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Dedicated to Professor Mustafa Kulenović on the occasion of his 70th birthday

ABSTRACT. In this paper, we investigate the global dynamics of the following

system of quadratic-higher order difference equations:

xn+1 = A+B
yn

y2
n−m

,yn+1 = A+B
xn

x2
n−m

where A and B are positive numbers and the initial values are positive numbers.

We first examine the existence of bounded solutions of the system. Additionally,

we study the stability analysis of the of solutions of the system. We also analyze

the rate of convergence and oscillation behavior of the solutions of the system.

1. INTRODUCTION

Over the last 20 years, the analysis of the behavior of the solutions of the system

of difference equations has attracted the attention of many researchers. This in-

terest is especially related to applications of difference equations or their systems.

Applications of difference equations (or systems) are widely used in many sciences

such as biology, ecology and economics etc. On the other hand, many mathemati-

cians have studied the different behaviors of solutions of difference equations and

systems. These are in particular boundedness, periodicity, stability, and oscillation

of solutions of difference equations or systems. There are many examples in the

literature investigating the behavior of solutions of difference equations, see [1]-

[16]. Additionally, there are many papers related to our study as follows:

In [12], Abualrub and Aloqeili discussed the global behavior of positive solu-

tions of the system of difference equations

xn+1 = A+
yn

yn−k

,yn+1 = A+
xn

xn−k

,

where A > 0 and the initial values are arbitrary positive numbers. Additionally, the

author handled the oscillatory behavior of the solutions of considered system.
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In [14], Kulenović and M. Nurkanović handled the global asymptotic behavior

of solutions of the system of difference equations

xn+1 =
a+ xn

b+ yn

,yn+1 =
d + yn

e+ xn

,

where the parameters a, b, d, and e are positive numbers and the initial conditions

x0 and y0 are arbitrary nonnegative numbers.

In [15] Kulenović, M. Nurkanović and Yakubu studied the global asymptotic be-

havior of solutions of the density-dependent discrete-time SI epidemic model with

the variables Sn and In representing the populations of susceptibles and infectives

at time n = 0,1, ..., respectively. This model is

Sn+1 = ae−βIn Sn +B, In+1 = a(1− e−βIn)Sn +bIn,

where 0 < a, b < 1, β,B > 0, S0 ≥ 0 and I0 ≥ 0.

In [13], Bao investigated the local stability and oscillation of positive solutions

of the system of difference equations

xn+1 = A+
x

p
n−1

y
p
n

,yn+1 = A+
y

p
n−1

x
p
n

,

where A > 0, p > 1 and the initial values are positive numbers.

In [6], Hadžiabdić, Kulenović and Pilav dealt with the global dynamics of the

system of difference equations

xn+1 =
b1x2

n

A1 + y2
n

,yn+1 =
a2 + c2y2

n

x2
n

,

where the parameters b1,a2,A1,c2 are positive numbers and the initial conditions

x0 is a positive number, and y0 is an arbitrary non-negative number.

In [16], Burgić, Kulenović and M. Nurkanović dealth with the global stability

properties and asymptotic behavior of solutions of the system of difference equa-

tions

xn+1 =
xn

a+ y2
n

,yn+1 =
yn

b+ x2
n

,

where the parameters a and b are positive numbers, and the initial conditions x0

and y0 are arbitrary nonnegative numbers.

In [3], Bešo, Kalabušić, Mujić, and Pilav considered the global asymptotic sta-

bility of solutions of following second order difference equation

xn+1 = γ+δ
xn

x2
n−1

,

where γ, δ are positive real numbers and the initial conditions x–1 and x0 are positive

real numbers.
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In [10], Taşdemir studied the periodicity, boundedness, semi-cycles, global asy-

mptotically stability and rate of convergence of solutions of the following higher

order difference equation

xn+1 = A+B
xn

x2
n−m

,

where A and B are positive numbers and the initial values are positive numbers.

