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DIFFERENCE EQUATIONS ON R
+
∗ , OF THE FORM un+2 =

f (un+1)

un +λ
,

λ > 0, WITH APPLICATIONS TO PERTURBATIONS OF DYNAMICAL

SYSTEMS

GUY BASTIEN AND MARC ROGALSKI

Dedicated to the 70th birthday of Prof. Mustafa Kulenović

ABSTRACT. There is classical difference equation on R
+
∗

un+2un = f (un+1), (1)

that is in particular applied to several symmetric special QRT-applications. We

study perturbations of this equation (1) by

un+2(un +λ) = f (un+1), λ > 0, (2)

showing general theorems of regarding permanence, convergence or divergence,

and attraction of the fixed point.

1. INTRODUCTION

We know the behaviour of solutions of (1) when they are equations associ-

ated with a symmetric dynamics QRT-system: there is a fixed point (or ”equilib-

rium”) (ℓ1, ℓ1) in (1), and if M0 := (u0,u1) 6= (ℓ1, ℓ1), the sequence un diverges, and

the orbit of the point Mn = (un,un+1) lies in the biquadratic curve with equation

Q1(x,y)−Kxy = 0 which passes through the point M0, being periodic or dense.

Moreover the quantity G(x,y) = Q1(x,y)
xy

is invariant for the map: (x,y) 7→ (X ,Y ) :=

T1(x,y) =
(

y, f (y)
x

)

: G(X ,Y ) = G(x,y).

A celebrated QRT-difference is Lyness’ equation: un+2 =
un+1+a

un
; the perturbed

equation is un+2 =
un+1+a

un+λ
, where λ > 0. This difference equation required a long

period of time to be solved by [16]: if a > 0 and u0, u1 > 0, the sequence an

converges to a limit, the fixed point. The method for proof of this theorem used

algebra computer system (see also [13]).

In [2], the question is: for an analogous QRT-difference equation with a fixed

point, it is the problem (A): are the solutions of (2), when (1) was of type symmet-

ric QRT, convergent to a limit of the fixed point for all λ > 0. This was the case

in [16], and there are some cases in [2].
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When the difference (1) is not a QRT-difference (there is no invariant map or

first integral), the problem for (2) is more mysterious. In this paper, we show

some examples of equations (2) related to equations (1) developed in [9] and its

bibliography, with even a non algebraic expression for f (there are the cases for

equations in sections 7, 9, 10, 11).

In every case we suppose that the function f is of C1 class. We suppose also that

f > 0 on ]0,+∞[, and that u0, u1 > 0, for (1) and for (2), and then that we have ∀n

un > 0. Then, we always assume the following property, except in section 12

for (1) andfor (2), thefixedpoint in(0,+∞)exists,andisunique. (1.1)

These fixed points are given by these equations

ℓ2 = f (ℓ) for (1), and ℓ(ℓ+λ) = f (ℓ) for (2). (1.2)

2. ATTRACTIVITY OF FIXED POINT FOR EQUATION (2)

Our first result regards all difference equations of type (2) when f is a C1 positive

function in ]0,+∞[ satisfying hypothesis (1.2).

Theorem 2.1. In addition to hypothesis (1.2), assume

| f ′(ℓ)|< 2ℓ+λ. (2.1)

Then the fixed point L := (ℓ,ℓ) is attractive: there exists a neighbourhood V of L

such that, if Mn0
∈V , then the sequence Mn converges to L.

Proof. The characteristic equation of differential of the map T (x,y) :=
( f (x)

y+λ
,x
)

at the fixed point is

P(t) := t2 − t
f ′(ℓ)
ℓ+λ

+
ℓ

ℓ+λ
= 0. (2.2)

Recall the classical result (for Example [10]): the roots of equation z2 − pz−q = 0

(where p, q ∈ R) lie in the open disc {z | |z| < 1} if and only if

|p|< 1−q < 2.

It is clear that P satisfies these inequalities. So the spectral radius of diff(T )(L) is

less than 1. Since f is a C1 function, the last property holds for diff(T )(x,y) when

(x,y) approaches L. So L is attractive. �

3. LOCALISATION OF THE INITIAL POINT IN ORDER TO OBTAIN A

PERMANENT SEQUENCE, AND A CONVERGENCE CONDITION.

The following result is a corollary of a Theorem 1 in [12], citing a result of [14].

Theorem 3.1. We consider the difference equation (2). Let I = [m,M]⊂ R
+
∗ be a

non empty interval in which the following properties hold:
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f is increasing onI, and

f (M)

M
−m ≤ λ ≤ f (m)

m
−M.

(3.1)

(a) Then, if Mn0
=(un0

,un0+1) belongs to I2, then ∀n≥ n0, un ∈ I, and the sequence

is permanent (see [10]: ∃α,βsuch that ∀n,0 < α ≤ un ≤ β).

(b) Moreover, if (un0
,un0+1) is also in [m,M], then the sequence converges to the

limit ℓ.

Remark 3.1. Sometime, we also add the condition (3.1): we use the first condition

of (3.1), and put the relation x 7→ g(x) := f (x)+x2

x
is decreasing on I (which gives

the second condition of (3.1)).

Proof. (a) Assume that m ≤ un, un+1 ≤ M, and condition (3.1) holds. Then

f (m)

M+λ
≤ un+2 ≤

f (M)

m+λ
,

and the inequalities m ≤ un+2 ≤ M can hold if

m ≤ f (m)

M+λ
and

f (M)

m+λ
≤ M,

(permitting an induction for n ≥ n0) or
f (M)

M
−m ≤ λ ≤ f (m)

m
−M (remark that

(3.1) gives
f (M)

M
+M ≤ f (m)

m
+m).

