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A STUDY OF A NON-LOCAL INITIAL VALUE PROBLEM

FRACTIONALLY PERTURBED

RAHIMA ATMANIA

ABSTRACT. In this work, we study a class of fractionally nonlinearly perturbed

first order differential equations, subject to a nonlocal initial condition on an

unbounded interval, which is the novelty here. By means of the principle of

contraction mapping to establish the existence result and by a Gronwall-like in-

equality, we obtain the asymptotic stability and the λ-stability of the zero solu-

tion. Finally, we give an illustrative example.

1. INTRODUCTION

Fractional order derivatives and integrals play an important role in describing

many real-life phenomena with memory and hereditary properties from different

fields of science and engineering such as chemistry, mechanics, thermoplasticity,

viscoelasticity. For more details, see [13] and [12].

In recent years, many researchers have been interested in the subject of ordi-

nary differential equations with nonlinearities involving fractional derivatives or

integrals, for more details consult [1], [2], [14] and [16].

Motivated by the above cited papers, in this work we investigate the existence,

uniqueness and stability of the solution for the following fractionally perturbed

first-order differential equation

x′ (t)+a(t)x(t) = f
(

t,x(t) , I
β
0+

x(t)
)

; t > 0, β > 0 ; (1.1)

subject to the nonlocal initial condition

x(0)−
∞

∑
k=1

ckx(tk) = x0; tk ∈ R
+, (1.2)

where I
β
0+

is the Riemann-Liouville integral operator; a(t) is a given function;

{tk,k ≥ 1} is a positive increasing real sequence such that lim tk
k→∞

= ∞; ck ∈ R with

ck 6= 0;k = 1,2...;x0 ∈ R. The nonlinear perturbation term f (t,x,y) is continuous

and bounded with respect to all of its variables.
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The stereotype of the integrodifferential first order equation is of the following

form

x′ (t)+a(t)x(t) = f

(

t,x(t) ,

∫ t

0
h(t,s)x(s)ds

)

; t > 0,

with singular kernel h(t,s) in the case of the fractionally perturbed equation (1.1).

In [1], the authors proved a local existence and uniqueness result concerning an

initial value problem in R
N whose right-hand sides contained Riemann-Liouville

fractional integrals of multiple orders.

In [4], Byszewski initiated the work on nonlocal initial value problems. He

proposed a nonlocal condition of the following form

x(0)+g(t1, t2, ..., tp,x(.)) = x0, (1.3)

where the symbol x(.) meant that instead of “·” we can only substitute elements

of the sequence (tk)k=1,...,p ⊂ [0,T ]. It is clear that the nonlocal condition gives

more information on the sought solution which induces better results than the con-

sideration of the usual initial condition given alone x(0) = x0. For its wide range

of applications, different types of equations with nonlocal initial conditions of the

form (1.2) or (1.3), have been studied by many authors on finite interval, see for

example [6] and [9]. In [6], Chen et al. considered a problem with the nonlocal

initial condition (1.2) where x0 = 0 on an infinite interval and we are motived by

their approach.

One of the main properties of any solution of an ordinary differential equation

is its stability which is studied by many methods for different classes of equations,

see [1], [3], [5], [6], [8], [15], [17] and [18].

The rest of the paper is organized as follows. In Section 1, we will recall some

basic definitions. In Section 2, we will use fixed point theory to show the existence

of a unique solution for problem (1.1)-(1.2) and via some Gronwall type inequality

we will etablish the asymptotic stability and the λ−stability of the zero solution.

In the last Section, we will provide an example to illustrate the obtained results.

2. PRELIMINARIES

In this section, we will introduce some preliminaries that we will need in the

rest of the work.

Definition 2.1. The left-sided Riemann-Liouville fractional integral of order α ∈
R
+ for an integrable function f : R+ → R, is defined by ε

Iα
0+ f (t) =

1

Γ(α)

∫ t

0

f (s)

(t − s)1−α
ds, for t > 0,

where Γ(α) is the Euler’s gamma function.

