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ABSTRACT. In this paper, we define Gaussian Fibonacci functions and inves-

tigate them on the set of real numbers R, i.e., functions fG : R → C such that

for all x ∈ R, n ∈ Z, fG(x+ n) = f (x+ n) + i f (x+ n− 1) where f : R → R

is a Fibonacci function which is given as f (x + 2) = f (x + 1) + f (x) for all

x ∈ R. Then the concept of Gaussian Fibonacci functions by using the con-

cept of f -even and f -odd functions is developed. Also, we present linear sum

formulas of Gaussian Fibonacci functions. Moreover, it is shown that if fG is a

Gaussian Fibonacci function with Fibonacci function f , then limx→∞
fG(x+1)

fG(x)
=

α and limx→∞
fG(x)
f (x)

= 1+(α−1) i, where α is the positive real root of equation

x2 − x−1 = 0 for which α > 1. Furthermore, matrix formulations of Fibonacci

functions and Gaussian Fibonacci functions are given. We also present linear

sum formulas and matrix formulations of Fibonacci functions which have not

been studied in the literature.

1. INTRODUCTION

A function f defined on the real numbers R is said to be a k-step Fibonacci

function if it satisfies the following relation

f (x+ k) = f (x+ k−1)+ f (x+ k−2)+ f (x+ k−3)+ ...+ f (x)

for all x ∈ R. See Sriponpaew and Sassanapitax [13], and Wolfram [18] for more

information on k-step Fibonacci functions. We can consider some special cases of

k-step Fibonacci functions.

A function f defined on the real numbers R is said to be a Fibonacci function if

it satisfies the following relation

f (x+2) = f (x+1)+ f (x)

for all x ∈ R. First and foremost, Elmore [2], Parker [8] and Spickerman [12] dis-

covered useful properties of the Fibonacci functions (a short review on Fibonacci

functions will be given in this section below). Later, many renowned researchers
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such as Fergy and Rabago [3], Han, et al. [5], Sharma [9], Sroysang [14], and

Gandhi [4], have devoted their study to the analysis of many properties of the Fi-

bonacci function.

A function f defined on the real numbers R is said to be a Tribonacci function

if it satisfies the following relatio

f (x+3) = f (x+2)+ f (x+1)+ f (x)

for all x ∈ R. Some references on Tribonacci functions are Arolkar [1], Magnani

[6], Parizi [7], Sharma [10] and Soykan, et al. [15].

A function f defined on the real numbers R is said to be a Tetranacci function if

it satisfies the following relation

f (x+4) = f (x+3)+ f (x+2)+ f (x+1)+ f (x)

for all x ∈R. See Sharma [11] for more information on Tetranacci functions.

Before giving a short review on Fibonacci functions, we recall the definition of

a Fibonacci sequence. A Fibonacci sequence {Fn}n≥0 = {Vn(F0,F1)}n≥0 is defined

by the second-order recurrence relations

Fn = Fn−1 +Fn−2,

with the initial values F0 = 0,F1 = 1.

Next, we present the first few values of the Fibonacci numbers with positive and

negative subscripts:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233

F−n .... 1 −1 2 −3 5 −8 13 −21 34 −55 89 −144 233

If we let u0 = 0,u1 = 1, then we consider the full (bilateral) Fibonacci sequence

{un}∞
n=−∞: ...,13,−8,5,−3,2,−1,1,0,1,1,2,3,5,8, ..., i.e. F−n = (−1)n+1Fn (see,

for example, Soykan [16, Corollary 3.4.]) for n > 0 and un = Fn, the nth Fibonacci

number.

A function f : R→R is said to be a Fibonacci function if it satisfies the formula

f (x+2) = f (x+1)+ f (x) (1.1)

for all x ∈R or equivalently

f (x) = f (x−1)+ f (x−2)

for all x ∈R.

Note that for a Fibonacci function f , we have

f (x+n) = Fn f (x+1)+Fn−1 f (x) (1.2)

for all x ∈R and n ∈ Z.

We next present the Binet’s formula of f .
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Lemma 1.1. [18, p.141] The Binet’s formula of a Fibonacci function f is

f (x) =
( f (1)− f (0)β)αx − ( f (1)− f (0)α)βx

√
5

.

where

α =
1+

√
5

2
and β =

1−
√

5

2
are the roots of characteristic equation

t2 − t −1 = 0

of the equation (1.1).

Next, we list some examples of Fibonacci functions.

Example 1.1.

