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ABSTRACT. In this paper, we define Gaussian Fibonacci functions and inves-
tigate them on the set of real numbers R, i.e., functions f; : R — C such that
forallx e R, n € Z, fo(x+n) = f(x+n)+if(x+n—1) where f : R - R
is a Fibonacci function which is given as f(x+2) = f(x+ 1) + f(x) for all
x € R. Then the concept of Gaussian Fibonacci functions by using the con-
cept of f-even and f-odd functions is developed. Also, we present linear sum
formulas of Gaussian Fibonacci functions. Moreover, it is shown that if f is a

Gaussian Fibonacci function with Fibonacci function f, then limy_eo J Gf(;a)l) =
o and limy e J;?((xx)) =1+ (a.— 1), where o is the positive real root of equation

X2 —x—1=0 for which ot > 1. Furthermore, matrix formulations of Fibonacci

functions and Gaussian Fibonacci functions are given. We also present linear
sum formulas and matrix formulations of Fibonacci functions which have not
been studied in the literature.

1. INTRODUCTION

A function f defined on the real numbers R is said to be a k-step Fibonacci
function if it satisfies the following relation

fla+k)=flxd+k—1)+ fx+k—2)+ flx+k—3)+ ...+ f(x)

for all x € R. See Sriponpaew and Sassanapitax [13], and Wolfram [18] for more
information on k-step Fibonacci functions. We can consider some special cases of
k-step Fibonacci functions.

A function f defined on the real numbers R is said to be a Fibonacci function if
it satisfies the following relation

fx+2)=flx+1)+f(x)
for all x € R. First and foremost, Elmore [2], Parker [8] and Spickerman [12] dis-

covered useful properties of the Fibonacci functions (a short review on Fibonacci
functions will be given in this section below). Later, many renowned researchers
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such as Fergy and Rabago [3], Han, et al. [5], Sharma [9], Sroysang [14], and
Gandhi [4], have devoted their study to the analysis of many properties of the Fi-
bonacci function.

A function f defined on the real numbers R is said to be a Tribonacci function
if it satisfies the following relatio

fx4+3)=f(x+2)+ f(x+ 1)+ f(x)

for all x € R. Some references on Tribonacci functions are Arolkar [1], Magnani
[6], Parizi [7], Sharma [10] and Soykan, et al. [15].

A function f defined on the real numbers R is said to be a Tetranacci function if
it satisfies the following relation

Fx+4)=f(x+3)+ f(x+2)+ f(x+ 1)+ f(x)

for all x € R. See Sharma [11] for more information on Tetranacci functions.

Before giving a short review on Fibonacci functions, we recall the definition of
a Fibonacci sequence. A Fibonacci sequence {F, },>0 = {V,,(Fo,F1) }»>0 is defined
by the second-order recurrence relations

Fn:anl“‘anZ»

with the initial values Fy = 0,F; = 1.

Next, we present the first few values of the Fibonacci numbers with positive and
negative subscripts:

n O 1 2 3 4 5 6 7 8 9 10 11 12 13

FLb 0 1 1 2 3 5 8 13 21 34 55 89 144 233

F, .. 1 -1 2 -3 5 -8 13 —-21 34 -55 89 —144 233

If we let up = 0,u; = 1, then we consider the full (bilateral) Fibonacci sequence
{u ¥ o0 ..,13,-8,5,-3,2,—1,1,0,1,1,2,3,5,8, ..., i.e. F_, = (—1)""'F, (see,
for example, Soykan [16, Corollary 3.4.]) for n > 0 and u,, = F,,, the nth Fibonacci
number.

A function f: R — R is said to be a Fibonacci function if it satisfies the formula

fx+2)=fx+1)+ f(x) (1.1)

for all x € R or equivalently

fO) =fa=1)+f(x-2)

for all x € R.
Note that for a Fibonacci function f, we have

flxtn) =Ff(x+1)+ F1f(x) (1.2)

forallxeRandn e Z.
We next present the Binet’s formula of f.
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Lemma 1.1. /I8, p.141] The Binet’s formula of a Fibonacci function f is

Flx) = (f(1) = fOB)o* — (f(1) = F(0))B*
7 :

where

1+/5 1-vV5
3 and B = 7

are the roots of characteristic equation

?—t—1=0

of the equation (1.1).