Remark 2.1. For α > 0, Γ(α+1) = αΓ(α).
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Let us define the following spaces:

C ([0,+∞) ,R) , the space of continuous functions on [0,+∞) and

BC ([0,+∞) ,R)= {x ∈C ([0,+∞) ,R) : ‖x‖∞ < ∞ } the space of continuous bounded

functions on [0,+∞) where ‖x‖∞ = sup
t∈[0,+∞)

|x(t)| .

By a solution of (1.1)-(1.2) we mean a continuous real-valued function x(t)
defined on the interval [0,T ), continuously differentiable on (0,T ) which satisfies

equation (1.1) on (0,T ) for some positive constant T > 0 and condition (1.2) for

t = 0. If the solution remains bounded, then T = ∞.

Let us give definitions of certain types of stability.

Definition 2.2. (i) The zero solution of (1.1) is said to be stable if for any ε > 0

there exists δε > 0 such that |x(0)|< δε implies that |x(t)|< ε for t ≥ 0.

(ii) The zero solution of (1.1) is said to be asymptotically stable if it is stable and

lim
t→∞

x(t)→ 0.

Definition 2.3. Let the continuous positive function λ(t) satisfy

lim
t→∞

λ(t) = ∞; λ(t + s)≤ λ(t)λ(s) for t,s ∈ R
+. (2.1)

Then, for any x(0) ∈ R, the zero solution of (1.1) is said to be λ−stable if there

exists a positive constant γ such that

limsup
t→∞

log |x(t)|
logλ(t)

≤−γ.

Remark 2.2. (i) When λ(t) = et , the stability is called exponential.

(ii) When λ(t) = 1+ t, the stability (1.1) is called polynomial .

(iii) When λ(t) = log(1+ t), the stability is called logarithmical.

We will give a version of the Banach’s fixed point theorem given in [10].

Theorem 2.1. Let X be a Banach space and suppose T : X → X is contractive.

Then T has a unique fixed point x∗ and T nx → x∗ for each x ∈ X.

The following Gronwall type inequality from Bykov and Salpagarov is given

in [7] (Theorem 57 p35).

Theorem 2.2. Let u(t) ,v(t), h(t,r) and H (t,r,x) be nonnegative functions for

t ≥ r ≥ x ≥ a and c1, c2 and c3 be nonnegative constants not all zero. If

u(t)≤ c1 + c2

∫ t

a

[

v(s)u(s)+
∫ s

a
h(s,r)u(r)dr

]

ds

+ c3

∫ t

a

∫ r

a

∫ s

a
H (r,s,x)u(x)dxdrds,
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then, for t ≥ a

u(t)≤ c1 exp

[

c2

∫ t

a

[

v(s)+
∫ s

a
h(s,r)dr

]

ds

+c3

∫ t

a

∫ r

a

∫ s

a
H (r,s,x)dxdrds

]

.

3. MAIN RESULTS

In the first Theorem, we give the integral equation equivalent to problem (1.1)-

(1.2).

Theorem 3.1. Let a and f be continuous functions and x ∈ C [[0,T ) ,R]. Then,

x(t) is the solution of initial value problem (1.1)-(1.2) if and only if it satisfies the

following integral equation for t ≥ 0

x(t) =
x0e−

∫ t
0 a(r)dr

1−
∞

∑
k=1

undersetk = 1cke−
∫ tk

0 a(r)dr

+
e−

∫ t
0 a(r)dr

1−
∞

∑
k=1

cke−
∫ tk

0 a(r)dr

×
∞

∑
k=1

undersetk = 1ck

∫ tk

0
e−

∫ tk
s a(r)dr f

(

s,x(s) , I
β
0+

x(s)
)

ds

+

∫ t

0
e−

∫ t
s a(r)dr f

(

s,x(s) , I
β
0+

x(s)
)

ds. (3.1)

Proof. Multiplying both sides of equation (1.1) by e
∫ t

0 a(s)ds and then integrating

from 0 to t , we get

x(t) = x(0)e−
∫ t

0 a(v)dv +

∫ t

0
e−

∫ t
s a(v)dv

(

f
(

s,x(s) , I
β
0+

x(s)
))

ds.