Then by induction if Mn0
∈ I2, we have ∀n > n0, un ∈ I. So, the interval I is

invariant. Hence the sequence is permanent.

(b) Let F(x,y) = f (x)
y+λ

. Then F is non decreasing in x and non increasing in y.

Suppose F(m,M) = M and F(M,m) = m; then we have by (3.1)

M(M+λ) = f (m)≤ f (M) = m(m+λ),

and so M = m. From Theorem 1 of [12], this result implies that the sequence

converges to the limit ℓ. �

Theorem 3.2. Suppose that the hypothesis (1.1) holds and that the sequence un is

majorised by M > 0 for n ≥ n0.

(a) If f is increasing in ]0,M] (so it has a limit f (0+) at 0) and

max
x∈[m,M]

f ′(x) < λ, where we put m = min
(

un0
,un0+1,

f (0+)

M+λ

)

, (3.2)

then the sequence un converges to ℓ.
(b) If f is decreasing on ]0,M] and if

max
x∈]0,M]

f ′(x) >−λ, (3.3)

then the sequence un converges to ℓ.
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Proof. (a) Since for n ≥ n0, we have un ∈ [m,M], and so S = lim(un) and s =
lim(un) exist. Clearly (putting m = 0 if f (0+) = 0))

f (s)

S+λ
≤ s ≤ S ≤ f (S)

s+λ
,

so f (s)−λs ≤ Ss≤ f (S)−λS, and λ(S−s)≤ f (S)− f (s). If S > s, λ ≤ f (S)− f (s)
S−s

=

f ′(c) for some c ∈ [m,M], in contradiction with condition (3.2). So S = s, and the

sequence converges.

(b) The proof is similar to the proof of assertion (a). �

4. APPLICATIONS TO THE DIFFERENCE EQUATION

un+2(un +λ) =
a+bun+1 +u2

n+1

1+un+1

, WITH a > 0, b > 0 AND b 6= a+1

We are going to apply the previous theorems to some cases. It will be essential

to ensure that the conditions of our theorem hold for some values of perturbation

parameter λ and some classes of function f .

We begin with the equation quoted in a title of this section. In the sequel we

assume that

b 6= a+1, (4.1)

otherwise the function f should simplify and the equation should become un+2 =
un+1 +a

un +λ
, whose behaviour is known (see [4], [16], [10], [8]).

By [2] this equation appears as the perturbation by λ > 0 of the equation where

λ = 0, a QRT- difference equation associated with the family of symmetric bi-

quadratic equations

xy(x+ y)+ x2 + y2 +b(x+ y)+a−Kxy = 0.

Remark 4.1. In [9], the authors quote the equation un+2un =
A+Bun+1+u2

n+1

1+Dun+1
. It is easy

to see that the corresponding perturbed equation may be rewritten as the equation

treated in the present section (let vn = Dun and µ = λD).

This equation is of type (2), with f (x) :=
a+bx+ x2

x+1
. Recall some results of [2]

for the equation in the title of section 4.

Lemma 4.1. (i) The sequence un is permanent.

(ii) The associated equation possesses a unique attractive fixed point in ]0,+∞[.
(iii) 1 ≤ b ≤ λ+1 and b ≥

(

1+ 1
λ

)

a, the sequence un converges to the fixed point.

Observe that by using Theorem 2.1 the attractive character of fixed point is easier

to prove than in [2].

The curve y= f (x) is a hyperbola, which can be written as y= a−b+1
t

+t+b−2,

putting x =−1+ t. So the following facts hold:
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(I) if b > a+1, f is increasing in [0,+∞[ ;

(II) if a ≤ b < a+1, f is increasing in [0,+∞[ ;

(III) if a > b, then if x0 =−1+
√

a−b+1, f is increasing in [x0,+∞[, decreasing

in [0,x0].

4.1. A partial result on convergence

In the following paragraph, Theorem 3.2 is used to give a result on convergence

with an initial condition, not given in [2].

Proposition 4.1. Suppose that b < a− 1 (it is the case (III)), and λ ≥ a
x0

, where

x0 =
√

1+a−b− 1. If Mn0
∈ ]0,x0]

2, then, the set of (a,b) where the sequence

converges to the positive fixed point, is not /0.

Proof. Since b < a− 1, x0 is well defined, and moreover x0 ≥ a−b
2

. By induction

we prove that ]0,x0] is stable. Assume that un and un+1 lie on this interval. Since

f is decreasing, one has un+2 ≤ f (0)
λ

= a
λ

, which is majorised by x0 if λ ≥ a
x0

. So

the induction step will hold if this inequality is true. We get f ′(x) = 1+ b−a−1
(x+1)2 .

By our hypothesis, f ′ is increasing and the condition of Theorem 3.2 can write as

f ′(x0)>−λ, or 1− |b−a−1|
(x0+1)2 >−λ, that is λ > 1+a−b

(
√

a+1−b)2 −1 = 0 which is true.

Now we see that the conditions on (a,b), b < a−1 and λ ≥ a
x0

agree. The first

one states that (a,b) is under the line b = a− 1, and the second gives by an easy

computation b ≤−a2

λ2
+
(

1− 2

λ

)

a. So, the point (a,b) must lie under the parabola

of Figure 1. These two conditions will give a non empty domain iff the positive root

of a0 = λ(λ− 2) of the corresponding polynomial is greater than 1. This implies

λ > 2, and a0 ≥ 1 gives λ ≥ 1+
√

2. Since the condition a
x0
< 1+

√
2 does not hold

when a ≥ 1, it remains that λ ≥ a
x0

. �

FIGURE 1. Parabola under line

4.2. Another particular case of convergence

We suppose now that b > a+1 (case (III)), which implies that b > 1 and b > a.