Next, we list some examples of Fibonacci functions.

Example 1.1.

(a):

(b):

(c):

[5, Example 2.1.]

fFR=R fx)=a
is a Fibonacci function, where o is a positive root of equation t> —t —1 =0
and ol is greater than one and given as

1+V5

5
[5, Example 2.2., Example 2.4.] Let {u,};__., and {v,}ir__., be full Fi-
bonacci sequences and define a function f(x) by f(x) = u|y| +v|,jt, where
t=x—|x| €(0,1) and x € R, | x| is the greatest integer function (floor func-

tion). Then

fx+2) =flx+ 1)+ f(x)
so f is a Fibonacci function.
If welet v\ :=u(|x|—1) then f is a Fibonacci function.
[5, Proposition 2.3] Let f be a Fibonacci function and define g(x) = f(x+1)
for any x € R, where t € R. Then g is also a Fibonacci function. If f(x) =
o which is a Fibonacci function, then g(x) = o' = o f(x) is a Fibonacci
Sfunction.

—oo

We now present the concepts of f-even and f-odd functions which were defined
by Han, et al. [5] in 2012.
Definition 1.1. Suppose that a(x) is a real-valued function of a real variable such
that if a(x)h(x) = 0 and h(x) is continuous. Then we get h(x) = 0. The map a(x) is
called an f-even function if a(x+ 1) = a(x) and f-odd function if a(x+1) = —a(x)
forall x € R.

We present an f-even and an f-odd function.

Example 1.2.

(a):
(b):

If a(x) = x — |x| then a(x) is an f-even function.
If a(x) = sin(mx) then a(x) is an f-odd function.
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Solution.

(@): If a(x) = x — [x], then a(x)h(x) = 0 implies A(x) = 0 if x ¢ Z. By continuity
of h(x), it follows that i(n) = )lcl_r)rrll h(x) = 0 for any integer n € Z and therefore
h(x) = 0. Since

aix+1)=x+1)—[x+1]=x+1)— (x| +1)=x—|x] =a(x),
we see that a(x) is an f-even function.

(b): If a(x) = sin(mx), then a(x)h(x) = 0 implies that i(x) = 0 if x # nn for any
integer n € Z. Since h(x) is continuous, it follows that A(nm) = xlirﬁlnh(x) =0
for n € Z, and therefore, h(x) = 0. Since

a(x+1) = sin(nx+ 1) = sin(nx) cos(n) = —sin(mx) = —a(x),
we see that a(x) is an f-odd function.
The following theorem is given in [5, Theorem 3.4.].
Theorem 1.1. Assume that f(x) = a(x)g(x) is a function, where a(x) is an f-even

function and g(x) is a continuous function. Then f(x) is a Fibonacci function if
and only if g(x) is a Fibonacci function.

The following theorem shows that the limit of the quotient of a Fibonacci func-
tion exists.

Theorem 1.2. If f(x) is a Fibonacci function, then the limit of the quotient ! gf(i)l)
exists ([5, Theorem 4.1.]) and lim f gf&')l) = ([5, Corollary 4.2.]).
X—yoo
Theorem 1.3. If f(x) is a Fibonacci function, then, for 0 < k,m € N we have
k
SOHD o, (1.3)
x—es f(x+m)

Proof. If 0 < k,m < 1, then (1.3) is true (Theorem 1.2). We give the proof in three
stages:

Stage I: - flx+2) 2
e
Stage II: for 2 < k € N, Fx+k)
— ok
RO
Stage III: for 2 < k,m € N,
tim LK pem
x= flxtm)