(a): [5, Example 2.1.]
f : R→ R, f (x) = αx

is a Fibonacci function, where α is a positive root of equation t2 − t − 1 = 0

and α is greater than one and given as

α =
1+

√
5

2
.

(b): [5, Example 2.2., Example 2.4.] Let {un}∞
n=−∞ and {vn}∞

n=−∞ be full Fi-

bonacci sequences and define a function f (x) by f (x) = u⌊x⌋ + v⌊x⌋t, where

t = x−⌊x⌋ ∈ (0,1) and x ∈ R, ⌊x⌋ is the greatest integer function (floor func-

tion). Then
f (x+2) = f (x+1)+ f (x)

so f is a Fibonacci function.

If we let v⌊x⌋ := u(⌊x⌋−1) then f is a Fibonacci function.

(c): [5, Proposition 2.3] Let f be a Fibonacci function and define g(x) = f (x+ t)
for any x ∈ R, where t ∈ R. Then g is also a Fibonacci function. If f (x) =
αx which is a Fibonacci function, then g(x) = αx+t = αt f (x) is a Fibonacci

function.

We now present the concepts of f -even and f -odd functions which were defined

by Han, et al. [5] in 2012.

Definition 1.1. Suppose that a(x) is a real-valued function of a real variable such

that if a(x)h(x) = 0 and h(x) is continuous. Then we get h(x)≡ 0. The map a(x) is

called an f -even function if a(x+1) = a(x) and f -odd function if a(x+1) =−a(x)
for all x ∈ R.

We present an f -even and an f -odd function.

Example 1.2.

(a): If a(x) = x−⌊x⌋ then a(x) is an f -even function.

(b): If a(x) = sin(πx) then a(x) is an f -odd function.
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Solution.

(a): If a(x) = x−⌊x⌋, then a(x)h(x) = 0 implies h(x) ≡ 0 if x /∈ Z. By continuity

of h(x), it follows that h(n) = lim
x→n

h(x) = 0 for any integer n ∈ Z and therefore

h(x) ≡ 0. Since

a(x+1) = (x+1)−⌊x+1⌋= (x+1)− (⌊x⌋+1) = x−⌊x⌋ = a(x),

we see that a(x) is an f -even function.

(b): If a(x) = sin(πx), then a(x)h(x) ≡ 0 implies that h(x) = 0 if x 6= nπ for any

integer n ∈ Z. Since h(x) is continuous, it follows that h(nπ) = lim
x→nπ

h(x) = 0

for n ∈ Z, and therefore, h(x) ≡ 0. Since

a(x+1) = sin(πx+π) = sin(πx)cos(π) =−sin(πx) =−a(x),

we see that a(x) is an f -odd function.

The following theorem is given in [5, Theorem 3.4.].

Theorem 1.1. Assume that f (x) = a(x)g(x) is a function, where a(x) is an f -even

function and g(x) is a continuous function. Then f (x) is a Fibonacci function if

and only if g(x) is a Fibonacci function.

The following theorem shows that the limit of the quotient of a Fibonacci func-

tion exists.

Theorem 1.2. If f (x) is a Fibonacci function, then the limit of the quotient
f (x+1)

f (x)

exists ([5, Theorem 4.1.]) and lim
x→∞

f (x+1)
f (x) = α ([5, Corollary 4.2.]).

Theorem 1.3. If f (x) is a Fibonacci function, then, for 0 ≤ k,m ∈ N we have

lim
x→∞

f (x+ k)

f (x+m)
= αk−m. (1.3)

Proof. If 0 ≤ k,m ≤ 1, then (1.3) is true (Theorem 1.2). We give the proof in three

stages:

Stage I:
lim
x→∞

f (x+2)

f (x)
= α2.

Stage II: for 2 ≤ k ∈ N,
lim
x→∞

f (x+ k)

f (x)
= αk.

Stage III: for 2 ≤ k,m ∈N,

lim
x→∞

f (x+ k)

f (x+m)
= αk−m.

Proof of Stage I:

Given x ∈ R, there exist y ∈ R and n ∈ N such that x = y+ n. Then, using the

formula
f (x+n) = Fn f (x+1)+Fn−1 f (x),

we get
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f (x+2)

f (x)
=

f (y+n+2)

f (y+n)
=

Fn+2 f (y+1)+Fn+2−1 f (y)

Fn f (y+1)+Fn−1 f (y)

=

Fn+2

Fn−1

f (y+1)

f (y)
+

Fn+1

Fn−1

Fn

Fn−1

f (y+1)

f (y)
+1

.

