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ABSTRACT. We prove a result concerning the asymptotic stability and the basin

of attraction of fixed points for block triangular maps in R
n. This result is applied

to some families of discrete dynamical systems and several types of difference

equations.

1. INTRODUCTION AND MAIN RESULTS

In this work we consider block triangular discrete dynamical systems (DDS) of

the form {

xn+1 = f (xn,un),
un+1 = g(un),

(1.1)

where x ∈ R
m, u ∈ R

k and f : Rm ×R
k → R

m, g : Rk → R
k, and m and k are

positive integers. We assume that there exists a locally attracting fiber {u = u∗},

which is invariant and with a unique fixed point on it. The existence of this locally

attracting fiber is equivalent to the existence of a locally asymptotically stable fixed

point of the subsystem un+1 = g(un). We will assume that on this limit fiber the

dynamics given by the map x→ f (x,u∗) has a globally asymptotically stable (GAS)

fixed point. The problem considered here is to give conditions on the map f under

which this fact forces the same behavior for all initial conditions in the whole basin

of attraction of this fiber, that is (x∗,u∗) is also GAS for the DDS (1.1) on this basin.

The next theorem is our main result. In this work ||y|| denotes any vector norm of

y ∈ R
ℓ.

Theorem 1.1. Consider the DDS (1.1) with f and g continuous and such that:

(a) The map f is sublinear in x, that is, there exist continuous functions M,N :

R
k → R

+∪{0} such that

|| f (x,u)|| ≤ M(u)+N(u)||x||. (1.2)

(b) The point u = u∗ is a stable attractor for the DDS un+1 = g(un).
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(c) N∗ := N(u∗)< 1.
(d) The function x → f (x,u∗) is contractive. That is, there exists a positive real

number L < 1 such that

|| f (x,u∗)− f (y,u∗)|| ≤ L ||x− y|| for all x,y ∈ R
m. (1.3)

In particular, the map f (·,u∗) has a unique fixed point x=x∗, i.e. f (x∗,u∗)=x∗.

Then (x∗,u∗) is a stable attractor and any initial condition (x0,u0), with u0 in the

basin of attraction of u = u∗, is in the basin of attraction of the fixed point (x∗,u∗).
Hence on this set, (x∗,u∗) is GAS.

We stress that the above result implies that the convergence is guaranteed for all

(x0,u0) such that u0 is in the basin of attraction of u = u∗, hence it is not a local

result.

It is worth to remark that it is common knowledge that the sublinearity condition

given in (1.2) of the above hypothesis (a) is necessary to have GAS type results.

In Examples 2.1 and 2.2 of Section 2 we give two DDS illustrating this fact. The

first one shows that the result can fail if, in (1.2), ||x|| is replaced by ||x||1+δ for any

δ > 0.
The hypotheses (b) and (c) are natural if one wants to prove that some set of ini-

tial conditions tends to the fixed point (u∗,x∗). The hypothesis (c) and the condition

(1.3) in (d), which is a contractivity condition, are related with the attractivity of

x = x∗ on the invariant fiber u = u∗.

In the particular case that the function f in (1.1) is linear in x, the hypotheses in

Theorem A can be simplified (for instance, observe that in this case, condition (1.2)

implies (1.3)). We state this particular case in the next corollary, which extends the

results of [9, Prop. 2] to higher dimensions. Notice that in its statement, given a

m×m matrix M and a vector norm in R
m, ‖M‖ is the matrix norm induced by this

vector norm, which we recall here

‖M‖= max
{x∈Rm :‖x‖=1}

‖Mx‖= max
{x∈Rm :x6=0}

‖Mx‖
‖x‖ .

Corollary 1.1. Consider the DDS
{

xn+1 = f0(un)+ f1(un)xn,
un+1 = g(un),

(1.4)

where f0 :Rk →R
m, g :Rk →R

k, f1(u) is a m×m matrix, all the functions involved

are continuous and such that:

(a) The point u = u∗ is a stable attractor for the DDS un+1 = g(un) in U.

(b) The matrix f1(u∗) satisfies || f1(u∗)|| < 1 for some matrix norm induced by a

vector norm.

Then, any initial condition (x0,u0) such that u0 is in the basin of attraction of

u = u∗, is in the basin of attraction of the fixed point (x∗,u∗).
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In Section 2, we prove Theorem 1.1 and Corollary 1.1. In Section 3 we present

some examples of application to several DDS of these mains results. Finally, in

Section 4, we apply them to different types of difference equations. In fact, to give

more complete results in that section we complement the results of Theorem 1.1

and Corollary 1.1 with some related results, given in our previous work [9], which

cover some cases with other simple dynamics on the attracting fiber when n = 2.

More concretely, the new dynamics considered are when the fiber is full of fixed

points, or when it is full of 2-periodic points, see Proposition 4.1 for more details.

Finally, it is worth noticing that triangular maps play an important role in the

study of dynamic phenomena, see [17]. But also, as it is remarked in [12], they

are important for representing hierarchical competition biological models. The

convergence to fixed points in such maps is related with the non existence of 2-

periodic orbits in [6] and [12, Sec. 5], where also some examples coming from the

above mentioned biological context are studied.

2. PROOF OF THE MAIN RESULTS

Before proving Theorem 1.1 and Corollary 1.1 we present two examples which

show that the sublinearity hypothesis (1.2) in Theorem 1.1 is essential.

Example 2.1. Consider the planar DDS
{

xn+1 = xn/2+3 |un|δ |xn|1+δ/2,
un+1 = un/2,

(2.1)

for δ ≥ 0. It satisfies all the hypotheses of Theorem 1.1 except those related to the

sublinearity condition, that is (a) and (c). For it we have:

Lemma 2.1. For any δ > 0, the fiber {u = 0} for the DDS (2.1) is globally attract-

ing. On this fiber, x∗ = 0 is a GAS fixed point, but the orbit with initial condition

(x0,u0) = (1,1) is unbounded.