Likewise,

x(tk) = x(0)e−
∫ tk

0 a(v)dv +

∫ tk

0
e−

∫ tk
s a(v)dv f

(

s,x(s) , I
β
0+

x(s)
)

ds,

then, the sum and (1.2) imply

x(0) =
x0

1−
∞

∑
k=1

cke−
∫ tk

0 a(v)dv

+
1

1−
∞

∑
k=1

cke−
∫ tk

0 a(v)dv

∞

∑
k=1

ck

∫ tk

0
e−

∫ tk
s a(v)dv f

(

s,x(s) , I
β
0+

x(s)
)

ds,

which leads to (3.1). On the other hand, if we derive (3.1) for t > 0, we obtain

directly (1.1) and for t = 0 (3.1) implies (1.2). The proof is complete. �

Now, before we state the existence result based on Banach’s fixed point theorem,

we assume the following assumptions.

(A1) a(t) is a positive continuous function on R
+with lim

t→∞

∫ t
0 a(v)dv = ∞.
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(A2) The series
∞

∑
k=1

ck converges to δ0 which satisfies δ0 < e
∫ t1

0 a(v)dv .

(A3) There exist positive, Lebesgue integrable and continuous functions L1 (t) ,
L2 (t) such that for each t ∈ R

+; (x,y) ,(x1,y1) ∈ R×R,

| f (t,x,y)− f (t,x1,y1)| ≤ L1 (t) |x− x1|+L2 (t) |y− y1|
with f (t,0,0) = 0 and

L(t) =
∫ t

0
L1 (s)e(

∫ s
0 a(v)dv)ds < ∞; (3.2)

Lβ (t) =

∫ t

0

L2 (s) sβ

Γ(β+1)
e(

∫ s
0 a(v)dv)ds < ∞.

Also, we denote

A = inf
t≥0

(∫ t

0
a(v)dv

)

; L = sup
t≥0

L(t) ; Lβ = sup
t≥0

Lβ (t) (3.3)

K = L+Lβ; M =

(

e−Aδ0

1−δ0e(−
∫ t1

0 a(v)dv)
+1

)

e−AK.

Theorem 3.2. Assume that (A1)-(A3) hold. If

0 < M < 1, (3.4)

then, problem (1.1)-(1.2) has a unique solution x(t) in BC ([0,+∞) ,R)∩
C1 ((0,+∞) ,R) .

Proof. To transform problem (1.1)-(1.2) into a fixed point problem, we define a

nonempty closed subset of BC ([0,+∞) ,R)

S =

{

x ∈ BC ([0,+∞) ,R) : x(0) =
∞

∑
k=1

ckx(tk)+ x0 with ‖x‖∞ ≤ R

}

for some positive constant R to be defined. (S,‖.‖∞) is a Banach space. We define

an operator P for any x ∈ S by Px(0) =
∞

∑
k=1

ckx(tk)+ x0 and for t > 0 by

Px(t) =
x0e−

∫ t
0 a(v)dv

1−
∞

∑
k=1

cke−
∫ tk

0 a(v)dv

+
e−

∫ t
0 a(v)dv

1−
∞

∑
k=1

cke−
∫ tk

0 a(v)dv

×
∞

∑
k=1

ck

∫ tk

0
e−

∫ tk
s a(v)dv f

(

s,x(s) , I
β
0+

x(s)
)

ds

+

∫ t

0
e−

∫ t
s a(v)dv f

(

s,x(s) , I
β
0+

x(s)
)

ds.
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First, we will show that P maps S into itself. For each x ∈ S, it is clear that

Px(t) ∈C ([0,+∞) ,R) and

|Px(t)| ≤ |x0|e(−
∫ t

0 a(v)dv)
∣

∣

∣

∣

∣

1−
∞

∑
k=1

cke

(

−∫ tk
0 a(v)dv

)

∣

∣

∣

∣

∣

+
e(−

∫ t
0 a(v)dv)

∣

∣

∣

∣

∣

1−
∞

∑
k=1

cke

(

−∫ tk
0 a(v)dv

)

∣

∣

∣

∣

∣

∞

∑
k=1

|ck|

×
∫ tk

0
e

(

−
∫ tk

s a(v)dv
)

(

L1 (s) |x(s)|+L2 (s)
∣

∣

∣
I

β
0+

x(s)
∣

∣

∣

)

ds

+
∫ t

0
e(−

∫ t
s a(v)dv)

(

L1 (s) |x(s)|+L2 (s)
∣

∣

∣
I

β
0+

x(s)
∣

∣

∣

)

ds.