Since

lim
x→∞

f (x+1)

f (x)
= lim

y→∞

f (y+1)

f (y)
= α

and

lim
n→∞

Fn+p

Fn+q

= αp−q, p,q ∈ Z

and

lim
x→∞

f (x+2)

f (x)
= lim

y→∞

f (y+2)

f (y)
= u (say)

we obtain

lim
x→∞

f (x+2)

f (x)
= lim

y→∞
lim
n→∞

Fn+2

Fn−1

f (y+1)+
Fn+1

Fn−1

f (y)

Fn

Fn−1

f (y+1)+ f (y)

=
α3α+α2

αα+1
= α2

and so

lim
x→∞

f (x+2)

f (x)
= α2.

This completes the proof of Stage I.

Proof of Stage II:

Given x ∈ R, there exists y ∈ R and n ∈ N such that x = y+ n. Then, by using

Stage I, we get

f (x+ k)

f (x)
=

f (y+n+ k)

f (y+n)
=

Fn+k f (y+1)+Fn+k−1 f (y)

Fn f (y+1)+Fn−1 f (y)

=
Fn+k−1

Fn−1

Fn+k

Fn+k−1

f (y+1)

f (y)
+1

Fn

Fn−1

f (y+1)

f (y)
+1

and so

lim
x→∞

f (x+ k)

f (x)
= lim

y→∞
lim
n→∞

Fn+k−1

Fn−1

Fn+k

Fn+k−1

f (y+1)

f (y)
+1

Fn

Fn−1

f (y+1)

f (y)
+1

= αk αα+1

αα+1
= αk

which completes the proof of Stage II.
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Proof of Stage III:

By using Stage II, we obtain

lim
x→∞

f (x)

f (x+m)
=

1

limx→∞
f (x+m)

f (x)

=
1

αm
= α−m.

Now, it follows that

lim
x→∞

f (x+ k)

f (x+m)
= lim

x→∞

f (x+ k)

f (x)
lim
x→∞

f (x)

f (x+m)
= αkα−m = αk−m

which completes the proof of Stage III. �

2. GAUSSIAN FIBONACCI FUNCTION

Gaussian Fibonacci numbers {GFn}n≥0 = {GFn(GF0,GF1)}n≥0 are defined by

GFn = GFn−1 +GFn−2,

with the initial conditions GF0 = i and GF1 = 1. Note that

GFn = Fn + iFn−1.

The first few values of Gaussian Fibonacci numbers with positive and negative

subscript are given in the following table.

n 0 1 2 3 4 5 6 7

GFn i 1 1+ i 2+ i 3+2i 5+3i 8+5i 13+8i

GF−n 1− i −1+2i 2−3i −3+5i 5−8i −8+13i 13−21i

The full Gaussian Fibonacci sequence, where Gun = GFn are nth Gaussian Fi-

bonacci numbers, is: . . . ,5− 8i,−3+ 5i,2− 3i,−1+ 2i,1− i, i,1,1+ i,2+ i,3+
2i,5+3i, . . . .

Definition 2.1. A Gaussian function fG on the real numbers R is said to be a

Gaussian Fibonacci function if it satisfies the formula

fG(x+n) = GFn f (x+1)+GFn−1 f (x) (2.1)

for all x ∈ R and n ∈ Z where f is a Fibonacci function.

To emphasize which Fibonacci function is used we can say that fG is a Gaussian

Fibonacci function with the Fibonacci function f .
The following theorem gives an equivalent characterization of a Gaussian Fi-

bonacci function.

Theorem 2.1. A Gaussian function fG on the real numbers R is a Gaussian Fi-

bonacci function if and only if

fG(x+n) = f (x+n)+ i f (x+n−1) (2.2)

for x ∈ R, n ∈ Z where f is a Fibonacci function.
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Proof. (:⇒) Assume that fG is a Gaussian Fibonacci function, i.e., fG satisfies

(2.1). Then

fG(x+n) = GFn f (x+1)+GFn−1 f (x)

= (Fn + iFn−1) f (x+1)+ (Fn−1 + iFn−2) f (x)

= (Fn f (x+1)+Fn−1 f (x))+ i(Fn−1 f (x+1)+Fn−2 f (x))

= f (x+n)+ i f (x+n−1)

since
GFn = Fn + iFn−1

and
f (x+n) = Fn f (x+1)+Fn−1 f (x).