Proof. It is easy to see that this orbit for n ≥ 0 is (xn,un) = (2n,2−n), so it is

unbounded. �

Notice that for δ = 0 the orbit starting at (1,1) is the same, and in this case,

the DDS is sublinear and satisfies (1.2), but Theorem 1.1 does not apply because

N∗ = 2 > 1.
The DDS (2.1) is a discrete counterpart of a similar example for ordinary differ-

ential equations,
{

x′ = −x+ux2,
u′ = −u,

which has similar qualitative properties and for the initial conditions (x,u)= (x0,u0)
with x0u0 = 2 has the solution (x(t),u(t)) = (x0 exp(t),u0 exp(−t)), see [14, p. 8].
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Example 2.2. Consider the DDS














xn+1 = xn/2+ yn zn u5
n,

yn+1 = yn/2+105xn zn u3
n,

zn+1 = zn/2+217xn yn un

un+1 = un/2,

(2.2)

which can be written in the form (1.1) with x= (x,y,z), f (x,u) = (x/2+yzu5 ,y/2+
105xzu3 ,z/2+217xyu) and g(u) = u/2. Notice that the map f has quadratic terms

in ||x||.
Proposition 2.1. For the DDS (2.2), the fiber {u = 0} is globally attracting. On

this fiber, x∗ = 0 is a GAS fixed point. However, there exist initial conditions giving

rise to unbounded orbits.

Proof. Observe that, trivially, u∗ = 0 is a GAS fixed point of the subsystem un+1 =
g(un), and also that x∗ = 0 is a GAS fixed point of xn+1 = f (x∗,0). Let us find

some initial conditions of unbounded orbits. The method of construction follows

the ideas given in [7] to give counterexamples of the discrete Markus Yamabe

conjecture. First we observe that the components of the family of maps

H(x,y,z,u) =
(

x/2+ayzu5,y/2+bxzu3,z/2+ cxyu,u/2
)

,

where a,b and c are real parameters to be determined, are quasi-homogeneous

polynomials with degree of homogeneity 2,3,4 and −1 respectively and weights

2,3,4 and −1 in the variables x,y,z and u respectively. This is so, because for

instance, if H1(x,y,z,u) = x/2+ayzu5, it holds that

H1(λ
2x,λ3y,λ4z,λ−1u) = λ2H1(x,y,z,u),

and similarly with all the other components. In fact, this is the reason to choose the

above expression for the map H. By imposing that

xn = 22nx0, yn = 23ny0, zn = 24nz0 and un = 2−nu0, (2.3)

are solutions of the system (xn+1,yn+1,zn+1,un+1) = H(xn,yn,zn,un) we arrive to

the following system of equations






2ay0z0u5
0 −7x0 = 0,

2bx0z0u3
0 −15y0 = 0,

2cx0y0u0 −31z0 = 0.

By solving it we get

x0 =
2aAB

7u2
0

, y0 =
A

u3
0

, z0 =
B

u4
0

,

where A is any solution of 4acξ2 −217 = 0 and B is any solution of 4abξ2 −105 =
0. Setting a = 1, b = 105 and c = 217 we get that the DDS of the statement has

unbounded solutions for any initial condition
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(x0,y0,z0,u0) =

(

± 1

14u2
0

,− 1

2u3
0

,∓ 1

2u4
0

,u0

)

or

(x0,y0,z0,u0) =

(

± 1

14u2
0

,
1

2u3
0

,± 1

2u4
0

,u0

)

with u0 6= 0. In fact, these unbounded orbits are the ones given in (2.3) for any

u0 6= 0 and (x0,y0,z0) given above. �

Let us prove our main results. We will need the following technical lemmas.

Lemma 2.2. Let f : Rm ×R
k → R

ℓ be a continuous function. Consider K ⊆ R
m a

compact set, and fix u∗ ∈ R
k. Given any norm in R

ℓ, define

dK,u∗(u) = max
x∈K

|| f (x,u)− f (x,u∗)||. (2.4)

Then, lim
u→u∗

dK,u∗(u) = 0.

Proof. Take any norm in R
k and denote it also as || · ||. Given ε> 0, we will find δ>

0 such that if ||u−u∗|| ≤ δ, then dK,u∗(u)≤ ε. Indeed, if we consider the continuous

function f restricted to some the compact set K×C where C = {u : ||u−u∗|| ≤ c}
for some suitable c > 0, then on this set f is uniformly continuous. Hence, for

any ε > 0 there exists δ > 0 such that if ||(x,u)− (x′,u′)|| ≤ δ, then || f (x,u)−
f (x′,u′)|| ≤ ε for all (x,u),(x′ ,u′) ∈ K ×C. Here, in R

m ×R
k, we consider for

instance ||(x,u)|| = ||x||+ ||u||. Taking x′ = x and u′ = u∗ we get the result. �

Lemma 2.3. Set e0 ≥ 0, 0 < L < 1 and let {αn}n be any non-negative sequence.

Assume that the sequence {en}n satisfies that for all n ≥ 0,

en+1 ≤ αn +Len.

Then, if lim
n→∞

αn = 0, it holds lim
n→∞

en = 0.

Proof. Given any fixed ε > 0 it suffices to prove that there exists K = K(ε) such

for all n ≥ K it holds that en+1 < ε. Let A be such that αn < A for all n. Take N ∈N

such that

LN ≤ (1−L)ε

3A
and αn ≤

(1−L)ε

3
for n ≥ N.

Let M ∈N be such that LM+1e0 ≤ ε/3. Then, for n ≥ K := max(2N−1,M) it holds

that
en+1 ≤αn +Len ≤ αn +Lαn−1 +L2en−1 ≤ αn +Lαn−1 +L2αn−2 +L3en−2 ≤

≤·· · ≤ αn +Lαn−1 +L2αn−2 + · · ·+Lnα0 +Ln+1e0 ≤
≤
(

αn +Lαn−1 + · · ·+LN−1αn−N+1

)

+
(

LNαn−N + · · ·+Lnα0

)

+
ε

3
≤

≤
(

1+L+ · · ·+LN−1
)(1−L)ε

3
+
(

LN +LN+1 + · · ·+Ln
)

A+
ε

3
≤

≤ ε

3
+

LNA

1−L
+

ε

3
≤ ε. �
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Proof of Theorem 1.1. By hypothesis (e), the point (x∗,u∗) is a fixed point of the

DDS given by (1.1). Take (x0,u0) with u0 in the basin of attraction of u∗ for the

DDS generated by g. The proof that {(xn,un)}n tends to (x∗,u∗) will be done in

two steps. First we will show that the sequence {xn}n is bounded and next we will

prove its convergence.