So f is increasing in [0,+∞[, then in [0,M] where M is an upper bound of the
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sequence. One has f ′(x) = 1+
b−a+1

(x+1)2
so the maximum value of f ′ in [0,M] is

f ′(0) = b−a > 1. In order to apply the Lemma 3.2, one must have

λ > b−a.
As a result we have:

Proposition 4.2. If λ > 1, a solution of difference equation

un+2(un +λ) =
a+bun+1 +u2

n+1

1+un+1

, a > 0, b > 0 (4.2)

converges to the positive fixed point when (a,b) belongs to the non empty the infi-

nite strip a+1 < b < a+λ.

It is of some interest to compare this convergence domain with the one quoted in

[2], recalled here in Lemma 4.1: the assumption of the Lemma 4.1 was λ ≥ a

b−a
,

but the (a,b) domain is bounded (see Figure 2).

FIGURE 2. Strip and other domain

5. APPLICATION TO DIFFERENCE EQUATION PERTURBED THE

QRT-DIFFERENCE WITH A CONICS, A CASE OF NEGATIVE PROBLEM A

This perturbed difference equation is

un+2(un +λ) = a−un+1 +u2
n+1, a >

1

4
, λ > 0. (5.1)

This equation is the λ> 0 perturbed equation of un+2un = a−un+1+u2
n+1, a> 1

4

(for positivity), which is of symmetric type QRT associated with the family of conic

curves with equations

x2 + y2 − (x+ y)+a−Kxy = 0,

2− 1
a
≤ K < 2 in the open set defined by

x2 + y2 − (x+ y)+a

xy
< 2 and x > 0, y > 0

(see [3]).
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Note by the Theorem 2.1 that the fixed point ℓ= a
λ+1

is attractive.

5.1. A first case of convergence

We will see in the following subsection some cases of divergence for the se-

quence quoted in the title, but we begin by a case of convergence:

Theorem 5.1. Assume that

a >
1

2
and

3

2
(
√

2a−1)≤ λ < 2a− 1

2
−
√

a

2
, (5.2)

and set [m,M] =
[

1
2
,
√

a
2

]

. Then, if (u0,u1) ∈ [m,M]2, the solution un of the differ-

ence equation (12) lies in [m,M] and converges to the fixed point ℓ= a
λ+1

, which is

an attractive point.

Proof. The function f is f (x)=a−x+x2, and the assumption | f ′(ℓ)|= |2a−λ−1|
λ+1

<

2a

λ+1
+λ is easy to check. The function x 7→ f (x) = a− 1

4
+(x−1/2)2 is increasing

in
[

1
2
,+∞

[

, and by (3.1) bis x 7→ g(x) = f (x)
x

+ x = a
x
+ 2x − 1 is decreasing in

]0,
√

a
2
] . We must choose [m,M] =

[1

2
,

√

a

2

]

, which implies a > 1
2
.

The function x 7→ f ′(x) = 2x− 1 increases, and f ′
(

√

a

2

)

= 2

√

a

2
− 1, so con-

dition (3.2) is satisfied whenever λ > 2

√

a

2
−1 =

√
2a−1.

The right hand side inequality (3.1) is λ ≤ f (m)
m

−M, that is λ ≤ 2a− 1
2
−
√

a
2

which is compatible with previous inequality if 16a2 −10a+1 > 0. But it is true if

a > 1
2
. The left hand side inequality

f (M)
M

−m ≤ λ gives
3

2
(
√

2a−1)≤ λ. So (5.2)

is true. �

5.2. A case of divergence: negative answer to the problem (A) of [2]

Our aim is to prove the following.

Theorem 5.2. We consider the difference equation

un+2 =
a−un+1 +u2

n+1

un +λ
, a >

1

4
, λ > 0, u0 > 0, u1 > 0.

Assume that a > 1 and 1+ 1√
1+ 1

λ

> a
λ+1

> 1 . There exist two numbers θ0(a,λ)> 0

and α0(a,λ)> 1 such that the sequence un diverges geometrically to +∞ if (u0,u1)
belongs to the domain

∆ := {u1 > a}∩{u0 > 0}∩{u1 > α0u0 +θ0}. (5.3)
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Remark 5.1. The inequality in this theorem is also equivalent to
(a−1)2

2a−1
< λ<

a−1, e.g. λ = 1, 2+
√

2 > a > 2.

Proof. We prove by induction the following hypothesis, searching some conditions

about α > 0, β > 0, θ > 0, even if they impose some new conditions for a and λ:

Hn(1) un+1 > a,

H−
n (2) αun +θ < un+1, (5.4)

H+
n (2) un+1 < βun.

First step:
{

Hn(1) and H+
n (2)

}

=⇒ H+
n+1(2)

The inequality un+2 <
a−un+1 +u2

n+1
un+1

β
+λ

, leads to, by denoting x := 1
un+1

un+2 < βun+1

1− x+ax2

1+βλx
. (5.5)

It suffices to show that 1−x+ax2

1+βλx
−1 < 0, i.e ax− (1+λβ)< 0, or x < 1+λβ

a
, that is

un+1 >
a

1+λβ
. But this true from Hn(1).

Second step: if a > λ+ 1,
{

Hn(1) et H−
n (2)

}

=⇒ H−
n+1(2), α >

a

a−λ−1
and

if we choose θ such that
1+λα

1− 1
α

< θ < a+ λα (it is possible by the previous

inequality).