In [11], Taşdemir dealt with the dynamical behaviors of solutions of the follow-

ing system of second order difference equations with quadratic terms

xn+1 = A+B
yn

y2
n−1

,yn+1 = A+B
xn

x2
n−1

,

where A and B are positive numbers and the initial values are positive numbers.

The author handled the boundedness, oscillation, stability, periodicity, and rate of

convergence of the solutions of the system considered.

With the above studies in mind, we consider the following system of higher

order difference equations with quadratic terms

xn+1 = A+B
yn

y2
n−m

,yn+1 = A+B
xn

x2
n−m

(1.1)

where the parameters A, B are positive numbers, and the initial conditions are pos-

itive numbers and m ∈ {2,3, · · · }. Particularly, we handle the boundedness, global

asymptotic stability, semicycles and rate of convergence of solutions of system

(1.1).

Here, we do not prefer to present detailed preliminaries as our references in-

clude many detailed information about the theory of difference equations and their

systems. Readers can reach these results from references (Please see [1, 5, 7, 8]).

We now give two theorems that play an important role for our results.

Let us consider the following system of difference equations:

En+1 = (A+B(n))En, (1.2)

where En is a k−dimensional vector, A ∈Ck×k is a constant matrix, and B : Z+ →
Ck×k is a matrix function satisfying

‖B(n)‖ → 0, (1.3)

as n → ∞, where ‖·‖ denotes any matrix norm that is associated with the vector

norm

‖(x,y)‖=
√

x2 + y2.

Theorem 1.1 (Perron’s Theorem, [9]). Assume that condition (1.3) holds. If En is

a solution of (1.2), then either En = 0 for all n → ∞, or

lim
n→∞

n
√

‖En‖,
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or

lim
n→∞

‖En+1‖
‖En‖

,

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 1.2 ( [4]). Let n ∈ N+
n0

and g(n,u,v) be a nondecreasing function in u

and v for any fixed n. Suppose that for n ≥ n0, the inequalities

yn+1 ≤ g(n,yn,yn−1)

un+1 ≥ g(n,un,un−1)

hold. Then

yn0−1 ≤ un0−1,yn0
≤ un0

implies that

yn ≤ un,n ≥ n0.

2. BOUNDEDNESS OF SYSTEM (2.1)

In this section, we handle the existence of bounded solutions of system (1.1).

Thus, we find that if p ∈ (0,1) holds, then system (2.1) has an invariant interval.

We also discover that if p ≥ 1 and m is even, then every solution of system (2.1) is

bounded from below and above.

First, we consider the following substitutions for system (1.1):

tn =
xn

A
,zn =

yn

A
.

Therefore, we have the following system of higher order difference equations,

which is easier to work with:

tn+1 = 1+ p
zn

z2
n−m

,zn+1 = 1+ p
tn

t2
n−m

,n = 0,1,2, ... (2.1)

where p = B
A2 > 0. From here, we handle the system (2.1).

The system (2.1) has a unique positive equilibrium point such that

(t̄, z̄) =

(

1+
√

1+4p

2
,

1+
√

1+4p

2

)

,

where p > 0.

Here, we determine the boundedness character of the solutions of system (2.1).

Firstly, let p > 0 and {(tn,zn)}∞
n=−m be a positive solution of system (2.1). It is

easy to see that

tn > 1, (2.2)

and

zn > 1, (2.3)

for n ≥ 1.
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Theorem 2.1. Let p ∈ (0,1). Then, every solution of system (2.1) is bounded from

below and above.

Proof. Let p ∈ (0,1) and {(tn,zn)}∞
n=−m be a positive solution of system (2.1).

From (2.2), (2.3) and system (2.1), we have

tn+1 < 1+ p+ p2tn−1,n ≥ 0. (2.4)

According to this, {un} satisfy the following

un+1 = 1+ p+ p2un−1, (2.5)

for n ≥ 1, such that

u0 = t0,u1 = t1.