Clearly, by hypothesis (b), given any ε > 0 it holds that ||un − u∗|| ≤ ε when

n ≥ n0 for some n0 = n0(ε). Therefore, changing the initial condition, if necessary,

we can assume that ||un −u∗|| ≤ ε for all n ≥ 0. We take ε such that

N̄ := max
{u : ||u−u∗ ||≤ε}

N(u)< 1,

where N(u) is given in item (a). This is possible by the hypothesis in item (c) and

by the continuity of N. Similarly, define

M̄ := max
{u : ||u−u∗ ||≤ε}

M(u).

Hence, applying recurrently (1.2) we get the boundeness of {xn}n, because

||xn+1|| ≤ M̄+ N̄ ||xn|| ≤ M̄+ N̄M̄+ N̄2||xn−1|| ≤
≤ M̄+ N̄M̄+ N̄2M̄+ N̄3||xn−2|| ≤ · · · ≤
≤ M̄

(

1+ N̄ + N̄2+ · · ·+ N̄n
)

+ N̄n+1||x0|| ≤
M̄

1− N̄
+ ||x0||.

To prove the convergence, we define en := ||xn − x∗|| and we will show that the

limit of {en}n is 0. By using the fact that {xn}n is bounded, we can assume that it

is confined in some compact set K, and consider the function dK,u∗(u) defined in

(2.4). Now, by using inequality (1.3) we get that

en+1 = ||xn+1 − x∗||= || f (xn,un)− f (x∗,u∗)||
≤ || f (xn,un)− f (xn,u∗)||+ || f (xn,u∗)− f (x∗,u∗)|| ≤
≤ dK,u∗(un)+L ||xn − x∗||= dK,u∗(un)+Len.

If we denote by αn = dK,u∗(un), by Lemma 2.2 we have that limn→∞ αn = 0. Hence,

since L < 1, we can apply Lemma 2.3 obtaining that limn→∞ en = 0, as we wanted

to prove. �

Proof of Corollary 1.1. By the hypothesis the DDS (1.4) satisfies hypothesis (b) of

Theorem 1.1. Using the vector norm whose induced matrix norm satisfies hypoth-

esis (b), we get:

|| f (x,u)|| ≤ || f0(u)+ f1(u)x|| ≤ || f0(u)||+ || f1(u)x|| ≤ || f0(u)||+ || f1(u)|| ||x||.
So taking M(u) = || f0(u)|| and N(u) = || f1(u)|| we have that the DDS (1.4) also

satisfies the hypotheses (a) and (c) of the main result. Also, straightforwardly one

gets
|| f (x,u∗)− f (y,u∗)||= || f1(u∗)(x− y)|| ≤ || f1(u∗)|| ||(x− y)||,

hence hypothesis (d) of Theorem 1.1 is fulfilled. Then, Corollary 1.1 is obtained

as a direct consequence of the main result. �
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3. SOME EXAMPLES OF APPLICATION OF THEOREM 1.1

Example 3.1. Consider the DDS defined in Q+ = {(x,u) ∈R
2, with x > 0,u > 0}:















xn+1 =
f0(un)

1+ xn

+
f1(un)xn

1+ xn

,

un+1 =
(α+1)un

1+un

,

(3.1)

where α > 0, f0 > 0, f1 > 0 and f0(α)+ f1(α)< 1. As a consequence of Theorem

1.1 we the following result.

Proposition 3.1. Any orbit of DDS (3.1) with initial condition (x0,u0) ∈ Q+ con-

verges to the fixed point (x∗,u∗) given by

x∗ =

(

f1(α)−1+
√

(1− f1(α))2 +4 f0(α)

)

/2, and u∗ = α,

which is a stable attractor in Q+.

Proof. The result is a consequence of Theorem 1.1 by taking || · || = || · ||2. To see

this, we check that all the four hypotheses of the theorem are satisfied. Indeed,

since we are considering x > 0, observe that the sublinearity condition 1.2 stated in

hypothesis (a) is straightforwardly satisfied with M(u) = f0(u) and N(u) = f1(u).
(b) The Riccati difference equation un+1 = (α + 1)un/(1+un) has two fixed

points at u = 0 and u∗ = α. Since α > 0, this last fixed point is GAS in R
+ = {x :

x > 0}.
(c) Since f0(α)+ f1(α)< 1, then N∗ = f1(u∗) = f1(α)< 1.

(d) A computation shows that,

|| f (x,u∗)− f (y,u∗)||=
∣

∣

∣

∣

f0(u∗)(y− x)+ f1(u∗)(x− y)

(1+ x)(1+ y)

∣

∣

∣

∣

≤

≤ | f0(u∗)(y− x)+ f1(u∗)(x− y)|
≤ ( f0(u∗)+ f1(u∗)) |x− y|.

Setting L := f0(u∗)+ f1(u∗), by hypothesis we obtain L < 1, and therefore hypoth-

esis (d) is satisfied. �

For instance, the result is a corollary of the above proposition.

Corollary 3.1. The DDS, defined on Q+,














xn+1 =
xn +un

2(1+ xn)
,

un+1 =
(α+1)un

1+un

,

with α > 0, has the GAS fixed point (x∗,α) with x∗ = (−1+
√

1+8α)/4.
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Before introducing the next example we need to prove a preliminary result. As

usual, for x = (x1, . . . ,xm) and 1 ≤ p ∈ R,

||x||p = p
√

|x1|p + · · ·+ |xm|p, and ||x||∞ = max
i=1,...,m

|xi|.

Lemma 3.1. For x,y ∈ R
m set x ∗ y = (x1y1,x2y2, . . . ,xmym). Then, for any vector

norm || · || on R
m, ||x∗ y|| ≤ R ||x||∞||y||, (3.2)

where R is a positive constant that depends on the norm. In particular, when the

norm is any p norm, 1 ≤ p ∈ R∪{∞}, then R = 1, but for other norms R can be

bigger that 1.