Label this inequalities

a > λ+1, α >
a

a−λ−1
and

1+λα

1− 1
α

< θ < a+λα, (5.6)

and denote
Dα,θ :=

{

(u0,u1) |u0 > 0, u1 > a, u1 > αu0 +θ
}

. (5.7)

By majorising un by
un+1−θ

α
in the denominator of un+2, we get, as previously:

un+2 −θ >
α

x

1− x+ax2

1+(αλ−θ)x
−θ. (5.8)

So we have un+2 −θ > αun+1

1− x
(

1+ θ
α

)

+ x2
[

a− θ
α
(λα−θ)

]

1− x(θ−λα)
, and it suffices to

show that the ratio of the right hand side is greater than 1.

So we assume that θ > λα, and that the following stronger relation is satisfied

θ
(

1− 1

α

)

> 1+λα with a > λ+1. (5.9)

Then we have

1− x
(

1+ θ
α

)

+ x2
[

a− θ
α
(λα−θ)

]

1− x(θ−λα)
−1=

x
(

θ−λα−1− θ
α

)

+ x2
[

a+ θ
α
(θ−λα)

)

1− x(θ−λα)
.
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With the hypothesis of (5.9), the expression below is positive, if x < 1
θ−λα

, which

is true soon as the following hypothesis is true by Hn(1)

a > θ−λα. (5.10)

Then we see that implication
{

Hn(1) and H−
n (2)

}

=⇒ H−
n+1(2) is true as soon

as

α >
a

a−λ−1
and

1+λα

1− 1
α

< θ < a+λα. (5.11)

Third step: under the conditions of second step Hn(1) =⇒ Hn+1(1)

One has un+2 > un+1 α1−x+ax2

1−µx
, with µ := θ−λα, then since un+1 > a we have

to show α1−x+ax2

1−µx
> 1. But 1−x+ax2

1−µx
is itself greater that 1, because µ = θ−λα > 1

and x = 1
un+1

< 1
µ
, for un+1 > a > µ for Hn(1).

Forth step: conditions for (u0,u1) providing divergence

We take α and θ as small as possible, that is

α = α0 =
a

a−λ−1
> 1 and θ = θ0 =

1+λα0

1− 1
α0

=
a(a−1)

a−λ−1
, (5.12)

which yields following result

Claim If we have the inequality

a < (λ+1)
[

1+
1

√

1+ 1
λ

]

(5.13)

the function α 7→ 1+λα
1− 1

α

increases on
[

1+
√

1+ 1
λ
,+∞

[

.

Note that a < θ0, and define

∆a,λ :=
{

(u0,u1) |u1 > α0u0 +θ0, u0 > 0, u1 > a
}

. (5.14)

If we pick a point in M0 = (u0,u1) ∈ ∆a,λ, it belongs to a domain Dα,θ of (5.10)

FIGURE 3. Choose a point M0
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satisfying (5.9), by the claim (see Figure 3). If we choose β > u1

u0
, the initial condi-

tions of the induction are satisfied. So the sequence un goes to +∞ (with a growth

of geometric type).

This completes the proof of Theorem 5.2. �

Remark 5.2. In fact, the fixed point of the difference equation in this section is

always attractive (without conditions of a > 1
4

and of λ > 0), as we have said at the

top of the section.

Corollary 5.1. The answer to problem (A) is negative.

This clear, from the previous considerations.

5.3. Another case of convergence

Theorem 5.3. Assume that a
λ
< 1

2
. Then, if (u0,u1) belongs to the open square

]

a− 1
4

1
2
+λ

, 1
2

[2

, there exist m et M (depending of (u0,u1)) such that ∀n ≥ 0 we have

0 < m < un < M, and sequence un converges to ℓ.

Proof. Let M be some number satisfying
a

λ
< M <

1

2
, and assume un+1 < M <

1
2
. Since function x 7→ a− 1

4
+
(

x− 1

2

)2
is decreasing on [0, 1

2
], we have un+2 <

a

un +λ
<

a

λ
< M. So inequality ∀n un < M is proved by induction if it is true for

n = 0 and n = 1.

Moreover, let m =
a− 1

4

M+λ
. Then m < M (because M > a

λ
). It is clear that

un+2 > m if un+1 < M. So, if we assume that u0 and u1 strictly majorise m with the

conditions concerning M, the result holds.

Finally, assume that (u0,u1) belongs in the open square
]

a− 1
4

1
2
+λ

, 1
2

[2

. Then it exists

some M ∈
]

a
λ
, 1

2

[

such that
a− 1

4

M+λ
< u0, u1 < M, which implies the result.

But x 7→ f ′(x) = 2x−1 is increasing. So this function is majorised in
[

0, 1
2

]

by

f ′
(

1
2

)

= 0, and condition (3.3) holds. This shows that the sequence un converges.

6. COME BACK TO THE GENERAL EQUATION (2): A SUFFICIENT CONDITION

FOR DIVERGENCE

We return to the general equation (2), simply assuming that the function f in-

creases fast enough speedy. We have:

Theorem 6.1. We consider the difference equation un+2 =
f (un+1)

un +λ
, where we as-

sume only f (x) > 0 in ]0,+∞[. We suppose that:
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f (x) ≥ Axm for x ≥ x0 ≥ 0, with :

{m > 2 and A > 0} or {m = 2 and A > 1}. (6.1)

Let α > 1, Then, it exists a number B > x0 such that if u1 ≥ B and u1 ≥ αu0, the

sequence un verify ∀nun+1 ≥ αun, and then un diverges to +∞.

Proof. If M0 = (u0,u1) satisfies the previous hypothesis with B > x0, where B will

be further defined, we take our induction hypothesis that un+1 ≥ αun. Then the

following inequality holds:

un+2 ≥
Aum

n+1
un+1

α
+λ

.