(⇐:) If we suppose that (2.2) holds then we obtain

fG(x+n) = f (x+n)+ i f (x+n−1)

= (Fn f (x+1)+Fn−1 f (x))+ i(Fn−1 f (x+1)+Fn−2 f (x))

= (Fn + iFn−1) f (x+1)+ (Fn−1 + iFn−2) f (x)

= GFn f (x+1)+GFn−1 f (x). �

Remark 2.1. Using the Binet’s formula of a Fibonacci function f (see Lemma 1.1)

and (2.1) or equivalenly (2.2), the Binet’s formula of a Gaussian Fibonacci function

can be found.

Now, we present an example of a Fibonacci function.

Example 2.1. The function f : R→ R, f (x) = αx, considered in Example 1.1, is a

Fibonacci function. Then

fG(x+n) = f (x+n)+ i f (x+n−1) = αx+n + iαx+n−1 = (1+ iα−1)αx+n

is a Gaussian Fibonacci function.

The following example shows that using the floor function, a Fibonacci function

and a Gaussian Fibonacci function can be obtained.

Example 2.2. Let {Gun}∞
n=−∞ and {Gvn}∞

n=−∞, be full (bilateral) Gaussian Fi-

bonacci sequences. We define a function fG by fG(x+n) = Gu⌊x⌋+n +Gv⌊x⌋+nt =
Gu⌊x+n⌋+Gv⌊x+n⌋t and f (x) = u⌊x⌋+ v⌊x⌋t, where t = x−⌊x⌋ ∈ (0,1) and x ∈ R.

Then, f is a Fibonacci function and fG is a Gaussian Fibonacci function.

Solution.

Since
f (x) = u⌊x⌋+ v⌊x⌋t

f (x+1) = u⌊x+1⌋+ v⌊x+1⌋t = u⌊x⌋+1 + v⌊x⌋+1t

f (x+2) = u⌊x+2⌋+ v⌊x+2⌋t = u⌊x⌋+2 + v⌊x⌋+2t

and
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f (x+1)+ f (x) = (u⌊x⌋+1 + v⌊x⌋+1t)+ (u⌊x⌋+ v⌊x⌋t)

= (u⌊x⌋+1 +u⌊x⌋)+ (v⌊x⌋+1 + v⌊x⌋)t

= u⌊x⌋+2 + v⌊x⌋+2t = u⌊x+2⌋+ v⌊x+2⌋t

= f (x+2)

f is a Fibonacci function and since

Gu⌊x⌋+n = u⌊x⌋+n + iu⌊x⌋+n−1,

Gv⌊x⌋+n = v⌊x⌋+n + iv⌊x⌋+n−1,

we get

fG(x+n) = Gu⌊x⌋+n +Gv⌊x⌋+nt

= (u⌊x⌋+n + iu⌊x⌋+n−1)+ (v⌊x⌋+n + iv⌊x⌋+n−1)t

= (u⌊x⌋+n + v⌊x⌋+nt)+ (u⌊x⌋+n−1 + v⌊x⌋+n−1t)i

= f (x+n)+ i f (x+n−1).

Therefore, fG is a Gaussian Fibonacci function.

Lemma 2.1. Let fG be a Gaussian Fibonacci function, i.e., fG(x + n) = f (x +
n)+ i f (x+ n− 1) for x ∈ R , n ∈ Z where f is a Fibonacci function. We define

gG(x+ n) = fG(x+ t + n) and g(x) = f (x+ t) for any x ∈ R where t ∈ R. Then g

is a Fibonacci function and gG is a Gaussian Fibonacci function.

Proof. Let x ∈ R. Since fG is a Gaussian Fibonacci function and f is a Fibonacci

function, it follows that

g(x+2) = f (x+2+ t) = f (x+ t +2)

= f (x+ t +1)+ f (x+ t)

= g(x+1)+g(x)

which shows that g is a Fibonacci function and

gG(x+n) = fG(x+ t +n)

= f (x+ t +n)+ i f (x+ t +n−1)

= g(x+n)+ ig(x+n−1)

which shows that gG is a Gaussian Fibonacci function. �

Lemma 2.2. Let {un} and {Gun} be the full Fibonacci and Gaussian Fibonacci

sequences, respectively. Then

Gu⌊x⌋+n = GFnu⌊x⌋+1 +GFn−1u⌊x⌋,

Gu⌊x⌋+n−1 = GFnu⌊x⌋+GFn−1u⌊x⌋−1.
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Proof. The functions fG(x+n) = Gu⌊x⌋+n+Gv⌊x⌋+nt and f (x) = u⌊x⌋+v⌊x⌋t where

t=x−⌊x⌋∈(0,1) and x∈R, considered in Example 2.2, are Gaussian Fibonacci and

Fibonacci functions, respectively. So, if we let v⌊x⌋ = u⌊x⌋−1 ,Gv⌊x⌋+n = Gu⌊x⌋+n−1,

then f (x) and fG(x) are Fibonacci function and Gaussian Fibonacci function, re-

spectively. Note that

f (x) = u⌊x⌋+ v⌊x⌋t = u⌊x⌋+u⌊x⌋−1t

f (x+1) = u⌊x+1⌋+ v⌊x+1⌋t = u⌊x⌋+1 + v⌊x⌋+1t = u⌊x⌋+1 +u⌊x⌋t.