Thus, we have tn ≤ un for n = 0,1, .... Hence, the solution un of the difference

equation (2.5) is

un =
1

1− p
+ pnC1 +(−p)n

C2, (2.6)

where C1 and C2 are constants to be determined. By Theorem 1.2 we have that

tn ≤ un,n > 1. (2.7)

Since u0 = t0 and u1 = t1, from (2.2), (2.3), (2.6) and (2.7) we get

1 < tn ≤
1

1− p
+ pnC1 +(−p)n

C2,

where

C1 =
1

2p

(

pt0 + t1 −
1+ p

1− p

)

,

C2 =
1

2p
(pt0 − t1 +1) .

Likewise, we have that

1 < zn ≤
1

1− p
+ pnC3 +(−p)n

C4,

where

C3 =
1

2p

(

pz0 + z1 −
1+ p

1− p

)

,

C4 =
1

2p
(pz0 − z1 +1) .

�

Remark 2.1. Note that the boundedness of the solution in Theorem 2.1 is not uni-

form for all solutions but depends on the initial conditions.
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Theorem 2.2. Let p ≥ 1 and m is even. Then every solution of system (2.1) is

bounded from above and below as follows:

1 < tn < 1+ p(1+ p)m
,

and

1 < zn < 1+ p(1+ p)m
,

for n ≥ 2m+2.

Proof. Let p ≥ 1 and {(tn,zn)}∞
n=−m be a positive solution of system (2.1). From

system (2.1), we have

tn = 1+ p
zn−1

z2
n−m−1

= 1+
p

zn−m−1

zn−1

zn−m−1

.

Assume that m is even. Then, we obtain from system (2.1)

tn = 1+
p

zn−m−1

( m
2

∏
i=1

zn−2i+1

zn−2i−1

)

. (2.8)

Moreover, we get from system (2.1)

zn−2i+1 = 1+ p
tn−2i

t2
n−m−2i

,

zn−2i+1

tn−2i

=
1

tn−2i

+
p

t2
n−m−2i

, (2.9)

and

tn−2i = 1+ p
zn−2i−1

z2
n−m−2i−1

,

tn−2i

zn−2i−1

=
1

zn−2i−1

+
p

z2
n−m−2i−1

, (2.10)

for i = 1,2, · · · , m
2

. Thus, multiplying (2.9) and (2.10), we get the following:

zn−2i+1

zn−2i−1

=

(

1

tn−2i

+
p

t2
n−m−2i

)(

1

zn−2i−1

+
p

z2
n−m−2i−1

)

. (2.11)

Additionally, we obtain from (2.2), (2.3) and (2.11)

zn−2i+1

zn−2i−1

< (1+ p)2
,

for i = 1,2, · · · , m
2

. Therefore, we have

m
2

∏
i=1

zn−2i+1

zn−2i−1

< (1+ p)m
. (2.12)
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So, we have from (2.2), (2.3), (2.8) and (2.12)

tn = 1+
p

zn−m−1

( m
2

∏
i=1

zn−2i+1

zn−2i−1

)

< 1+ p(1+ p)m
,

for n ≥ 2m+2. With similar calculations, we obtain

zn < 1+ p(1+ p)m
,

for n ≥ 2m+2. �

3. GLOBAL ASYMPTOTIC STABILITY OF SYSTEM (2.1)

Here, we overcome the stability of solutions of system (2.1).

Now, we take the following transformation:

(tn, tn−1, · · · , tn−m,zn,zn−1, · · · ,zn−m)→ ( f , f1, · · · , fm,g,g1, · · · ,gm)

where f = 1+ p zn

z2
n−m

, f1 = tn, · · · fm = tn−m−1,g= 1+ p tn
t2
n−m

,g1 = zn, · · · ,gm = zn−m−1.

Hence, we obtain the following jacobian matrix about unique positive equilibrium

point (t̄, z̄):

B(t̄, z̄) =





























0 0 · · · 0 0
p

z̄2 0 · · · 0
−2p

z̄2

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0
p

t̄2 0 · · · 0
−2p

t̄2 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0





























(2m+2)×(2m+2)

.

Theorem 3.1. The unique positive equilibrium point (t̄, z̄) of system (2.1) is locally

asymptotically stable for p <
3
4
.