In order that the latter is greater than αun+1, id est Aum−1
n+1 ≥ un+1 + λα, we need

to have un+1 ≥ B > x0, where this number B depending only on α, λ, m, A, x0.

We choose it to obtain un+1 ≥ B in the induction hypothesis. Then, by induction,

un+1 ≥ αun, and consequently un →+∞. �

Example 6.1. Suppose we have the difference equation un+2 =
au2

n+1 +bun+1 + c

un +λ
,

where a > 1 and b2 < 4ac. Then the hypothesis of the theorem holds with some

number A satisfying a > A > 1 and x0 ≥ 0 function of a, b, c, A. Then if α > 1 is

given for u1 ≥ αu0 and u1 ≥ B, where B depends on A, a, b, c, α,λ, the sequence

un diverges to +∞.

Problem 1. Does there exist some domain D in the first quadrant and a value

of λ > 0 such that, if M0 := (u0,u1) ∈ D, the solution un stemming from M0 of

equation in part 4

un+2(un +λ) =
a+bun+1 +u2

n+1

1+un+1

, a > 0, b > 0

diverges ?

Another example. Look at the difference equation:

un+2 =
au3

n+1 +b

un +λ
, a > 0, b > 0,

perturbed from some equation of [9]. Following Theorem 6.1, for all α > 1, for

(u0,u1) in the infinite trapezoid {u1 >B}∩{u1 ≥αu0}, the solution of the equation

coming from this point tends to +∞.

7. A NON ALGEBRAIC EXAMPLE

Now, we consider the difference equation

un+2 =
ln(1+un+1)

un +λ
, λ > 0, u0 > 0, u1 > 0. (7.1)

The fixed point (ℓ,ℓ) is the positive solution ℓ of equation

x(x+λ) = ln(1+ x), (7.2)
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It exists and is unique only if λ < 1. To see this, we look at the concavity of the

functions x 7→ x(x+λ) et x 7→ ln(1+ x) and their derivatives at 0. For λ ≥ 1, the

unique fixed point is 0.

If f (x) := ln(1+ x), one see that f increases on [0,+∞[, and that f ′(x) =
1

1+ x
,

so the attractivity condition for the fixed point is

1

1+ ℓ
< 2ℓ+λ,

that is 2ℓ2 +(λ+2)ℓ+λ−1> 0, or

ℓ > α(λ) :=

√

(λ+2)2 +8(1−λ)− (λ+2)

4
> 0. (7.3)

This relation gives

ln(1+α(λ))−α(λ)(α(λ)+λ)> 0.

Let φ(λ) be this function. It is clear that it is positive in [0,1[. But its derivative φ′

is
λ+2−

√

(λ−2)2 +8

4
, which is negative in [0,1[ because λ < 1. As φ(1) = 0,

φ(λ) is positive on [0,1[. We conclude that the fixed point exists and is unique in

]0,+∞[ and is attractive.

Now, we search some upper bound for our sequence. Let M0(λ) the positive

solution of the equation

ln(1+ x)

x
= λ,

and let Msuch that M ≥ M0(λ). We prove by induction that un ≤ M if u0, u1 ≤ M.

Assume that un, un+1 ≤ M. One has un+2 ≤
ln(1+M)

λ
which is majorised by M if

ln(1+M)

M
≤ λ, true if M ≥ M0(λ), for x 7→ ln(1+x)

x
is decreasing.

Now, assume that λ ≥ 1. It is easy to see that if every interval ]0,M] is invariant,

then the sequence is bounded. Taking into account Theorem 3.2, which is true if

the fixed point is 0, and because maxx∈[0,M] f ′(x) = 1, the sequence converges to 0

if λ > 1. So we have:

Proposition 7.1. (a) The fixed point in ]0,+∞[ of the difference equation

un+2 =
ln(1+un+1)

un +λ
, 0 < λ < 1, u0 > 0, u1 > 0

exists, is unique and attractive. If M0(λ) is the solution of
ln(1+ x)

x
= λ,

then ∀M ≥ M0(λ) the interval I :=]0,M] is invariant: if (un0
,un0+1) ∈ I2, then

∀n ≥ n0 un ∈ I.

(b) Si λ > 1, any solution of (7.2) converges to 0.
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Problem 2. If λ < 1, does there exist some m > 0 such that ∀n un ≥ m ? Does the

sequence converge ? What happens if λ = 1 ? To prove divergence or convergence

for some values (perhaps for all) of the initial point when λ ≤ 1.

8. STUDY OF DIFFERENCE EQUATION un+2(un +λ) =
a

1+un+1

We investigate some perturbations by λ > 0 of equation un+2un =
a

1+un+1

, that is

un+2(un +λ) =
a

1+un+1

, λ > 0, a > 0, u0, u1 > 0. (8.1)

We note first that the non perturbed equation (pour λ = 0) is a special symmetric

QRT- equation associated with the family of biquadractic curves:

x2y2 + xy(x+ y)+a(x+ y)−Kxy = 0,

with invariant function G(x,y)=xy+x+y+a
(1

x
+

1

y

)

. For this equation see [9], [1].

The first result is concerned with the permanent character of solutions.

Proposition 8.1. For n ≥ 4, one has

m :=
aλ2

(λ+a)(λ2 +a)
≤ un ≤

a

λ
:= M. (8.2)

Proof For n ≥ 0 we have un+2 ≤ a
λ

and the same majoration for un+3, from which

un+4 ≥
a

(1+ a
λ
)(λ+ a

λ
)
. �

Remark 8.1. In fact, we can find some invariant intervals as large as possible which

arbitrarily approach 0: ∀ε, A with 0 < ε < A < +∞, there exist m(λ) and M(λ)

verifying 0< m(λ)< ε et M(λ)>A such that the interval [m(λ),M(λ)] is invariant:

if un and un+1 belong to this interval, so does is un+2 .