Proof. For any p norm, 1 ≤ p ∈ R∪{∞} it is easy to prove that (3.2) holds with

R = 1. For instance, when p ≥ 1 is finite,

||x∗ y||p ≤ p

√

m

∑
i=1

|xi|p|yi|p ≤ max
i=1,...,m

|xi| p

√

m

∑
i=1

|yi|p = ||x||∞||y||p.

Since any two norms in R
m are equivalent, taking for instance the 2-norm, there

exist two positive constants K1 and K2 such that for any y ∈ R
m, K1||y||2 ≤ ||y|| ≤

K2||y||2. Hence,

||x∗ y|| ≤ K2||x∗ y||2 ≤ K2||x||∞||y||2 ≤
K2

K1

||x||∞||y||,

and taking R = K2/K1 the inequality (3.2) follows.

Let us define a norm on R
2 for which R > 1 in (3.2). For any x = (x1,x2),

introduce the polynomial Px(t) = x1 + x2t. Then

||x|| := ||Px||=

√∫ 1

0
P2

x (t)dt =
√

x2
1 + x1x2 + x2

2/3 ,

where, in the above line, ||Px|| is the L2([0,1]) norm of Px (recall that || f ||2 =∫ 1
0 f 2(t)dt). Because of this definition it is easy to see that || · || is a norm on R

2.
For instance, ||x+ y||= ||Px+y||= ||Px +Py|| ≤ ||Px||+ ||Py||= ||x||+ ||y||.

By taking x = (−1,1) and y = (−1,2), then x ∗ y = (1,2), ||x||∞ = 1, ||y|| =
√

1/3 and ||x ∗ y|| =
√

13/3. Hence R ≥ ||x ∗ y||/(||x||∞||y||) =
√

13 > 1, as we

wanted to show. �

Example 3.2. Consider x = (x1, . . . ,xm), u = (u1, . . . ,uk) and the DDS given by
{

xn+1 = f (xn,un) = f0(un)+ f1(xn,un),
un+1 = g(un),

(3.3)

with f0 : Rk −→R
m, f1(x,u) = (at1(u)F1(x),at2(u)F2(x), . . . ,atm(u)Fm(x)) defined

from U×R
k, with U ⊆R

m into R
m, g : Rk −→R

k, all the functions differentiable,

and a > 0. Moreover, we will consider un+1 = g(un) given by a map g from R
k into

itself associated with a k-th order recurrence and having a GAS fixed point. Some

concrete examples are given in [10]. We prove the following result.
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Proposition 3.2. Consider the DDS (3.3) and assume that it satisfies the following

hypotheses:

(a) There exist positive constants A,B and K such that the map F(x) = (F1(x), . . . ,
Fm(x)) satisfies ||F(x)|| ≤ A+B||x|| and ||F(x)−F(y)|| ≤ K ||x− y|| for all

x,y ∈ U ⊆ R
m.

(b) The map g can be written as g(u) = (u2, . . . ,uk,h(u1, . . . ,uk)), where h is such

for all u∈R
k,

k

∑
i=1

∣

∣

∣

∂h(u)
∂ui

∣

∣

∣
< 1, and u∗ =(z, . . . ,z)∈R

k, where v= z is the unique

solution of the equation h(v, . . . ,v) = v.

Then there exists a0 > 0 such that for all a < a0 it has a fixed point (x∗,u∗) which

is GAS in U ×R
k.

Proof. Let us see that the system (3.3) satisfies the hypotheses of Theorem 1.1.

Indeed, set T (u) = max
i=1,...,m

(|ti(u)|). Then, by using Lemma 3.1, we get

|| f (x,u)|| ≤ || f0(u)||+aT (u) ||F(x)|| ≤ || f0(u)||+aAT (u)+aBT (u)||x||.
Hence, setting M(u) = || f0(u)||+aAT (u) and N(u) = aBT (u) we get that the sub-

linearity hypothesis (a) of Theorem 1.1 is satisfied.

The hypotheses on the map g ensure, from [10, Thm. 1], that the fixed point

u∗ of the subsystem un+1 = g(un) is a GAS in R
k. Hence the hypothesis (b) of

Theorem 1.1 holds.

Observe that N∗ = aBT (u∗). Hence taking a < a1 = (BT (u∗))−1 the hypothesis

(b) of Theorem 1.1 is satisfied. To verify hypothesis (d), observe that by using

Lemma 3.1, straightforwardly one gets

|| f (x,u∗)− f (y,u∗)|| ≤ aRT (u∗)||F(x)−F(y)|| ≤ aRKT (u∗)||x− y||,
for some constant R given in its statement. Hence, for all a < a2 = (RKT (u∗))−1

hypothesis (d) is satisfied. Thus, setting a0 = min(a1,a2), for all a< a0 there exists

a fixed point (x∗,u∗) which is a GAS in U ×R
k. �

Next we give concrete examples of functions F and h for which system (3.3) is

under the hypotheses of Proposition 3.2.

We start by giving a family of functions F. Fix σ and τ two permutations of the

set {1,2, . . . ,m}. Then take

F(x) =
(

e−xσ1 + xτ1
,e−xσ2 + xτ2

, . . . ,e−xσm + xτm

)

. (3.4)

This map is sublinear in U = (0,∞)m because ||F(x)|| ≤ ||(1,1, . . . ,1)||+ ||x||.
Hence we can set the constants A and B in Proposition 3.2 to be A = ||(1,1, . . . ,1)||
and B = 1.

Next, if we find K > 0 such that ||DF(x)|| < K for all x ∈ U, where the norm

of the matrix is the one induced by the vector norm, then for all x,y ∈ U we have

||F(x)−F(y)|| ≤ K ||x− y||, see for instance [16, Thm. 9.19].
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In our case observe that for each row of DF(x), either there is a unique non-zero

entry −e−xσi + 1, if σi = τi; or there are only two non-zero entries e−xσi and 1,

respectively if σi 6= τi. In any case, the sum of the squares of the elements of each

row is less than 4 for all x ∈ U. Hence, by using that ||A||2 ≤ ∑i, j a2
i j for any matrix

norm ( [16, Eq. (6), p. 211]), we obtain that: ||DF(x)|| ≤
√

4m = K. Therefore for

this family of maps F the hypothesis (a) of Proposition 3.2 holds.