Then we obtain

Gu⌊x⌋+n +Gu⌊x⌋+n−1t = Gu⌊x⌋+n +Gv⌊x⌋+nt = fG(x+n)

= GFn f (x+1)+GFn−1 f (x)

= GFn(u⌊x⌋+1 +u⌊x⌋t)+GFn−1(u⌊x⌋+u⌊x⌋−1t)

= GFnu⌊x⌋+1 +GFnu⌊x⌋t +GFn−1u⌊x⌋+GFn−1u⌊x⌋−1t

= GFnu⌊x⌋+1 +GFn−1u⌊x⌋+GFnu⌊x⌋t +GFn−1u⌊x⌋−1t

= GFnu⌊x⌋+1 +GFn−1u⌊x⌋+(GFnu⌊x⌋+GFn−1u⌊x⌋−1)t.

This completes the proof. �

By taking {un}= {Fn} in the last theorem, we have the following corollary.

Corollary 2.1. For x ∈R, we have the following formulas:

GF⌊x⌋+n = GFnF⌊x⌋+1 +GFn−1F⌊x⌋,

GF⌊x⌋+n−1 = GFnF⌊x⌋+GFn−1F⌊x⌋−1.

By taking ⌊x⌋ = m ∈ Z in the last corollary, we see that for all integers m,n we

have

GFm+n = GFnFm+1 +GFn−1Fm,

GFm+n−1 = GFnFm +GFn−1Fm−1.

Theorem 2.2. Let fG(x) = a(x)gG(x) be a function, g(x) and f (x) = a(x)g(x) be

Fibonacci functions, where a(x) is an f -even function, and suppose that gG(x) and

g(x) are continuous functions. Then fG(x) is a Gaussian Fibonacci function with

Fibonacci function f (x) if and only if gG(x) is a Gaussian Fibonacci function with

Fibonacci function g(x).

Proof. By definition of the function fG and since a(x) is an f -even function, we

have

fG(x+n) = a(x+n)gG(x+n) = a(x)gG(x+n). (2.3)

Suppose that fG is a Gaussian Fibonacci function. Then, since a(x) is an f -even

function, we obtain
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fG(x+n) = f (x+n)+ i f (x+n−1)

= a(x+n)g(x+n)+ ia(x+n−1)g(x+n−1)

= a(x)g(x+n)+ ia(x)g(x+n−1)

= a(x)(g(x+n)+ ig(x+n−1)). (2.4)

From the equations (2.3) and (2.4), we get

a(x)(gG(x+n)−g(x+n)− ig(x+n−1))≡ 0

and so
gG(x+n)−g(x+n)− ig(x+n−1)≡ 0

i.e.,
gG(x+n) = g(x+n)+ ig(x+n−1).

Therefore, gG is a Gaussian Fibonacci function.

On the other hand, if gG is a Gaussian Fibonacci function, then

gG(x+n) = g(x+n)+ ig(x+n−1). (2.5)

Since f (x) = a(x)g(x) and a(x) is an f -even function, we obtain

f (x+n) = a(x+n)g(x+n) = a(x)g(x+n),

f (x+n−1) = a(x+n−1)g(x+n−1) = a(x)g(x+n−1).

Then, since fG(x) = a(x)gG(x) and a(x) is an f -even function, the equation (2.5)

implies that

fG(x+n) = a(x+n)gG(x+n) = a(x)gG(x+n)

= a(x)(g(x+n)+ ig(x+n−1))

= a(x)g(x+n)+ ia(x)g(x+n−1)

= f (x+n)+ i f (x+n−1).

Hence, fG is a Gaussian Fibonacci function. �

3. SUMS OF FIBONACCI AND GAUSSIAN FIBONACCI FUNCTIONS

In this section, we discuss the sums of the terms of a Fibonacci function and a

Gaussian Fibonacci function. The following corollary gives linear sum formulas

of Fibonacci numbers.

Corollary 3.1. For n ≥ 0, Fibonacci numbers have the following property:

n

∑
k=0

Fk = Fn+2 −1.