FIGURE 4. Greater interval for permanent sequence

If φλ(x) := (x+ 1)(x + λ), x > 0, λ > 0, one takes, for t > 0, m(λ) =
a

t
and

M(λ) = φ−1
λ
(t), choosing t large enough, in particular greater than

(1+λ

2
+

a

λ

)2

.
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Using Figure 4, the reader can easily verify this property.

The second result asserts in fact the convergence, (in other words, the problem

(A) has a positive solution for the case of the equation (8.1)). .

Proposition 8.2. For all λ > 0, the solutions of (8.2) converge to the number ℓ,
the unique positive solution of the equation x(x+1)(x+λ) = a, and the fixed point

L = (ℓ,ℓ) is attractive.

Proof. We use Theorem 3.2(b): and must prove that, if f (x) = a
1+x

, max
x∈[m,M]

f ′(x)>

−λ, or a
(1+M)2 < λ, that is to say

a

(1+ a
λ
)2

< λ, which always holds. At last, the

Theorem 2.1 easily shows that the fixed point is attractive: the condition is (ℓ+

1)2(2ℓ+λ)−a > 0, or a
ℓ+1

ℓ
+ ℓ(ℓ+1)2 −a > 0, which is always true. �

9. ANOTHER NON ALGEBRAIC EXAMPLE: un+2 =
un+1 ln(1+un+1)

un+λ

This case is not be exactly included in this setting since the fixed point is (0,0).
Therefore, by extending the properties of subsections 1 and 2 to [0,+∞[, a lot of

results persist. As an example, one can see that the fixed point is attractive.

It is easy to prove the following result.

Lemma 9.1. Given some solution difference equation in R
∗
+

un+2 =
un+1 ln(1+un+1)

un +λ
, λ > 0, (9.1)

then there exists n0 such that un0+1 < un0
, and then the solution tends to 0 (with a

geometric or faster speed ) or the solution increases to +∞.

Corollary 9.1. For λ > 0, every solution of (32) converges to 0.

Proof. Let rn := un+1

un
. One has

rn+1

rn

=
un

un +λ
.
ln(1+un+1)

un+1

<
ln(1+un+1)

un+1

.

If un+1 →+∞, this bound goes to 0, then for large enough n
rn+1

rn

<
1

2
, and rn → 0.

So for then for large enough n the sequence un decreases. But it cannot goes to

infinity by the Lemma 9.1. Also by this lemma it tends to 0 . �

10. THE DIFFERENCE EQUATION un+2(un +λ) =
√

un+1

First, remark that if un+2 =

√
un+1

un

(case where λ = 0), then un → 1 if n →+∞

(let vn = lnun).
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Clearly, the equation ℓ(ℓ+λ) =
√
ℓ or ℓ+λ = 1√

ℓ
, has a unique root 0 < ℓ < 1,

as well as the null root 0. By Theorem 2.1 the fixed point ℓ is attractive. Moreover,

defining m(t) =
1

t2
and M(t) = t −λ, we easily see by induction, that the interval

[m(t),M(t)] is invariant if t ≥ λ+
1

λ2
. In this case, f ′(x) = 1

2
√

x
, so f ′ is majorised

in the interval [m,M] by f ′
(

m(t)
)

= t
2
< λ if 2λ > t ≥ λ+

1

λ2
(which forces λ > 1).

Proposition 10.1. If λ > 1, the solutions with (u0,u1)∈ [m(t),M(t)] :=
[ 1

t2
, t−λ

]

,

for t such that 2λ > t ≥ λ+
1

λ2
, from differences equation

un+2 =

√
un+1

un +λ
, λ > 0 (10.1)

converge to the fixed point ℓ ∈]0,1[, solution of x(x+λ) =
√

x. This point is attrac-

tive.

Remark 10.1. If t is large enough, the interval [m(t),M(t)] clearly contains u0 and

u1, and then all points un. But, it is is not sure that the condition of the Theorem 3.2

holds. So, we don’t know if the sequence converges. Furthermore, the case λ ≤ 1

is still open..

Finally we remark that ℓ≤ 1
λ2 , and that if λ ≤ 1, then ℓ > 1

4
, and if λ > 1, then

ℓ > e−λ.

11. THE EQUATION un+2(un +λ) = a+ sinun+1 IN R
∗
+, WITH CONDITIONS

a > 1 ET λ > 0

First, since x 7→ g(x) := x(x+λ)−a− sinx is strictly convex in [0,+∞[, it tends

to +∞ with x and is −a at x = 0, the fixed point ℓ exists and is unique. Moreover,

one has g′(ℓ) = 2ℓ+λ− cosℓ > 0. If λ > 1, one sees, by the mean of the tangent

line to the curve g at 0, that ℓ <
a

λ−1
. But, as g”(x) = 2+ sin x ≥ 1, we have, for

λ> 0, g(x)>−a+(λ−1)x+ x2

2
for x> 0, which gives ℓ+λ< 1+

√

(λ−1)2 +2a.

Then the following inequalities hold:

cos(ℓ)< 2ℓ+λ and ℓ+λ < 1+
√

(λ−1)2 +2a.

Finally we have:

Theorem 11.1. (a) The difference equation

un+2 =
a+ sin(un+1)

un +λ
, a > 1, λ > 0, in R

∗
+ (11.1)

has a unique fixed point ℓ satisfying cos(ℓ)< 2ℓ+λ and ℓ+λ< 1+
√

(λ−1)2+2a.