Proof of Stage I:
Given x € R, there exist y € R and n € N such that x = y+ n. Then, using the
formula
f(x+n) = an(x+ 1) +Fn71f(x)a

we get
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f+2)  fO+n+2)  FuafOG+D+Foa /i)
fx) f(y+n) Ff(y+1)+Ff(y)
Foo fy+1) | Fan
_Fa fy) B
F, fy+1)
+1
F. f(y)
Since
fx+1) o f+1)
im = lim =
e f(x) yoe f(y)
and F
lim =2 = o4, P.qEL
n—eo Fn+q
and
o fet2) o+ (say)
_ xoee f(x) v f(y)
we obtain
Fn+2 Fn+l
1
Fx+2) R Aty
in = Jim Jim
_ dlataor
oo+l
and so
fx+2) 5
im =
o )
This completes the proof of Stage I.
Proof of Stage II:

Given x € R, there exists y € R and n € N such that x = y +n. Then, by using
Stage I, we get

fatk)  fO+n+k)  FfO+ D +Fi 1 f0)
f(x) fly+n) Efy+1)+Ff(y)
Fayre fy+1) o
_ Bk B fO)
anl Fn f(y+1)
anl f(y) +1
and so

Fn+k f(y + 1)
. fx+k) lim lim Foyio1 Farr f(Y)
X—00 f(_x) Y—»00 1—ro0 Fn—l Fn f(y + 1)

1
Fo f(y)
which completes the proof of Stage II.

o
ao+1

181
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Proof of Stage III:
By using Stage II, we obtain
1 1

TR N B

—y00 :

x f('x m) hmx_m W
Now, it follows that

k k
x—=oo fx4+m)  x—oee f(x) xoe f(x+m)

which completes the proof of Stage III. O

2. GAUSSIAN FIBONACCI FUNCTION

Gaussian Fibonacci numbers {GF, },>0 = {GF,(GFy,GF1) },>0 are defined by
GF, = GF,_1 + GF,_,,
with the initial conditions GFy = i and GF; = 1. Note that
GF,=F,+iF, .

The first few values of Gaussian Fibonacci numbers with positive and negative
subscript are given in the following table.

n 0 1 2 3 4 5 6 7
GF, i 1 I+i 24i 342 5+3i 845 13+8i
GF_, 1—i —1+2i 2-3i -3+5i 5—-8 —8+13i 13-21i

The full Gaussian Fibonacci sequence, where Gu, = GF,, are n'" Gaussian Fi-
bonacci numbers, is: ...,5—8i,—3+5i,2—3i,—1+2i,1 —1i,i,1,14+i,24+i,3+
20,54 3i,....

Definition 2.1. A Gaussian function fg on the real numbers R is said to be a
Gaussian Fibonacci function if it satisfies the formula

fo(x+n)=GF,f(x+1)+GF,_ f(x) (2.1
for all x € R and n € 7 where f is a Fibonacci function.
To emphasize which Fibonacci function is used we can say that f; is a Gaussian
Fibonacci function with the Fibonacci function f.

The following theorem gives an equivalent characterization of a Gaussian Fi-
bonacci function.

Theorem 2.1. A Gaussian function fg on the real numbers R is a Gaussian Fi-
bonacci function if and only if

fo(x+n)=f(x+n)+if(x+n—1) (2.2)

forx € R, n € Z where f is a Fibonacci function.
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Proof. (:=) Assume that f; is a Gaussian Fibonacci function, i.e., f; satisfies
(2.1). Then

fo(x+n) =GF,f(x+1) +GF,-1f(x)
= (Fy+iFy_1)f(x+1)+ (Fpo1 +iF2) f(x)
— (Faf (5 1) 4 Fad f() - i(Fa 1 f (5 1) + Fy 2 f(3)
= Fletm)+if(ctn—1)
since
GF,=F,+iF,_;
flxtn)=Ff(x+1)+ F1f(x).
(«<=:) If we suppose that (2.2) holds then we obtain
folxtn) = flx+n)+if(x+n—1)
= (Fuf(x+ 1) + Fo1 f(x) +i(Fa1 f(x+ 1) + Fy 2 f (x))
= Byt iFp ) f (x4 1) + (Fat +iF,2) f(x)
=GF,f(x+1)+GF,_ i f(x). U

Remark 2.1. Using the Binet’s formula of a Fibonacci function f (see Lemma 1.1)
and (2.1) or equivalenly (2.2), the Binet’s formula of a Gaussian Fibonacci function
can be found.

and

Now, we present an example of a Fibonacci function.
Example 2.1. The function f :R — R, f(x) = o, considered in Example 1.1, is a
Fibonacci function. Then
fo(x4n)=fx+n)+if(x+n—1) =" i = (1 +io o™
is a Gaussian Fibonacci function.