Proof. For a proof see, for example, Soykan [17, Corollary 2.2 (a)]. �

The following theorem gives linear sum formulas of Fibonacci functions.
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Theorem 3.1. Suppose that f is a Fibonacci function. Then for all x ∈ R and

n ≥ 0, the following sum formula holds:
n

∑
k=0

f (x+ k) = f (x+n+2)− f (x+1).

Proof. We use corollary 3.1. Since
n

∑
k=0

Fk−1 = Fn+1

and
f (x+n) = Fn f (x+1)+Fn−1 f (x),

we obtain
n

∑
k=0

f (x+ k) = f (x+1)
n

∑
k=0

Fk + f (x)
n

∑
k=0

Fk−1

= f (x+1)(Fn+2 −1)+ f (x)Fn+1

= (Fn+2 f (x+1)+Fn+1 f (x))− f (x+1)

= f (x+n+2)− f (x+1). �

Note that if we consider the Fibonacci function

f (x) = αx

then, using Theorem 3.1, we have the sum formula
n

∑
k=0

αx+k = αx+n+2 −αx+1

for all x ∈R and n ≥ 0.

The following corollary gives linear sum formulas of Gaussian Fibonacci num-

bers.

Corollary 3.2. For n ≥ 0 we have the following formula:
n

∑
k=0

GFk = GFn+2 −1.

Proof. It is given in Soykan [17, Corollary 4.2 (a)]. �

The following theorem gives linear sum formulas of Gaussian Fibonacci func-

tions.

Theorem 3.2. Suppose that fG is a Gaussian Fibonacci function with Fibonacci

function f . Then for all x ∈ R and n ≥ 0 the following sum formula holds:
n

∑
k=0

fG(x+ k) = fG(x+n+2)− f (x+1)− i f (x).
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Proof. We use corollary 3.2. Since
n

∑
k=0

GTk = GFn+2 −1

n

∑
k=0

GTk−1 = GFn+1 − i

and
fG(x+n) = GFn f (x+1)+GFn−1 f (x),

we get
n

∑
k=0

fG(x+ k) = f (x+1)
n

∑
k=0

GFk + f (x)
n

∑
k=0

GFk−1

= f (x+1)(GFn+2 −1)+ f (x)(GFn+1 − i)

= (GFn+2 f (x+1)+GFn+1 f (x))− f (x+1)− i f (x)

= fG(x+n+2)− f (x+1)− i f (x). �

Note that if we consider the Fibonacci function

f (x) = αx

and the Gaussian Fibonacci function

fG(x+n) = (1+ iα−1)αx+n

then, using Theorem 3.2, we have the sum formula
n

∑
k=0

(1+ iα−1)αx+k = (1+ iα−1)αx+n+2 −αx+1 − iαx

for all x ∈R and n ≥ 0.

4. RATIO OF GAUSSIAN FIBONACCI FUNCTIONS

In this section, we discuss the limit of the quotient of a Gaussian Fibonacci

function. Note that since

lim
n→∞

Fn+p

Fn+q

= αp−q, p,q ∈ Z

we have

lim
n→∞

GFn+p

GFn+q

= lim
n→∞

Fn+p + iFn+p−1

Fn+q + iFn+q−1

= lim
n→∞

Fn+p

Fn+q

+ i
Fn+p−1

Fn+q

Fn+q

Fn+q

+ i
Fn+q−1

Fn+q

=
αp−q + iαp−1−q

1+ iα−1

and

lim
n→∞

GFn+p

Fn+q

= lim
n→∞

Fn+p + iFn+p−1

Fn+q

= lim
n→∞

Fn+p

Fn+q

+ i lim
n→∞

Fn+p−1

Fn+q

= αp−q + iαp−1−q.
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Theorem 4.1. If fG is a Gaussian Fibonacci function, then the limit of quotient

fG(x+ k)

fG(x+m)
exists and is given by

lim
x→∞

fG(x+ k)

fG(x+m)
= αk−m

for all k,m ∈ Z.

Proof. Suppose that fG is a Gaussian Fibonacci function with Fibonacci function f .

Note that from Theorem 1.2, the limit of quotients
f (x+1)

f (x) exists and lim
x→∞

f (x+1)
f (x) =α.

We use the formula, by definition,

fG(x+n) = GFn f (x+1)+GFn−1 f (x).