78 GUY BASTIEN AND MARC ROGALSKI

(b) If 2ℓ+λ > 1, the fixed point is attractive. Moreover, if λ > 1 and a+1
λ

≤ π
2
, then

for u0 and u1 in interval ]0, a+1
λ
], the sequence un converges to ℓ.

Proof. It remains to prove (b). The fixed point is attractive if, when f (x):= a+sinx,

the inequality |cosℓ| < 2ℓ+ λ holds, which proves the first assertion. Clearly,

un+2 ≤ a+1
λ

. If this last number is majorised by π
2
, the function f increases in the

interval [0, a+1
λ
], and f ′ is majorised by 1. So if λ > 1, we can use Theorem 3.2. �

12. PERTURBATION OF THE ‘MAY’S HOST PARASITOID EQUATION”

This equation is un+2un =
au2

n+1

1+un+1
(see [9] and [15]), where the perturbed version is

un+2(un +λ) =
au2

n+1

1+un+1

, λ > 0, a > 0, u0 > 0, u1 > 0. (12.1)

By induction, it is easy to see that, if u0 and u1 are less than λ
a
, then ∀n un ≤ λ

a
(so

λ
a

is the greatest number M such that [0,M] is stable).The fixed points are solutions

of x(x+λ)(x+1) = ax2.

Lemma 12.1. The possible fixed points are

ℓ0 = 0;

if a > (1+
√

λ)2, two numbers ℓ1 and ℓ2 with 0 < ℓ1 <
√

λ < ℓ2;

if a = (1+
√

λ)2, the number ℓ3 =
√

λ;

if a < (1+
√

λ)2, no fixed point except 0.

(12.2)

Proof. The proof is clear: we compare the slope a of the straight line from 0 to the

slope of tangent from 0 to the parabola with equation y = (x+λ)(x+1), which is

(1+
√

λ)2. This tangent touches the parabola at the point with abscissa
√

λ. �

First, we take the case where 0 is the unique fixed point.

Proposition 12.1. Suppose that a<min((1+
√

λ)2,φλ), where φ= 1+
√

5
2

is the gol-

den number. Then 0 is the unique fixed point, and every solution of (12.1) such that

u0 and u1 are in ]0, λ
a
] remains in ]0, λ

a
] and converges to 0. If moreover a ≤ λ, the

sequence converges to 0 a quadratic type, everywhere with the starting point (u0,u1).

Proof. First, if a < 1+λ+ 2
√

λ, the unique fixed point is 0. Moreover, we have

seen that the interval ]0, λ
a
] is stable. So if f (x) = ax2

x+1
, the function f is increasing,

and f ′(x) = ax x+2
(1+x)2 is also increasing. Then max

x∈]0, λ
a
]
f ′(x) = f ′

(

λ
a

)

= aλ(λ+2a)
(a+λ)2 .

From Theorem 3.2 which we used, un converges to 0 if this last number is strictly

majorised by λ, id est if a2 − aλ−λ2 < 0, or a < λ 1+
√

5
2

. Moreover, suppose that

a≤ λ. Then
un+2

un+1
= un+1

1+un+1

a
un+λ

< a
λ
≤ 1. Thus the sequence is decreasing, then

un → 0, and as one has un+2 < u2
n+1, the convergence is at least quadratic. �
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What happens, with the hypothesis of the proposition, if u0 or u1 are greater

than λ
a

? And what happens if a ≥ (1 +
√

λ)2, where there are fixed points to

0 ? The situation depends strongly on the initial point (u0,u1). For instance, if

a = (1+
√

λ)2, where it is only a fixed point not zero ℓ3 =
√

λ, it is possible that

the sequence tends to ℓ3 only than greater value; if it takes a smaller value, it seems

to 0. And if there are two fixed points not zero ℓ1 < ℓ2, it seems that the sequence

never tends to ℓ1, but it is stationary.

13. THE DIFFERENCE EQUATION un+2(un +λ) = 1+
a

un+1

First, find the fixed point.

Proposition 13.1. The positive fixed point ℓ to difference equation

un+2(un +λ) = 1+
a

un+1

, λ > 0, a > 0, (13.1)

exists and is unique, it is attractive, and we have

i f λ = a, ℓ= 1,

i f λ > a, 1 > ℓ >

√

a

λ
,

i f λ < a, 1 < ℓ <

√

a

λ
.

(13.2)

Proof. The equation of the fixed point is x2 =
x+a

x+λ
, and a comparison of the

parabola and of the hyperbola gives also the inequalities (13.2). Moreover, if

f (x) = 1+ a
x
, the condition of Theorem 2.1 is ℓ2 > a

2ℓ+λ
, which is right because

ℓ2 = ℓ+a
ℓ+λ

. �

Now it is possible to majorise a sequence un solution of (13.1), and get the

convergence of the solutions.

Theorem 13.1. Every of solution of (13.1) is majorised by M =max(u0,u1,u2,M0)
where

M0 =
(
√

a+
√

λ)2 +aλ2

λ[(
√

a+
√

λ)2 −a]
,

and one solution is then permanent.

Every solution of (13.1) converges to ℓ.