The following example shows that using the floor function, a Fibonacci function
and a Gaussian Fibonacci function can be obtained.

Example 2.2. Let {Gu,};__., and {Gv,};__.,, be full (bilateral) Gaussian Fi-

bonacci sequences. We define a function fg by fc(x+n) = Gu x| 4n+ GV|x| 10t =

Gt n| + GV yyn|t and f(x) = u|x) +V|yt, where t = x— |x] € (0,1) and x € R,

Then, f is a Fibonacci function and f¢ is a Gaussian Fibonacci function.
Solution.

Since
flx)= Ux| +Vx)t

FOA+1) = 1)+ Vg1t = U g1+ V)11t
FO42) = o) +V|aga)t = Upxfs2 + V(o) 2t
and
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FO+1) 4+ £(x) = (a1 +vgat) + () + V)
= (a1 +upep) + (Va1 + V)t
= Uy 42 T Vx| 42f = Upcp2] TV [cp2)t

= f(x+2)

f is a Fibonacci function and since
Gum +n = U|x|4n + iu[xj +n—1>
vacj +n = V|x|]+n + iv[xj +n—1»
we get
fe(x+n) = Gu|y) 1+ GV x| 4t
= (MLXJ+H + iu[ijrnfl) + (V[ijrn + ivmqtnfl)t
= (um+n + V[ijrnt) + (u[ijrnfl + V[ijrnflt)i
=fx+n)+if(x+n—1).

Therefore, f is a Gaussian Fibonacci function.

Lemma 2.1. Let fg be a Gaussian Fibonacci function, i.e., fo(x+n) = f(x+
n)+if(x+n—1)forx € R, n € Z where f is a Fibonacci function. We define
gc(x+n) = fo(x+1+n) and g(x) = f(x+1t) for any x € R wheret € R. Then g

is a Fibonacci function and g¢ is a Gaussian Fibonacci function.

Proof. Let x € R. Since fg is a Gaussian Fibonacci function and f is a Fibonacci

function, it follows that

g(x+2)

fx4+2+1)=f(x+1t+2)
flx+t+1)+ f(x+1)
glx+1)+g(x)

which shows that g is a Fibonacci function and

gc(x+n)=fo(x+r+n)
=f(x+t+n)+if(x+t+n—1)
=gx+n)+iglx+n—1)

which shows that g is a Gaussian Fibonacci function.

Lemma 2.2. Let {u,} and {Gu,} be the full Fibonacci and Gaussian Fibonacci

sequences, respectively. Then
GuLxJ-&-n - GFnuLxJ-H + GFn—luij )
GuLquLnfl = GFnuLxJ + Ganluijfl .
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Proof. The functions fg(x+n) = Gu|y| 1, +GV|y| 1t and f(x) = u|, +v|, t where
t=x—|x| €(0,1) and xR, considered in Example 2.2, are Gaussian Fibonacci and
Fibonacci functions, respectively. So, if welet v =u )1 ,GV|x| 10 = GU|x| 101>
then f(x) and f(x) are Fibonacci function and Gaussian Fibonacci function, re-
spectively. Note that
F(xX) = ue) +viagt = upy +up -t
JOA1) = tpp1) Vg1t = U1 + V1! = U1+ Ut

Then we obtain

G| 1+ G| 1 y_1t = G| 1+ GV |yt = fo(x+n)
=GF,f(x+1)+GFE_1f(x)
= GFn(uerl —|—Mml‘) + Ganl(um —I—Ltm,ll‘)
= GFuu |41+ GFu |t + GFy_qu|y + GFyqu 1t
= GFnum+1 +GF,,,1MM +GF,,th—|—GFn,1uLxJ_1t
= GFu )41 +GFy1uy + (GFuu o + GF,_quj, 1)t

This completes the proof. (]

By taking {u,} = {F,} in the last theorem, we have the following corollary.
Corollary 2.1. For x € R, we have the following formulas:

GF[ijrn = GFnF[ijrl + GanlF[xja
GF |y yn—1=GFF |+ GFy1Fly .