First, we have

1
∣

∣

∣

∣

∣

1−
∞

∑
k=1

cke

(

−
∫ tk

0 a(v)dv
)

∣

∣

∣

∣

∣

<
1

1−
∞

∑
k=1

|ck|e
(

−
∫ tk

0 a(v)dv
)

<
1

1−δ0e(−
∫ t1

0 a(v)dv)
.

Also,

∣

∣

∣
I

β
0+

x(s)
∣

∣

∣
≤ 1

Γ(β)

∫ s

0

|x(v)|
(s− v)1−β

dv ≤
sup

0≤v≤s

|x(v)|

Γ(β)

∫ s

0

dv

(s− v)1−β

≤
sup

0≤v≤s

|x(v)|

Γ(β)

sβ

β
.

Thus, we obtain

|Px(t)| ≤ |x0|e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)
+

e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)

∞

∑
k=1

|ck|

×
∫ tk

0
e

(

−
∫ tk

s a(v)dv
)

(

L1 (s) |x(s)|+
L2 (s)

Γ(β)

sβ

β
sup

0≤v≤s

|x(v)|
)

ds

+
∫ t

0
e(−

∫ t
s a(v)dv)

(

L1 (s) |x(s)|+
L2 (s)

Γ(β)

sβ

β
sup

0≤v≤s

|x(v)|
)

ds.

Then, we get

|Px(t)| ≤ |x0|e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)
+

e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)

∞

∑
k=1

|ck|

×
∫ tk

0

(

sup
0≤s≤tk

|x(s)|L1 (s)+ sup
0≤v≤s≤tk

|x(v)| L2 (s)

Γ(β+1)
sβ

)

ds
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+ sup
0≤s≤t

|x(s)|
∫ t

0

(

L1 (s)+
L2 (s)

Γ(β+1)
sβ

)

ds

≤ |x0|e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)
+

e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)

×
∞

∑
k=1

|ck| sup
0≤s≤tk

|x(s)|e
(

−
∫ tk

0 a(v)dv
)

K (tk)

+ sup
0≤s≤t

|x(s)|e(−
∫ t

0 a(v)dv)K (t) ;

where K (t) = L(t)+Lβ (t).
For each x ∈ S, we have ‖x‖∞ ≤ R, so we conclude that,

‖Px‖∞ <

|x0|sup
t≥0

e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)
+

sup
t≥0

e(−
∫ t

0 a(v)dv)

1−δ0e(−
∫ t1

0 a(v)dv)

×
∞

∑
k=1

|ck| sup
0≤s≤tk

|x(s)|e
(

−
∫ tk

0 a(v)dv
)

K (tk)+‖x‖∞ sup
t≥0

(

e(−
∫ t

0 a(v)dv)K (t)
)

<
|x0|e−A

1−δ0e(−
∫ t1

0 a(v)dv)
+

(

e−Aδ0

1−δ0e(−
∫ t1

0 a(v)dv)
+1

)

e−AK ‖x‖∞

< MR+
|x0|e−A

1−δ0e(−
∫ t1

0 a(v)dv)
< R,

for some R satisfying

R >
|x0|e−A

[

1−δ0e(−
∫ t1

0 a(v)dv)
]

(1−M)
.

This means that Px ∈ S for any x ∈ S. Let x and y be in S, then for t ≥ 0, we have

|Px(t)−Py(t)|

≤ e(−
∫ t

0 a(v)dv)

1−
∞

∑
k=1

cke

(

−
∫ tk

0 a(v)dv
)

∞

∑
k=1

ck

∫ tk

0
e

(

−
∫ tk

s a(v)dv
)

×
∣

∣

∣
f
(

s,x(s) , I
β
0+

x(s)
)

− f
(

s,y(s) , I
β
0+

y(s)
)∣

∣

∣
ds

+
∫ t

0
e(−

∫ t
s a(v)dv)

∣

∣

∣
f
(

s,x(s) , I
β
0+

x(s)
)

− f
(

s,y(s) , I
β
0+

y(s)
)∣

∣

∣
ds.