Proof. One can easily see that

un+3 =
1

un+1 +λ
+a(un +λ)g(un+1), where g(x) =

x

(x+λ)(x+a)
,

and that g is maximum at x =
√

λa, then g(x) ≤ 1

(
√

λ+
√

a)2
.
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Then, suppose u0,u1 and u2 are majorised by a number M. Then we can majorise

un+3 by M, and then use a recurrence if

1

λ
+a(λ+M)

1

(
√

λ+
√

a)2
≤ M,

so M
[

1− a

(
√

λ+
√

a)2

]

≥ 1

λ
+

aλ

(
√

λ+
√

a)2
. But one has obviously (

√
λ+

√
a)2 >

a, so we have a recurrence that ∀ n un ≤ M, the condition M ≥ M0.

As f (x) = 1+ a
x

is decreasing and f ′ is increasing, the maximum of f ′ on ]0,M]
is − a

M2 . By Theorem 3.2, if λ > a
M2 , the sequence is convergent. But we see that

condition λ > a
M2 is true ; it suffices to see condition that λ > a

M2
0

is right as λ.

Puting φ :=
√

λ+
√

a, this relation becomes

(aλ2 +φ2)2 > aλ(φ2 −a)2,

or
aλ2 +a+λ+2

√
aλ >

√
aλ(λ+2

√
aλ).

Puting t =
√

a, it is to prove that the polynomial in t

P(t) := t2(λ−1)2 + t
√

λ(2−λ)+λ

is positive on ]0,+∞[. This is clear for λ = 1 ; if not, P is of second degree, with

derivative at 0 equal to
√

λ(2− λ), then the result is right if 2 ≥ λ ; if not, the

discriminant of P is λ2(4−3λ)< 0, which proves the final result. �

14. OTHER PERTURBED DIFFERENCE EQUATION OF ONE QRT EQUATION

WITH FORM un+2un = f (un+1)

Here we study the difference equation

un+2(un +λ) =
a+bun+1 +u2

n+1

1+u2
n+1

, λ, a, b > 0. (14.1)

It is the perturbation by λ > 0 of one equation of [5], which is one QRT-equation

associated to the family of elliptic quartics of the plane with equations

x2y2 + x2 + y2 +b(x+ y)+a−Kxy = 0.

Proposition 14.1. (a) Equation (14.1) has a unique fixed point ℓ in ]0,+∞[. If

λ ≥ b+Ca, then ℓ < 1
C

. In particular, ℓ→ 0 if λ →+∞. And ℓ is majorised by its

limit when λ → 0, it is the solution of x4 = a+bx.

(b) If
1

3
≤ a ≤ 3, the fixed point ℓ is attractive.

Proof. (a) The number ℓ is the solution from equation h(x) = 0, where h(x) := x3+
λx2 +λ−

(

b+ a
x

)

. But h increases on −∞ to +∞ when x goes from 0 to +∞, which

gives existence and unicity of ℓ. One has h(1/C) = 1/C3 +λ/C2+[λ− (b+Ca)],
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then, if λ ≥ b+Ca, h(1/C) > 0, and so ℓ < 1/C. And it is easy which h increases

on λ.

(b) One has here f (x) =
a+bx+ x2

x2 +1
, and f ′(x) =

−bx2 +2x(1−a)+b

(x2 +1)2
, thus the

condition for attractivity is |bℓ2+2ℓ(a−1)−b|< (ℓ2+1)2(2ℓ+λ), and a sufficient

condition for this is

bℓ2 +2ℓ|a−1|+b < (ℓ2 +1)2(ℓ+λ) = (ℓ2 +1)
a+bℓ+ ℓ2

ℓ
.

But a sufficient condition from this inequality is 2ℓ2|a−1| ≤ ℓ4 +(a+1)ℓ2, that is

2|a−1| ≤ ℓ2 +a+1. And this last condition is clear if
1

3
≤ a ≤ 3. �

Proposition 14.2. (a) If n ≥ 2, one has 0 < m < un < M, where M = 1
λ

(

1 +
√

(a−1)2 +b2
)

and m = min(a,1)
M+λ

.

(b) If λ ≥ b, the function x 7→ f (x) := a+bx+x2

1+x2 is increasing on [m,M].

(c) If λ > b+ 1
b
[−min(a−1,0)]2, then un converges to ℓ.

Proof. We first by remark that f (x) = 1+ h(x) where the function x 7→ h(x) :=
a−1+bx

1+x2 has its derivative on [0,+∞[ which is canceled at the point

x0 =
1−a+

√
(a−1)2+b2

b
. The function has its maximum at this point, which is

√

(a− 1)2 + b2. So we have the majoration of un+2 by M.

Then one can we see that f is increasing on [0,x0] and decreasing on [x0,+∞[,
and as its maximum is at x0. One see easily that, if λ ≥ b, it is M ≤ x0. Hence the

result of (b) from this proposition.

From (c), one see previously that if λ ≥ b, then f is increasing on [m,M]. By

Theorem 3.2, it suffices to verify that max
[m,M]

f ′ < λ. But f ′ ≥ 0 on [m,M], and f ′(x)≤

−bx2 +2x(1−a)+b := N(x). Studying variations of the fonction N, one see that

if a ≥ 1, then maxN ≤ N(0) = b, thus one condition is λ > b. On the other hand,

if a ≤ 1, the maximum of N is N(1−a
b
) = b+ (1−a)2

b
. Hence one has the sufficient

condition of (c) from the proposition. �
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[9] Kalabušić S. and al., Stability analysis of a certain class of difference equations by using KAM

theory, Advances in Difference Equations, (2019).

[10] Kocic V. L. and Ladas G., Global Behaviour of Nonlinear Difference Equations of Higher

Order with Applications, Kluwer Academic Publishers, Dordrecht, Holland, (1993).

[11] Kocic V. L., Ladas G. and Rodrigues W., On the rationel recursive sequences, J. Math. Anal.

Appl. 173 (1993), p. 127-157.
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