By taking |x| = m € Z in the last corollary, we see that for all integers m,n we
have

GFm+n = GFnFm+l +GFn71Fma
GFpin—1 = GEFy+ GF 1 Fy- .

Theorem 2.2. Let f(x) = a(x)gg(x) be a function, g(x) and f(x) = a(x)g(x) be
Fibonacci functions, where a(x) is an f-even function, and suppose that g(x) and
g(x) are continuous functions. Then fg(x) is a Gaussian Fibonacci function with
Fibonacci function f(x) if and only if g (x) is a Gaussian Fibonacci function with
Fibonacci function g(x).

Proof. By definition of the function fg and since a(x) is an f-even function, we
have

fo(x+n)=a(x+n)gs(x+n) =a(x)gg(x+n). (2.3)

Suppose that fg is a Gaussian Fibonacci function. Then, since a(x) is an f-even
function, we obtain
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folx+n) = flx+n)+if(x+n—1)

(x+n)g(x+n)+ialx+n—1)gx+n—1)
(x)g(x+n)+ia(x)g(x+n—1)
(x)(g(x+n)+igx+n—1)). (2.4)
From the equations (2.3) and (2.4), we get

a
a
a

a(x)(gg(x+n)—gx+n)—iglx+n—1))=0
and so
go(x+n)—glx+n)—iglx+n—1)=0
ie.,
go(x+n)=glx+n)+iglx+n—1).
Therefore, g¢ is a Gaussian Fibonacci function.
On the other hand, if g is a Gaussian Fibonacci function, then

go(x+n) =glr+n) +iglv+n—1). 2.5)
Since f(x) = a(x)g(x) and a(x) is an f-even function, we obtain

flx+n)=alx+n)g(x+n) =a(x)g(x+n),

fx+n—1)=a(x+n—1)gx+n—1)=a(x)gx+n—1).
Then, since fg(x) = a(x)gs(x) and a(x) is an f-even function, the equation (2.5)
implies that
fo(x+n)=a(x+n)gc(x+n) =a(x)gg(x+n)

(x)(g(x+n) +ig(x+n—1))
(x)g(x+n)+ia(x)g(x+n—1)
=f(x+n)+if(x+n—1).

Hence, f; is a Gaussian Fibonacci function. U

=a
=a

3. SuMS OF FIBONACCI AND GAUSSIAN FIBONACCI FUNCTIONS

In this section, we discuss the sums of the terms of a Fibonacci function and a
Gaussian Fibonacci function. The following corollary gives linear sum formulas
of Fibonacci numbers.

Corollary 3.1. For n > 0, Fibonacci numbers have the following property:
n
Y Fi=Fu2—1.
k=0

Proof. For a proof see, for example, Soykan [17, Corollary 2.2 (a)]. U

The following theorem gives linear sum formulas of Fibonacci functions.
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Theorem 3.1. Suppose that f is a Fibonacci function. Then for all x € R and
n > 0, the following sum formula holds:

Zn:f(x+k) =f(x+n+2)— f(x+1).
k=0

Proof. We use corollary 3.1. Since

Z Fe—1 = Fua
k=0
and
f(x+n) = an(x+ 1) +Fn71f(x)a
we obtain
Y f+k) = fx+1) Y B+ () Y, B
k=0 k=0 k=0
= fx+1)(Fa — 1)+ f(x)Fa
= (Fusaf(x+ 1)+ Fp1 f(x) — f(x+1)
=f(x+n+2)— fx+1). O
Note that if we consider the Fibonacci function
fx) =a

then, using Theorem 3.1, we have the sum formula

n
Z aerk — OLx+n+2 _ OLerl
k=0

forall x e R and n > 0.
The following corollary gives linear sum formulas of Gaussian Fibonacci num-
bers.

Corollary 3.2. For n > 0 we have the following formula:
n
Y GF=GF,,—1.
k=0

Proof. It is given in Soykan [17, Corollary 4.2 (a)]. (]

The following theorem gives linear sum formulas of Gaussian Fibonacci func-
tions.