Finally, a simple example of function h, that provides a g under the hypothesis

(b) of Proposition 3.2 with u∗ = (0, . . . ,0) is

h(u1, . . . ,uk) =
u1 + · · ·+uk

(k+1)
√

1+(u1 + · · ·+uk)2
. (3.5)

This is so, because v = 0 is the unique solution of equation h(v, . . . ,v) = v and

k

∑
i=1

∣

∣

∣

∣

∂h(u)

∂ui

∣

∣

∣

∣

=
k

∑
i=1

1

(k+1)(1+(u1 + · · ·+uk)2)
3
2

=

=
k

(k+1)(1+(u1 + · · ·+uk)2)
3
2

≤ k

k+1
< 1.

To summarize, consider the DDS defined in (3.3) with the functions F and h

given in (3.4) and (3.5). Then, by Proposition 3.2, there is a computable value a0

such that for all a < a0, there exists a fixed point (x∗,0) which is a GAS in U×R
k.

Example 3.3. In this example we study a system with a kind of diffusive coupling.

Proposition 3.3. Consider the DDS






xn+1 = un (axn +bh(xn − yn)) ,
yn+1 = vn (ayn −bh(xn − yn)) ,
un+1 = g1(un,vn),
vn+1 = g2(un,vn),

(3.6)

where h : R → R is differentiable and h and h′ are bounded functions such that

h(0) = 0. Assume that there exists a stable attracting point (u∗,u∗) in a certain

non-empty set U for the subsystem (un+1,vn+1) = g(un,vn) with g= (g1,g2). Then,

there exist a and b small enough, such that (0,0,u∗,u∗) is a stable attractor of (3.6)

in R
2 ×U.

The explicit conditions that the parameters a and b must satisfy to guarantee the

statement of the above result are given in Remark 3.1 below.

Proof. To prove the above statement, we set x = (x,y) and u = (u,v) and

f (x,u) = f (x,y,u,v) = (u(ax+bh(x− y)),v(ay−bh(x− y))) ,

and we check that the hypotheses of Theorem 1.1, by taking the || · ||2 norm, are

satisfied. For the sake of simplicity, we skip the subscript 2 in the rest of the proof.

Let K1 and K2 be positive constants such that |h(z)| ≤ K1 and |h′(z)| ≤ K2 for all

z ∈ R. By using that x2u2 + y2v2 ≤ (x2 + y2)(u2 + v2) we have
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|| f (x,u)|| ≤ |a| ||(ux,vy)|| + |b|K1 ||(u,−v)|| ≤ |a| ||x|| ||u|| + |b|K1||u||.
Setting M(u) = |b|K1||u|| and N(u)= |a| ||u|| we get that condition (a) of Theorem

1.1 is verified. Observe that hypothesis (b) is verified by the initial assumptions on

the system.

Set u∗ = (u∗,u∗). If a is such that N(u∗) = |a| ||u∗||=
√

2 |a| |u∗|< 1, condition

(c) is satisfied.

To check condition (d) of Theorem 1.1 we use again that if ||D f (x,u∗)||< L for

all x ∈R
2, then || f (x,u∗)− f (y,u∗)|| ≤ L ||x−y||, see [16, Thm. 9.19]. In our case

D f (x,u∗) = u∗

(

a+bh′(x− y) −bh′(x− y)
−bh′(x− y) a+bh′(x− y)

)

.

Hence, by using once more that ||A||2 ≤ ∑i, j a2
i j for any matrix norm ( [16, Eq. (6),

p. 211]), we have

||D f (x,u∗)|| ≤
√

2 |u∗|
√

(a+bh′(x− y))2 +b2 (h′(x− y))2 ≤

≤
√

2|u∗|
√

a2 +2b2 K2
2 +2|a| |b|K2.

Setting L :=
√

2 |u∗|
√

a2 +2b2K2
2 +2|a| |b|K2, we get that if a and b are small

enough, L < 1 and, therefore, f (x,u∗) is contractive and condition (d) of Theorem

1.1 is verified. Since f (x,u∗) has the unique fixed point (x,u) = (0,0,u∗,u∗), the

result follows. �

Remark 3.1. The existence of a GAS fixed point for system (3.6) in R×U is

guaranteed if a and b are small enough. From the above arguments, we get the

following explicit necessary conditions:

•
√

2 |a| |u∗|< 1, and

•
√

2 |u∗|
√

a2 +2b2 K2
2 +2|a| |b|K2 < 1, where maxz∈R |h′(z)|= K2.

4. APPLICATIONS TO DIFFERENCE EQUATIONS

In this section we apply our results on planar triangular maps given in Corol-

lary 1.1 and an extension given in [9] to study the asymptotic behavior of several

difference equations.

First we state a general proposition that collects both results. On one side the

hypotheses are stronger, because the maps are assumed to be of class C 1 and the

fixed point that gives rise to the attracting fiber is assumed to be hyperbolic, but

on the other hand it covers different situations for the dynamics on this attracting

fiber. In short, before, the attracting fiber had a single GAS fixed point, but this

result also covers other cases with simple dynamics: either when the fiber is full

of fixed points or when the map restricted to it is a linear involution of the form

x → k− x, full of 2-periodic points. See [9] for the details on the reason why more

regularity for the functions, or the hyperbolicity condition, is needed.
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Proposition 4.1. Consider the planar DDS
{

xn+1 = f0(un)+ f1(un)xn,
un+1 = g(un),

(4.1)

with f0, f1,g ∈ C 1(U), where U is a neighborhood of u = u∗ and suppose that

u = u∗ is a hyperbolic attractor of g. Then, for all initial conditions (x0,u0) with

u0 ∈ U in the basin of attraction of u = u∗, the following holds:

(a) If | f1(u∗)|< 1, then lim
n→∞

(xn,un) = ( f0(u∗)/(1− f1(u∗)),u∗).

(b) If f0(u∗)=0 and f1(u∗)=1, then lim
n→∞

(xn,un)=(ℓ(x0,u0),u∗) for some ℓ(x0,u0)∈
R.