Proof. The linearized system of system (2.1) about the unique positive equilibrium

point is given by XN+1 = B(t̄, z̄)XN , where

XN =



















tn
...

tn−m

zn

...

zn−m



















,
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E =



























0 0 · · · 0 0 c 0 · · · 0 −2c

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0

c 0 · · · 0 −2c 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0



























(2m+2)×(2m+2)

,

and c = p

z̄2 = p

t̄2 . Let λ1,λ2, · · · ,λ2m+2 denote the 2m+2 eigenvalues of matrix E .

Let D = diag(d1,d2, · · · ,d2m+2) be a diagonal matrix such that

d1 = dm+2 = 1,dk = dm+1+k = 1− kε,2 ≤ k ≤ m+1,

and

0 < ε <
3c−1

(m+1)(c−1)
.

Clearly, D is an invertible matrix. Computing the matrix DED−1, we get that

DED−1 =

































0 0 · · · 0 0 cd1

dm+2
0 · · · 0 −2cd1

d2m+2
d2

d1
0 · · · 0 0 0 0 · · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · dm+1

dm
0 0 0 · · · 0 0

cdm+2

d1
0 · · · 0

−2cdm+2

dm+1
0 0 · · · 0 0

0 0 · · · 0 0
dm+3

dm+2
0 · · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · 0 0 0 0 · · · d2m+2

d2m+1
0

































.

From the following inequalities

1 = d1 > d2 > · · ·> dm > dm+1 > 0,

1 = dm+2 > dm+3 > · · ·> d2m+1 > d2m+2 > 0,

which implies that

d2d−1
1 < 1,d3d−1

2 < 1, · · · ,dm+1d−1
m < 1,

dm+3d−1
m+2 < 1,dm+4d−1

m+3 < 1, · · · ,d2m+2d−1
2m+1 < 1.
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Moreover, we have that

cd1d−1
m+2 +2cd1d−1

2m+2 = c

(

1+
2

1− (m+1)ε

)

< 1,

cdm+2d−1
1 +2cdm+2d−1

m+1 = c

(

1+
2

1− (m+1)ε

)

< 1.

It is a well-known fact that E has the same eigenvalues as DED−1. Thus, we get

max
1≤k≤2m+2

|λk|=
∥

∥DED−1
∥

∥

= max















d2d−1
1 , · · · ,dm+1d−1

m ,

dm+3d−1
m+2, · · · ,d2m+2d−1

2m+1,

cd1d−1
m+2 +2cd1d−1

2m+2,

cdm+2d−1
1 +2cdm+2d−1

m+1















< 1.

So, the positive equilibrium point (t̄, z̄) of system (2.1) is locally asymptotically

stable for 0 < p <
3
4
. �

Theorem 3.2. Suppose that 0 < p <
1
2
. Then the positive equilibrium point of

system (2.1) is globally asymptotically stable.

Proof. From (2.2) and (2.3), we know that

1 ≤ l1 = liminf
n→∞

tn,

1 ≤ l2 = liminf
n→∞

zn,

1 ≤ L1 = limsup
n→∞

tn,

1 ≤ L2 = limsup
n→∞

zn.

Thus, we have the following for system (2.1)

L1 ≤ 1+ p
L2

l2
2

, l1 ≥ 1+ p
l2

L2
2

,

L2 ≤ 1+ p
L1

l2
1

, l2 ≥ 1+ p
l1

L2
1

.

Therefore, we obtain

L1 + p
l1

L1

≤ L1l2 ≤ l2 + p
L2

l2
,

L2 + p
l2

L2

≤ L2l1 ≤ l1 + p
L1

l1
.
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Hence, we get that

L1 + p
l1

L1

+L2 + p
l2

L2

≤ l2 + p
L2

l2
+ l1 + p

L1

l1
,

i.e.,

⇔ (L1 − l1)

(

1− p

(

1

l1
+

1

L1

))

+(L2 − l2)

(

1− p

(

1

l2
+

1

L2

))

≤ 0. (3.1)

From l1,L1, l2,L2 > 1, we have

1

l1
+

1

L1

≤ 2,

and
1

l2
+

1

L2

≤ 2.