Given x ∈R, there exists y ∈ R and n ∈N such that x = y+n. Then

lim
x→∞

fG(x+ k)

fG(x+m)
= lim

y→∞
lim
n→∞

fG(y+n+ k)

fG(y+n+m)
= lim

x→∞
lim
n→∞

fG(x+n+ k)

fG(x+n+m)

= lim
x→∞

lim
n→∞

GFn+k f (x+1)+GFn+k−1 f (x)

GFn+m f (x+1)+GFn+m−1 f (x)

= lim
x→∞

lim
n→∞

GFn+k

GFn+m−1

f (x+1)

f (x)
+

GFn+k−1

GFn+m−1

GFn+m

GFn+m−1

f (x+1)

f (x)
+1

.

Since

lim
n→∞

Fn+p

Fn+q

= αp−q, p,q ∈ Z,

lim
n→∞

GFn+p

GFn+q

=
αp−q + iαp−1−q

1+ iα−1
, p,q ∈ Z,

lim
x→∞

f (x+1)

f (x)
= α,

it follows that

lim
x→∞

fG(x+ k)

fG(x+m)
= αk−m. �

Note that if we consider the Fibonacci function

f (x) = αx

and the Gaussian Fibonacci function

fG(x+n) = (1+ iα−1)αx+n

then, we see that

lim
x→∞

fG(x+ k)

fG(x+m)
= lim

x→∞

(1+ iα−1)αx+k

(1+ iα−1)αx+m
= lim

x→∞

1

αm+x
αk+x = αk−m.
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Also, it follows from Theorem 4.1, that

lim
x→∞

fG(x+ k)

fG(x+m)
= αk−m.

Corollary 4.1. If fG is a Gaussian Fibonacci function, then

lim
x→∞

fG(x+1)

fG(x)
= α.

Proof. Take k = 1,m = 0 in Theorem 4.1. �

Theorem 4.2. If fG is a Gaussian Fibonacci function with Fibonacci function f ,

then the limit of quotient
fG(x+ k)

f (x)
exists and is given by

lim
x→∞

fG(x+ k)

f (x)
= αGFk +GFk−1

for all k ∈ Z.

Proof. Suppose that fG is a Gaussian Fibonacci function with Fibonacci function f .

Note that from Theorem 1.2, the limit of quotients
f (x+1)

f (x) exists. Using the formula,

by definition,
fG(x+n) = GFn f (x+1)+GFn−1 f (x).

we get

lim
x→∞

fG(x+ k)

f (x)
= lim

x→∞

GFk f (x+1)+GFk−1 f (x)

f (x)

= lim
x→∞

GFk

f (x+1)

f (x)
+GFk−1.

Hence, since the limit of quotient
f (x+1)

f (x) exists, limx→∞
fG(x+k)

f (x) exists and

lim
x→∞

fG(x+ k)

f (x)
= αGFk +GFk−1. �

Note that if we consider the Fibonacci function

f (x) = αx

and the Gaussian Fibonacci function

fG(x+n) = (1+ iα−1)αx+n

then, we see that

lim
x→∞

fG(x+ k)

f (x)
= lim

x→∞

(1+ iα−1)αx+k

αx
= lim

x→∞
(1+ iα−1)αk

= (1+ iα−1)αk. (4.1)
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Also, from Theorem 4.2, we know that

lim
x→∞

fG(x+ k)

f (x)
= αGFk +GFk−1. (4.2)

Therefore, comparing (4.1) and (4.2), we obtain

αGFk +GFk−1 = (1+ iα−1)αk

for k ∈ Z.

Corollary 4.2. If fG is a Gaussian Fibonacci function with Fibonacci function f ,

then

lim
x→∞

fG(x)

f (x)
= 1+(α−1) i,

lim
x→∞

fG(x+1)

f (x)
= α+ i,

lim
x→∞

fG(x+2)

f (x)
= α+1+αi.

Proof. Take k = 0,1,2 in Theorem 4.2, respectively. �

We can generalize Theorem 4.2 as follows.

Theorem 4.3. If fG is a Gaussian Fibonacci function with Fibonacci function f ,

then the limit of the quotient
fG(x+ k)

f (x+m)
exists and is given by

lim
x→∞

fG(x+ k)

f (x+m)
= (α+ i)αk−m−1

for all k,m ∈ Z.

Proof. Suppose that fG is a Gaussian Fibonacci function with Fibonacci function f .

Note that from Theorem 1.2, the limit of quotient
f (x+1)

f (x) exists and lim
x→∞

f (x+1)
f (x) = α.