(c) If f1(u∗) = −1, then lim
n→∞

(x2n,u2n) = (ℓ(x0,u0),u∗) and lim
n→∞

(x2n+1, u2n+1) =

( f0(u∗)− ℓ(x0,u0),u∗) for some ℓ(x0,u0) ∈ R.

Furthermore, in cases (b) and (c), for any point (x̄,u∗)∈ {u = u∗} there exist initial

conditions (x0,u0) in the basin of attraction of the attracting fiber such that (x̄,u∗)
is one of the acummulation points of the orbit {xn,un}n≥0.

In the sequel, in each section we consider several types of difference equations

for which Proposition 4.1 can be applied.

4.1. Multiplicative difference equations

We consider the next family of second order multiplicative difference equations

xn+2 = xnh(xnxn+1), (4.2)

where h : U → R is a C 1 function defined in an open set of U ⊆ R, which we

call of multiplicative type. Multiplying both sides of (4.2) by xn+1, and setting

un = xnxn+1 we get that it can be written as
{

xn+1 = un/xn,
un+1 = un h(un).

(4.3)

It has the associated map F(x,u) = (u/x,uh(u)) . If we consider the map F2(x,u) =
F ◦F(x,u) we obtain F2(x,u) = (h(u)x,uh(u)h(uh(u))) . Hence, by denoting zn =
x2n and vn = u2n (respectively zn = x2n+1 and vn = u2n+1) we get the DDS

{

zn+1 = h(vn)zn,
vn+1 = vn h(vn)h(vn h(vn)),

(4.4)

which is of the form (4.1). Hence we can apply Proposition 4.1 to it and study the

behavior of (x2n,u2n) (respectively (x2n+1,u2n+1)). Notice that when we consider

the initial conditions (x0,u0) (resp. (x1,u1)) and we apply system (4.4) iteratively

we get (x2n,u2n) (resp. (x2n+1,u2n+1)).

Example 4.1. Among all the recurrences of type (4.2), we are going to consider

the one given by

xn+2 =
xn

a+bxnxn+1

, ab 6= 0, a,b ∈ R. (4.5)
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The behavior of the solutions for the case ab= 0,a2+b2 6= 0, is very simple. The

global behavior of the difference equation (4.5) is already completely understood

after the work in [5]. Their approach is based on the computation of the explicit

solutions of (4.5). Previously, particular cases of this equation have been studied

in several works, see [1–4,11,18]. The reader is also referred to [5] for a summary

of these previous references concerning this equation.

Difference equation (4.5) has the form (4.2), where h(u) = 1/(a+bu). Further-

more, it corresponds with to the DDS of type (4.3):
{

xn+1xn = un,

un+1 =
un

a+bun

.

This DDS has two invariant fibers given by {u = 0} and {u = (1− a)/b} whose

stability is determined by the parameter a, since setting g(u) = uh(u) = u/(a+bu)
we have g′(0) = 1/a and g′((1− a)/b) = a. The global dynamics of (4.5) in its

good set (that is, the set of all initial conditions for which the dynamical system

is well defined, [15]) G = R \ {∪n≥0g−n(−a/b)}, is determined by the graph of

g (notice that in another framework we could consider this recurrence defined in

R̄ = [−∞,∞], and then the good set would be R̄). First it is necessary to know the

dynamics of the recurrence un+1 = g(un) which, since g is a Möbius transforma-

tion, is well known. For instance, using [8, Cor. 7] we get:

Lemma 4.1. Consider the real one-dimensional difference equation given by

un+1 =
un

a+bun

, ab 6= 0. (4.6)

Then, the points u = 0 and u = (1− a)/b are fixed points. Furthermore setting

G = R\{∪n≥0g−n(−a/b)} we have:

(a) If |a|> 1, then for any initial condition (1−a)/b 6= u0 ∈ G , lim
n→∞

un = 0.

(b) If |a|< 1, then for any initial condition 0 6= u0 ∈ G , lim
n→∞

un = (1−a)/b.

(c) If a =−1, then for any initial condition in G , the sequence {un} is 2-periodic.

(d) If a = 1, then for any initial condition in G , lim
n→∞

un = 0.

Hence as a consequence of the above lemma and Proposition 4.1, as well as

some other ad hoc arguments, we obtain the following alternative proof of the

result in [5]:

Theorem 4.1. Consider the difference equation (4.5). Then the following state-

mens hold:

(a) If x0 = x1 = 0, then the sequence xn = 0 for all n ∈ N.

(b) If |a|> 1, then for any initial condition x0,x1 such that (1−a)/b 6= x0x1 ∈ G ,

lim
n→∞

xn = 0. If x0x1 = (1−a)/b, then {xn} is 2-periodic.

(c) If |a| < 1, then for any initial condition x0,x1 such that x0x1 ∈ G we have: if

x0x1 6= 0 and x0x1 6=(1−a)/b, then {xn} tends to a 2-periodic orbit {ℓ0(x0,x1),
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ℓ1(x1,x2)} such that ℓ0(x0,x1)ℓ1(x1,x2) = (1−a)/b; if x0x1 = (1−a)/b, then

{xn} is 2-periodic; and if x0x1 = 0, then lim
n→∞

|xn|= ∞.

(d) If a = −1, then for any initial condition x0,x1 such that x0x1 ∈ G we have: if

x0x1 6= 0 and x0x1 6= 2/b, then the solution {xn} is unbounded; if x0x1 = 2/b,

then {xn} is 2-periodic; and if x0x1 = 0, then {xn} is 4-periodic.

(e) If a= 1, then for any initial condition x0,x1 such that 0 6= x0x1 ∈ G , lim
n→∞

xn = 0.

If x0x1 = 0, then {xn} is 2-periodic.

Proof. Statement (a) is trivial. In order to prove (b) we consider |a| > 1. Then, by

item (a) of Lemma 4.1, u = 0 is an attractor of the recurrence (4.6) in G \ {u =
(1−a)/b}. We now note that for equation (4.5), the DDS (4.4) appears as











zn+1 =
1

a+bvn

zn,

vn+1 =
vn

a2 +b(1+a)vn

.
(4.7)

Applying Proposition 4.1 to system (4.7) we deduce that zn → 0. It implies that

x2n → 0 and x2n+1 → 0 too. Hence, for each initial condition such that (1−a)/b 6=
x0x1 ∈ G , lim

n→∞
xn = 0. On the other hand, substituting x0x1 = (1−a)/b in Equation

(4.5) we get x2 = x0, obtaining a 2-periodic orbit.