Hence, we get

1− p

(

1

l1
+

1

L1

)

≥ 1−2p,

1− p

(

1

l2
+

1

L2

)

≥ 1−2p.

Meanwhile, we know that L1 ≥ l1 and L2 ≥ l2. Therefore, if 1−2p > 0, then from

(3.1) we obtain

L1 − l1 +L2− l2 ≤ 0.

So, L1 = l1 and L2 = l2. �

4. RATE OF CONVERGENCE AND OSCILLATION OF SYSTEM (2.1)

First, we handle the rate of convergence of system (2.1). Then, we investigate

the oscillatory behavior of solutions of system (2.1).

Theorem 4.1. Assume that 0< p< 1
2

and {(tn,zn)}∞
n=−m be a solution of the system

(2.1) such that lim
n→∞

tn = t̄ and lim
n→∞

zn = z̄. Then, the error vector

En =





















e1
n
...

e1
n−m

e2
n
...

e2
n−m





















=



















tn − t̄
...

tn−m − t̄

zn − z̄
...

zn−m − z̄



















,
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of every solution of system (2.1) accomplishes all of the asymptotic relations as

follows:

lim
n→∞

n
√

‖En‖= |λFJ(t̄, z̄)| ,

lim
n→∞

‖En+1‖
‖En‖

= |λFJ(t̄, z̄)| ,

where λFJ(t̄, z̄) are the characteristic roots of the Jacobian matrix FJ(t̄, z̄).

Proof. We firstly set to determine the error terms,

tn+1 − t̄ =
m

∑
i=0

Ai (tn−i − t̄)+
m

∑
i=0

Bi (zn−i − z̄) ,

zn+1 − z̄ =
m

∑
i=0

Ci (tn−i − t̄)+
m

∑
i=0

Di (zn−i − z̄) ,

and

e1
n = tn − t̄,e2

n = zn − z̄.

Hence, we obtain

e1
n+1 =

m

∑
i=0

Aie
1
n−i +

m

∑
i=0

Bie
2
n−i,

e2
n+1 =

m

∑
i=0

Cie
1
n−i +

m

∑
i=0

Die
2
n−i,

where Ai = 0 and Di = 0 for i = 0,1, · · · ,m,

B0 =
p

z2
n−m

,Bi = 0, i ∈ {1,2, · · · ,m−1} ,Bm =
−p(z̄+ zn−m)

z̄z2
n−m

,

C0 =
p

t2
n−m

,Ci = 0, i ∈ {1,2, · · · ,m−1} ,Cm =
−p(t̄ + tn−m)

t̄t2
n−m

.

Taking the limits, we have lim
n→∞

Ai = lim
n→∞

Di = 0 for i ∈ {0,1, · · · ,m} and lim
n→∞

Bi =

lim
n→∞

Ci = 0 for i ∈ {1, · · · ,m−1}. Moreover, we obtain that

lim
n→∞

B0 =
p

z̄2
, lim

n→∞
Bm =

−2p

z̄2
,

lim
n→∞

C0 =
p

t̄2
, lim

n→∞
Cm =

−2p

t̄2
.

Hence,

B0 =
p

z̄2
+an,Bm =

−2p

z̄2
+bn,

C0 =
p

t̄2
+ cn,Cm =

−2p

t̄2
+dn,



172 ERKAN TAŞDEMİR

where

an → 0,bn → 0,cn → 0,dn → 0

as n → ∞. Thus, we get the system of the form (1.2)

En+1 = (A+B(n))En,

where

A =





























0 0 · · · 0 0 p

z̄2 0 · · · 0 −2p

z̄2

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0
p

t̄2 0 · · · 0
−2p

t̄2 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0





























,

B(n) =



























0 0 · · · 0 0 an 0 · · · 0 bn

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0

cn 0 · · · 0 dn 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0



























,

and ‖B(n)‖ → 0 as n → ∞. Therefore, we can write the limiting system of error

terms about the equilibrium point (t̄, z̄) as follows:




























e1
n+1

e1
n
...