Given x∈R, there exists y∈R and n∈N such that x= y+n. By using the formulas

fG(x+n) = GFn f (x+1)+GFn−1 f (x)

and

f (x+n) = Fn f (x+1)+Fn−1 f (x)

we get
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lim
x→∞

fG(x+ k)

f (x+m)
= lim

y→∞
lim
n→∞

fG(y+n+ k)

f (y+n+m)
= lim

x→∞
lim
n→∞

fG(x+n+ k)

f (x+n+m)

= lim
x→∞

lim
n→∞

GFn+k

f (x+1)

f (x)
+GFn+k−1

Fn+m

f (x+1)

f (x)
+Fn+m−1

= lim
x→∞

lim
n→∞

GFn+k

Fn+m−1

f (x+1)

f (x)
+

GFn+k−1

Fn+m−1

Fn+m

Fn+m−1

f (x+1)

f (x)
+1

.

Since

lim
n→∞

Fn+p

Fn+q

= αp−q, p,q ∈ Z,

lim
n→∞

GFn+p

Fn+q

= lim
n→∞

Fn+p

Fn+q

+ i
Fn+p−1

Fn+q

= αp−q + iαp−1−q, p,q ∈ Z,

lim
x→∞

f (x+1)

f (x)
= α,

it follows that

lim
x→∞

fG(x+ k)

f (x+m)
= (α+ i)αk−m−1. �

5. MATRIX FORMULATION OF f (x) AND fG(x+n)

The matrix method is a very useful method in order to obtain some identities for

special sequences. We define the square matrix M of order 2 as:

M =

(

1 1

1 0

)

such that detM =−1. Note that for all n ∈ Z, we have

Mn =

(

1 1

1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

.

Matrix formulation of Fn can be given as
(

Fn+1

Fn

)

=

(

1 1

1 0

)n(
F1

F0

)

.

Consider the matrices NF ,EF defined by as follows:

NF =

(

1+ i 1

1 i

)

,

EF =

(

GFn+2 GFn+1

GFn+1 GFn

)

.
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The following theorem presents the relations between Mn,NF and EF .

Theorem 5.1. For all n ∈ Z, we have

MnNF = EF .

Proof. It can be proved by mathematical induction. �

Define

A f =

(

f (x+2) f (x+1)
f (x+1) f (x)

)

,

B f =

(

f (x+n+2) f (x+n+1)
f (x+n+1) f (x+n)

)

.

Theorem 5.2. For all integers n ∈ Z and x ∈ R, we have

MnA f = B f . (5.1)

Proof. By using
f (x+n) = Fn f (x+1)+Fn−1 f (x)

and
f (x+2) = f (x+1)+ f (x),

the case n ≥ 0 can be proved by mathematical induction. Then for the case n ≤ 0,
we take m = −n in (5.1) and then the case m ≥ 0 can be proved by mathematical

induction, as well. �

Note that if we consider the Fibonacci function

f (x) = αx

then, we see that

A f =

(

αx+2 αx+1

αx+1 αx

)

,B f =

(

αx+n+2 αx+n+1

αx+n+1 αx+n

)

and (

1 1

1 0

)n(
αx+2 αx+1

αx+1 αx

)

=

(

αx+n+2 αx+n+1

αx+n+1 αx+n

)

for all n ∈ Z and x ∈ R.

Define
DGF =

(

GFn+1 GFn

GFn GFn−1

)

and

C fG
=

(

fG(x+n+2) fG(x+n)
fG(x+n+1) fG(x+n−1)

)

.

Theorem 5.3. For all integers n ∈ Z and x ∈ R, we have

DGFA f =C fG
(5.2)

Proof. By using
fG(x+n) = GFn f (x+1)+GFn−1 f (x).

and
f (x+2) = f (x+1)+ f (x),

the case n ≥ 0 can be proved by mathematical induction. Then for the case n ≤ 0,
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we take m = −n in (5.2) and then the case m ≥ 0 can be proved by mathematical

induction, as well. �

Note that if we consider the Fibonacci function

f (x) = αx

and the Gaussian Fibonacci function

fG(x+n) = (1+ iα−1)αx+n

then, we see that

A f =

(

αx+2 αx

αx+1 αx−1

)

,

DGF =

(

GFn+1 GFn

GFn GFn−1

)

and

C fG
=

(

(1+ iα−1)αx+n+2 (1+ iα−1)αx+n

(1+ iα−1)αx+n+1 (1+ iα−1)αx+n−1

)

,

and so
(

GFn+1 GFn

GFn GFn−1

)(

αx+2 αx

αx+1 αx−1

)

=

(

(1+ iα−1)αx+n+2 (1+ iα−1)αx+n

(1+ iα−1)αx+n+1 (1+ iα−1)αx+n−1

)

.
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