(c) If |a| < 1, then by Lemma 4.1 (b), for all u0 6= u∗ := (1−a)/b the sequence

un → u∗. Since f1(u∗) = 1 and u∗ is a hyperbolic attractor of (4.6), we can use

Proposition 4.1 to assert that the sequence vn converges to a point which depends

on the initial condition. Then, if we take the initial condition (z0,v0) = (x0,u0)
(resp. (z0,v0) = (x1,u1)) we have that limn→∞ u2n = limn→∞ vn = ℓ0(x0,u0) :=
ℓ0(x0,x1) (resp. limn→∞ u2n+1 = limn→∞ vn = ℓ1(x1,u1) := ℓ1(x1,x2)). Then, since

un = xnxn+1, the condition ℓ0(x0,x1)ℓ1(x1,x2) = u∗ must be satisfied. The other

assertions of statement (c) are easily deduced from (4.5).

(d) If a =−1 and x0x1 6= 0 , x0x1 6= 2/b, then

un+2 = un, x2n =
x0

(bx0x1 −1)n
, and x2n+1 = x1(bx0x1 −1)n.

Hence xn is unbounded. If x0x1 = 2/b, then x2n = x0 , x2n+1 = x1 and {xn} is 2-

periodic. If x0 = 0, then x2n = 0 , x2n+1 = x1 (−1)n and {xn} is 4-periodic. If

x1 = 0, then x2n = (−1)n x0 , x2n+1 = 0 and {xn} is 4-periodic.

(e) Similarly, if a = 1 and x0x1 = 0, then {xn} is 2-periodic. Consider now

x0x1 6= 0. The DDS (4.4) is










zn+1 =

(

1

1+bvn

)

zn,

vn+1 =
vn

1+2bvn

.

A straightforward computation shows that its second component has the following

explicit solution vn = v0/(1+2bv0 n). Hence its first equation appears as
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zn+1 =

(

1

1+ bv0

2bv0 n+1

)

zn,

and we obtain the explicit solution

zn+1 =

(

n

∏
j=0

1

1+ bv0

2bv0 j+1

)

z0.

So if n > n0 for a suitable n0, we can take logarithms in the above equations,

obtaining:

ln |zn+1|=−
n

∑
j=0

ln

∣

∣

∣

∣

1+
bv0

2bv0 j+1

∣

∣

∣

∣

+ ln |z0| ∼ −
n

∑
j=0

∣

∣

∣

∣

bv0

2bv0 j+1

∣

∣

∣

∣

.

Observe that, for any value of b and v0 we have lim
n→∞

n

∑
j=0

∣

∣

∣

bv0

2bv0 j+1

∣

∣

∣
= +∞, hence

lim
n→∞

zn = 0, and the result follows. �

The next third order difference equation can be studied using the same approach.

Example 4.2. The exact solutions of the third order difference equation

xn+3 =
xn+2xn

xn+1(a+bxn+2xn)
,

have been obtained in [13]. A complete analysis of the dynamics associated to

this equation can be done using a similar approach as in Example 4.1. Setting

g(u) = u/(a+bu), we have that the subsequences {x2k} and {x2k+1} can be studied

using the DDS
{

yn+1yn = vn,

vn+1 = g2(vn) =
vn

b(a+1)vn +a2
,

where yn = x2n+i, and vn = u2n+i for i = 0,1. Hence, the sequences {x2k+i} can be

straightforwardly characterized using the behavior of the real Möebius recurrence

vn+1 = vn/(b(a+1)vn +a2).

The next example shows that the approach in this section can be applied to

other families of difference equations not in the class (4.2). We will not develop

the analysis in this paper, since our main purpose is only to illustrate a range of

applications of our results.

Example 4.3. Consider the difference equation

xn+2 =
x

γ
nh(xn+1x

γ
n)

x
γ−1
n+1

,

with xn ∈ R
+, γ ∈ R and h a C 1 positive function. By multiplying both sides of the

equation by x
γ
n+1; setting un = xn+1x

γ
n, and taking yn = lnxn we get the DDS of type

(4.1)
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{

yn+1 = ln(un)− γyn,
un+1 = unh(un),

that can be studied again by using the results of Proposition 4.1.

4.2. Additive difference equations

In this section, we consider the second order difference equations

xn+2 =−bxn+1 +g(xn+1 +bxn), (4.8)

that we will call additive. They can be studied via the associated map F(x,y) =
(y,−by+g(y+bx)) which preserves the fibration F = {y+bx = c, c ∈ R}. So if

u = u∗ is a fixed point of h, the map preserves the fiber y+bx = u∗.

Setting un = xn+1 +bxn, we get the DDS
{

xn+1 = un −bxn,
un+1 = g(un),

(4.9)

which is of type (4.1) with f0(u) = u and f1(u)≡−b.

It is easy to observe that if |b|> 1, or b =−1 and u∗ 6= 0, then there are iterates

of map F on the invariant fiber y+ bx = u∗ which are unbounded, and therefore

these cases are out of our scope. In fact it is straightforward to obtain the following

result.

Lemma 4.2. Consider the difference equation (4.8), where g is a continuous func-

tion defined in an open set U ⊆ R. Let u∗ ∈ U be a fixed attracting point un+1 =
g(un). Then, for each initial condition x0,x1 such that x1 + bx0 = u∗, we have

lim
n→∞

xn = u∗/(1+ b) if |b| < 1; the orbits are 2-periodic if b = 1; are fixed points

if b = −1 and u∗ = 0; and there are unbounded orbits if b = −1 and u∗ 6= 0, or

|b|> 1.

For the rest of initial conditions, the dynamics can be studied using Proposition

4.1, obtaining:

Proposition 4.2. Consider the difference equation (4.8), with g∈C 1(U) a function

defined in an open set U ⊆ R. Let u∗ ∈ U be a hyperbolic attracting point of

un+1 = g(un). Then, for all initial conditions x0,x1 such that u0 = x1 +bx0 is in the

basin of attraction of u = u∗, we have:

(a) If |b|< 1, then lim
n→∞

xn = u∗/(1+b).