e1
n−m+1

e2
n+1

e2
n
...

e2
n−m+1





























=





























0 0 · · · 0 0
p

z̄2 0 · · · 0
−2p

z̄2

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0
p

t̄2 0 · · · 0
−2p

t̄2 0 0 · · · 0 0

0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · 1 0

























































e1
n

e1
n−1
...

e1
n−m

e2
n

e2
n−1
...

e2
n−m





























,

which is same as the linearized system of the system (2.1) about equilibrium point

(t̄, z̄). �

Now, we study the semicycles of solutions of system (2.1).
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Theorem 4.2. Suppose that {(tn,zn)}∞
n=−m is a positive solution of system (2.1)

and p > 0. Then, either {(tn,zn)}∞
n=−m the solution of system (2.1) has a single

semicycle or {(tn,zn)}∞
n=−m the solution of system (2.1) has semicycles with at most

m terms.

Proof. Let {(tn,zn)}∞
n=−m the solution of system (2.1) have at least two semicycles.

Hence, there exists N ≥ 0 such that either

tN ,zN+1 < t̄ = z̄ < tN+1,zN

or

tN+1,zN < t̄ = z̄ < tN ,zN+1.

Firstly, we assume that tN ,zN+1 < t̄ = z̄ < tN+1,zN . Moreover, we suppose that the

positive semicycle have m terms and it begins with the term (tN+1,zN+1). Thus, we

obtain the following

tN < t̄ = z̄ < tN+m,

zN+m < t̄ = z̄ < zN .

From this, we get

tN+m+1 = 1+ p
zN+m

z2
N

< t̄ = z̄,

zN+m+1 = 1+ p
tN+m

t2
N

> t̄ = z̄.

�

5. NUMERICAL EXAMPLES

Now, we present two examples that support our theoretical outcomes.

Example 5.1. With m = 3 and p = 0.49, we handle system (2.1). Therefore, we

have the following system of difference equations

tn+1 = 1+0.49
zn

z2
n−3

,zn+1 = 1+0.49
tn

t2
n−3

. (5.1)

Moreover, we take the following initial values t−3 = 6, t−2 = 1, t−1 = 0.8, t0 = 4,

z−3 = 0.4, z−2 = 5, z−1 = 3 and z0 = 10 for system (5.1). According to Theorem

2.1, system (5.1) is bounded from above and below. Moreover, the positive equi-

librium point (t̄, z̄) = (1.36,1.36) of system (5.1) is globally asymptotically stable

(see Figure 1).

Example 5.2. With m = 2 and p = 1.5, we consider system (2.1). Then, we get the

third order system of difference equations such that

tn+1 = 1+1.5
zn

z2
n−2

,zn+1 = 1+1.5
tn

t2
n−2

. (5.2)
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FIGURE 1. Plot of system (2.1) with m = 3 and p = 0.49.

Now, we handle the system (5.2) with the following initial values t−2 = 3, t−1 = 4,

t0 = 0.6, z−2 = 2, z−1 = 0.4 and z0 = 3. Hence, the positive solutions of system (5.2)

oscillate about the unique positive equilibrium point (t̄, z̄) = (1.82,1.82). Also,

according to Theorem 2.2, every solution of system (5.2) is bounded from below

and above (see Figure 2).

FIGURE 2. Plot of system (2.1) with m = 2 and p = 1.5.

6. CONCLUSIONS

In this paper, we handled the dynamics of system (2.1). First, we found the

unique positive equilibrium point of system (2.1). We also investigated the bound-

edness of solutions of system (2.1) in detail. Moreover, we dealt with the local and

global stability of system (2.1). Hence, we acquired that every solution of system

(2.1) converges to the unique positive equilibrium point when 0 < p <
1
2

holds.

In addition to this, we studied the rate of convergence and oscillation behaviors of

solutions of system (2.1). Finally, we presented three numerical examples to verify

our theoretical results.
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