Hence, by using the Lipschitz condition and previous approximations, we obtain

‖Px−Py‖∞ ≤
(

e−Aδ0

1−δ0e(−
∫ t1

0 a(v)dv)
+1

)

e−AK ‖x− y‖∞ ,

≤ M ‖x− y‖∞ .
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Then, from condition (3.4) we conclude that P is a contraction and in view of the

contraction mapping principle, P has a unique fixed point in S which is a solution

of (1.1) with initial nonlocal condition (1.2). Furthermore, it is clear from (1.1)

that x(t) is in C1 ((0,+∞) ,R) . This completes the proof. �

Theorem 3.3. Under the conditions of Theorem 3.2, the zero solution of equation

(1.1) with x(0) = 0 is stable.

Moreover if inf
t≥0

a(t) = a0 > 0 , then the zero solution is asymptotically stable.

Furthermore, if

limsup
t→∞

−a0t

logλ(t)
≤−γ, (3.5)

for some positive constant γ and some function λ(t) satisfying (2.1), the zero solu-

tion of equation (1.1) is λ−stable.

Proof. First, we show that the zero solution of equation (1.1) is stable. Then, for

all t ≥ 0 and any given ε > 0, there exists a positive real η ≤ 1− eKK f

eK
ε such that

if |x(0)|< η, then, we have

|x(t)| ≤ |x(0)|e(−
∫ t

0 a(v)dv) +
∫ t

0
e(−

∫ t
s a(v)dv)

×
[

L1 (s) |x(s)|+
L2 (s)

Γ(β)

∫ s

0

|x(v)|
(s− v)1−β

dv

]

ds. (3.6)

Hence,

|x(t)| ≤ ηe−A +‖x‖∞ e−A

∫ t

0
e(

∫ s
0 a(v)dv)

[

L1 (s)+
L2 (s)sβ

Γ(β+1)

]

ds

which gives

|x(t)|< e−A

1− e−AK
η < ε,

with e−AK < M < 1. This implies that the zero solution is stable. On the other

hand, taking m(t) = |x(t)|e(
∫ t

0 a(v)dv) we get from (3.6)

m(t)≤ m(0)+
∫ t

0

[

L1 (s)e(
∫ s

0 a(v)dv)m(s)+
∫ s

0

L2 (s)

Γ(β)

e(
∫ s

r a(v)dv)m(r)

(s− r)1−β
dr

]

ds

and the application of like-Gronwall theorem 2.2 with c1 =m(0) ,c2 = 1 and c3 = 0

leads to

m(t)≤ m(0)exp

∫ t

0

[

L1 (s)e(
∫ s

0 a(v)dv)+
∫ s

0

L2 (s)

Γ(β)

e(
∫ s

r a(v)dv)

(s− r)1−β
dr

]

ds.

Then,
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|x(t)|< |x(0)|e−a0t exp

∫ t

0
e(

∫ s
0 a(v)dv)

[

L1 (s)+
L2 (s)

Γ(β)

∫ s

0

e(−
∫ r

0 a(v)dv)

(s− r)1−β
dr

]

ds

< |x(0)|e−a0t exp

∫ t

0
e(

∫ s
0 a(v)dv)

[

L1 (s)+
L2 (s)

Γ(β)

sβ

β
sup

0≤r≤s

e(−
∫ r

0 a(v)dv)

]

ds

< |x(0)|e−a0t exp

(∫ t

0
e(

∫ s
0 a(v)dv)

(

L1 (s)+
L2 (s) sβ

Γ(β+1)

)

ds

)

,

where L(t) and Lβ (t) are defined and bounded by (3.2). This leads to

|x(t)|< |x(0)|e−a0t exp
(

L+Lβ

)

(3.7)

which implies that |x(t)| → 0 when t → ∞ and x(t) is asymptotically stable.

