradf) + fgrad (Af) + fir Ap( graap) () = 5rad (llgradf|?)

= (mf?) {atr(k) (Fgradf) + (m — 2)gradf + tr(k)F H]
+b[(m —1)FH +m (Fgradf) + tr(k)gradf]} .
2) If FH is tangent to M™ and Fgradf is normal to M™, then M™
is bi-f-harmonic if and only if

(ms?) (A-H) + (mf?) trB(, Au() = fm (Af) H = (3mf) Vgpour H

—ftrB (-, V.gradf)— ftrV*B (-, gradf)—m ||gradf|| H— B (gradf, gradf)
= ('mf2) {a[(m —1)H + tr(k) (Fgradf)]
+oltr(k)H + (m — 1) (Fgradf)]}

grad HHH2 +2 (mf2) tr(AgLy) +3(mf) Aggradf

and
2
m;)gmd HH”2 +2 (mf2) tr(Ag. ) + 3 (mf) Aggradf
+fRiCciM (gradf) + fgrad (Af) + ftrAB(-,gmdf) (1) — %grad (ngadf||2>

= (mf2) {aftr(k)FH + (m — 1)gradf] + b[(m — 1)FH + tr(k)gradf]} .
3) If FH is normal to M™ and Fgradf is tangent to M™, then M™
is bi-f-harmonic if and only if

(mf?) (AH) + (mf?) trB(, Au () = fm (Af) H = (3mf) Vo, H

—ftrB (-, V.gradf)— ftrVB (-, gradf)—m | gradf|® H— B (gradf, gradf)
= (mf?) {a[mH + tr(k)FH] +b[mFH + tr(k)H]}
and

(mf)?
2

+fRicci™ (gradf) + fgrad (Af) + ftrAp(. graag) () — %gmd (ngade2>
= (me) {a[(m —2)gradf + tr(k) (Fgradf)]

grad HHH2 +2 (mfZ) tr(AgLy) +3(mf) Aggradf
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+b[m (Fgradf) + tr(k)gradf]} .
4) If FH and Fgradf are normal to M™, then M™ is bi-f-harmonic
if and only if

(mf?) (ALH) + (mf2) trB(, A () — fr (Af) H — 3mf) Vihar H

—ftrB (-, V.gradf)—ftrV.LB (,gradf)—m ngaalf”2 H—B (gradf,gradf)
= (mf?) {a[mH + tr(k)FH + tr(k) (Fgradf)]
+b[mFH +tr(k)H + (m — 1)Fgradf]}

and

2
(méf)grad HHH2 +2 (me) tr(AgLy-) +3(mf) Aggradf

+fRicei™ (gradf) + fgrad (Af) + ftrAp( graag) () — %grad (Hgmde2>

= (mf?) {a[(m — 1)gradf] + b[tr(k)gradf]} .

Proof. 1) If FH and Fgradf are tangent to M™, then by the use of (2.5)
we have FH = sH, tH = 0, Fgradf = kgradf and hgradf = 0. So from
equations (2.6), (2.7) and (2.9), we have hsH = H, k’gradf = gradf and
hkgradf = 0. By Theorem 4.1 we find the result.

2) If FH is tangent and Fgradf is normal to M™, then tH = 0, sH =
FH, H=hsH, ksH =0, kgradf = 0 and Fgradf = hgradf. Hence from
Theorem 4.1, we get the result.

3) If F'H is normal and Fgradf is tangent to M™, then sH =0, FH =
tH, Fgradf = kgradf, hgradf = 0, k*gradf = gradf and hkgradf = 0.
Using Theorem 4.1, we obtain the result.

4) If FH and Fgradf are normal to M™, then sH = 0, FH = tH, kgradf
=0 and Fgradf = hgradf. By Theorem 4.1 we find the result. ([l

Acknowledgement. The authors would like to thank the reviewer for
his/her helpful and constructive comments that greatly contributed to im-
proving the paper.

REFERENCES

[1] N. Course, f-harmonic maps, Thesis, University of Warwick, 2004.

[2] F. Dillen and D. Kowalczyk, Constant angle surfaces in product spaces, J. Geom.
Phys., 62 (6) (2012), 1414-1432.

[3] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.
Math., 86 (1964), 109-160.

[4] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese
Ann. Math. Ser. A, 7 (4) (1986), 389-402.

[5] W-J. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian man-
ifolds, Sci. China Math., 58 (2015), 1483-1498.



f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS OF PRODUCT SPACES129

[6] Y-L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Math.,
271 (2) (2014), 461-477.
[7] Y-L. Ou, f-harmonic morphisms between Riemannian manifolds, Chin. Ann. Math.
Ser. B, 35 (2) (2014), 225-236.
[8] S. Ouakkas, R. Nasri and M. Djaa, On the f-harmonic and f-biharmonic maps, JP
J. Geom. Topol., 10 (1) (2010), 11-27.
[9] J. Roth, A note on biharmonic submanifolds of product spaces, J. Geom., 104 (2)
(2013), 375-381.
[10] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World
Scientific Publishing Co., Singapore, 1984.
[11] K. Zegga, A. M. Cherif and M. Djaa, On the f-biharmonic maps and submanifolds,
Kyungpook Math. J., 55 (1) (2015), 157-168.

(Received: January 11, 2016) Department of Mathematics
(Revised: April 19, 2016) Balikesir University
Campus of Cagig
Balikesir
Turkey

fatmagurlerr@gmail.com
cozgur@balikesir.edu.tr