(b) If b = 1, then {xn} tends to a 2-periodic orbit {ℓ(x0,x1),u∗− ℓ(x0,x1)}.

(c) If b =−1, u∗ = 0, then there exists ℓ(x0,x1) such that lim
n→∞

xn = ℓ(x0,x1).

Proof. (a) If |b| < 1, then system (4.9) is under the hypothesis of Proposition 4.1,

hence

lim
n→∞

xn =
f0(u∗)

1− f1(u∗)
=

u∗

1+b
.
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To prove statement (b) we apply Proposition 4.1 to DDS (4.9). Since f1(u) =−1

we get that lim
n→∞

(x2n,u2n)=(ℓ(x0,u0),u∗) and lim
n→∞

(x2n+1, u2n+1)=(u∗−ℓ(x0,u0),u∗).

Since u0 = bx0 + x1 , ℓ(x0,u0) = ℓ(x0,x1).
Finally, if b=−1 and u∗ = 0, then by Proposition 4.1 again, lim

n→∞
xn = ℓ(x0,x1). �

Example 4.4. In an analogous way as in the previous example, by adding axn+1

to both sides of the difference equation

xn+2 = axn +(1−a)xn+1 + f (xn+1 +axn),

and setting un = xn+1+axn, we get that the it can be studied via the DDS of type

(4.1) {

xn+1 = un −axn,
un+1 = un + f (un).

4.3. Other higher order difference equations

A similar approach can be applied to several higher order multiplicative-type of

difference equations. Consider the k-th order difference equation:

xn+k = xn h(xnxn+1 · · ·xn+k−1). (4.10)

Some straightforward computations using the associated map

F(x0, . . . ,xk−1) = (x1, . . . ,xk−1,x0h(x0 · · ·xk−1)),

show that the sets x0x1 · · ·xk−1 = 0 and x0x1 · · ·xk−1 = u∗ for u∗ 6= 0 such that

h(u∗) = 1 (if it exists) are invariant, and also lead to the following result:

Lemma 4.3. Consider the difference equation (4.10), with h a C 1(U) function on

some open set U ⊆ R containing 0. Given some initial conditions x0, . . . ,xk−1 we

have:

(a) If xi = 0 for all i = 0, . . . ,k−1, then xn = 0 for all n ∈ N.

(b) Suppose that x0x1 · · ·xk−1 = 0 and x2
0 + · · ·+ x2

k−1 6= 0. If additionally h(0) =
−1, then {xn} is 2k-periodic; if h(0) = 1, then {xn} is k-periodic; if |h(0)|< 1,

then lim
n→∞

xn = 0; and if |h(0)| > 1, then lim
n→∞

|xn|= ∞.

(c) If there exists u∗ 6= 0 in U such that h(u∗) = 1, and x0x1 · · ·xk−1 = u∗, then {xn}
is k-periodic (non-minimal).

Proposition 4.3. Consider the difference equation (4.10), with h a C 1(U) function

in some open set U ⊆ R. If 0 ∈ U and |h(0)| < 1, then u = 0 is an attractor

for the DDS un+1 = unh(un), and for all initial condition x0, . . . ,xk−1 such that

0 6= u0 = x0 . . .xk−1 is in the basin of attraction of {u = 0} we have that lim
n→∞

xn = 0.

Proof. Multiplying both sides of the difference equation (4.10) by xn+k−1 · · ·xn+1

and setting un = xnxn+1 · · ·xn+k−1, we obtain that equation (4.10) can be written as
{

xn+k = h(un)xn,
un+1 = m(un) := unh(un),

=⇒
{

xn+k = h(un)xn,
un+k = g(un) := mk(un),
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where mk denotes the composition of m, k times, that is m j(u) =m(m j−1(u)). From

the expressions, and after renaming zi,n = xkn+i and vi,n = ukn+i we get k systems

of type (4.1) associated to each initial condition (xi,ui) for i = 0, . . . ,k−1.
{

zi,n+1 = h(vi,n)zi,n,
vi,n+1 = g(vi,n).

(4.11)

The result follows because each of these systems is under the hypotheses of Propo-

sition 4.1. �

Proposition 4.4. Consider the difference equation (4.10), with h a C 1 function

defined on some open set U ⊆ R. Let ua ∈ U be a hyperbolic attractor of g(u) =
uh(u). Then, for all initial condition (x0, . . . ,xk−1) such that ua 6= u0 = x0 · · ·xk−1

is in the basin of attraction of {u = ua} we have that:

(a) If h(ua) = 1, then the solution of (4.10) tends to a k-periodic orbit.

(b) If ua = 0 and h(0) =−1, then the solution {xn} tends to a 2k-periodic orbit.

In both cases, the period is not necessarily minimal.

Proof. We consider again the systems (4.11) which, under the current hypotheses,

also satisfy the ones of Proposition 4.1. Hence if h(ua) = 1, then for i = 0, . . . ,k−1

there exists ℓi depending on xi,ui, that is depending on xi,xi+1, . . . ,xi+k−1, such that

each sequence {zi,n} satisfies lim
n→∞

zi,n = ℓi. If h(0) = −1, then there exist ℓi,0 and

ℓi,1 such that lim
j→∞

zi,2 j = ℓi,0, lim
j→∞

zi,2 j+1 = ℓi,1 and (ℓi,0, ℓi,1) is a 2k-periodic orbit.

Hence the result follows. �

Example 4.5. Consider the difference equation

xn+k = xn + f

(

n+k−1

∑
i=n

xi

)

.

Adding the term ∑
n+k−1
i=n+1 xi to both sides; setting un = xn + xn+1 + · · ·+ xn+k−1, and

after renaming zi,n = xkn+i and vi,n = ukn+i we get k systems of type (4.1) associated

to each initial condition (xi,ui) for i = 0, . . . ,k−1.
{

zi,n+1 = f (vi,n)+ zin ,
vi,n+1 = g(vi,n),

where here g(v)=mk(v) with m(v)=v+ f (v). Again, under suitable hypotheses we

can apply Proposition 4.1 to each of these DDS and obtain similar results on GAS.
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