For the λ−stability, we have by (3.7) for t ≥ 0,

log |x(t)|
logλ(t)

<
log
(

|x(0)|e−a0t exp
[

L+Lβe−A
])

logλ(t)

<
log |x(0)|
logλ(t)

− a0t

logλ(t)
+

L+Lβe−A

logλ(t)
.

Hence,

limsup
t→∞

log |x(t)|
logλ(t)

≤ limsup
t→∞

−a0t

log λ(t)
≤−γ;

which is the desired result. The proof is complete. �

For the exponential stability limsup
t→∞

−a0t

loget
=−a0 =−γ , for the polynomial sta-

bility limsup
t→∞

−a0t

log(1+ t)
=−∞ <−γ and for the logarithmical stability

limsup
t→∞

−a0t

log(log(1+ t))
=−∞ <−γ.

4. EXAMPLE

Finally, we will present an example to illustrate that the conditions of the above

results are possible to satisfy. Consider the following fractionally perturbed first-

order differential equation for t > 0,

x′ (t)+ (t +2)x(t) =
e−t2−Mt

100
sin x(t)+

t1/2e−t2/2−Mt

100

∣

∣

∣
I

3/2

0+
x(t)
∣

∣

∣

1+
∣

∣

∣
I

3/2

0+ x(t)
∣

∣

∣

; (4.1)

subject to the nonlocal initial condition

x(0)−
∞

∑
k=1

1

k2
x(k) =

1

2
; tk = k ∈R

+, (4.2)



294 RAHIMA ATMANIA

where a(t)=(t+2) is positive and continuous on R
+ with

∫ t
0 a(v)dv= t2

2
+2t→∞

when t → ∞ and then (A1) is satisfied. The second hypothesis (A2) is also satified.

Indeed, we have

∞

∑
k=1

1

k2
=

π2

6
= 1.6449 = δ0 < e

∫ t1
0 a(v)dv = exp(

5

2
) = 12.182.

On the other hand, for β = 3
2
, t > 0, we have

f
(

t,x(t) , I
β
0+

x(t)
)

=
e−t2−2t

100
sinx(t)+

t1/2e−t2/2−2t

100

∣

∣

∣
I

3/2

0+
x(t)
∣

∣

∣

1+
∣

∣

∣
I

3/2

0+
x(t)
∣

∣

∣

;

which satisfies (A3), for positive, Lebesgue integrable and continuous functions

L1 (t) =
e−t2−2t

100
, L2 (t) =

t1/2e−t2/2−2t

100

with f (t,0,0) = 0. Some computations allow from (3.3)

L = sup
t≥0

∫ t

0
L1 (s)e(

∫ s
0 a(v)dv)ds

= sup
t≥0

∫ t

0

e−s2−Ms

100

(

es2/2+Ms −1
)

ds

≤ sup
t≥0

1

100

∫ t

0
e−s2/2ds =

5
√

π

100
= 8.8623×10−2;

and

A = 0, K = L+Lβ = 9.6146×10−2;

M =

(

π2

6

1− π2

6
exp(− 3

2
)
+1

)

K

= 3.5988×9.6146×10−2 = 0.34601 < 1.

Hence, in view of Theorem 3.2, problem (4.1)-(4.2) has a unique solution x(t) in

BC ([0,+∞) ,R)∩C1 ((0,+∞) ,R) .
We have, inf

t≥0
a(t) = inf

t≥0
(t +2) = 2 > 0, then, the zero solution of (4.1) is asymp-

totically stable and is in addition exponentially, polynomially and logarithmically

stable since condition (3.5) is satisfied.

5. CONCLUSION

In this paper we studied a class of first order differential equations with nonlinear

fractional perturbation and a nonlocal initial condition on an unbounded interval.

We used the contraction mapping principle to obtain an existence result and by
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some like-Gronwall’s inequality we etablish asymptotic stability and λ-stability of

the zero solution, the last under suitable assumptions. The novelty in this work is

that the perturbation of the linear differential equation of first order is nonlinear

involving a fractional integral and this equation is subject to a multi-point non-

local condition implying an infinite number of points on the positive real half-

axis. Moreover, the result of stability generalizes strong stabilities such as the

exponential one and weak ones such as the logarithmic one.
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