Theorem 3.2. Suppose that fg is a Gaussian Fibonacci function with Fibonacci
function f. Then for all x € R and n > 0 the following sum formula holds:

Y faletk) = foletn+2) — fr+ 1) — if(x).
k=0
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Proof. We use corollary 3.2. Since

n
Y GTy=GF, 12— 1
k=0

n
Z Gl 1 =GFyp1—1i
k=0

and fG()H‘”) :Gan(x+1)+GFn—1f(x)7

we get

ifG(-x‘i‘k) - f(X+ 1) i GFk+f(.X) i GFk—l
k=0 k=0 k=0
= f(x+1)(GFp2 — 1) + f(x)(GFyy1 — i)

= (GFiaf(x+ 1) + GFy f(x)) = flx+ 1) —if (x)
= fox+n+2)— f(x+1)—if(x). 0
Note that if we consider the Fibonacci function
flx)=a
and the Gaussian Fibonacci function
fo(x+n) = (1 +ioa o™

then, using Theorem 3.2, we have the sum formula
n

Z(l +i(x—1)(xx+k — (1 —I—i(X_I)OLx+n+2 _ax-i-l — o
k=0
forallx e R and n > 0.

4. RATIO OF GAUSSIAN FIBONACCI FUNCTIONS

In this section, we discuss the limit of the quotient of a Gaussian Fibonacci
function. Note that since
. F
lim =12 — oP~4

el
f—yo0 Fn+q ) p7q
we have
Fn+p + l.Fn+pfl
. GFn+p . Fn+p + iFn-l—p—l . Fn+q Fn+q
lim =lim ————— = lim P
noeo GFy gy noe by g+ iFy g1 noe Ingg jIntal
J Fiig
P9 +ioP 14
1+io!
and GF, Fpop+iF, F F
. n+ . n+ Uyyp—1 . n+ 1. n+p—1
lim —22 = Jim 22— "P" — |im P4 jlim 22—
n—=e Ipiq o0 n+q = Iytq = Iptg

=of ol
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Theorem 4.1. If f; is a Gaussian Fibonacci function, then the limit of quotient

fG(x+k)
fo(x+m)

fG (x + k) (xkfm

m =
e f(x+m)

exists and is given by

for all k,m € 7.

Proof. Suppose that f is a Gaussian Fibonacci function with Fibonacci function f.

Note that from Theorem 1.2, the limit of quotients S6tD) exists and lim 285D = g,
fix) oo S(¥)
We use the formula, by definition,
fG(x + n) = GF,,f(X + 1) + GF,,_lf(x).
Given x € R, there exists y € R and n € N such that x = y+n. Then
. felx+k) . fely+n+k) . fe(x+ntk)
Iim——=1lmlim ~——~ = lim lim ————~
S folam) et foly b nm) et fo(xtnrm)
o GEq f(x+ 1)+ GFyyg1 f(x)
= lim lim
x=e0n—00 GFypf (X + 1) + GFypm-1f(x)
Ghuk f(x+1)  GFg
— lim lim GFn+m—1 f(X) GFn+m—1
X—yo0 n—poo GFyim f(x+1) 41
GFn+m—1 f(x)
Since P
lim 22 = o4, p.g€Z,
n—eo Fn+q
GF, o9+ joP— 14
lim —2 — o , PqEL,
n—e GFyiq 1 +io!
1
im 23D _ o
xe f(x)
it follows that
lim fG(x+k) _ O(’k—m O
x—eo f (x + m)
Note that if we consider the Fibonacci function
flx) =a
and the Gaussian Fibonacci function
fo(x+n) = (1 +ioa o™
then, we see that
k 1+ o Hortk 1
lim M = lim (I+ia” ) = lim okt = k=,

x—00 f (x + m) Jpares (1 + ia—l)ax-i-m x—yoo QX
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Also, it follows from Theorem 4.1, that

. fG(x+k) _ k—m
)}LI)‘EIOfG(x—Fm) —¢ '

Corollary 4.1. If f; is a Gaussian Fibonacci function, then

- folx+1)
- fe(x) -

Proof. Take k =1,m =0 in Theorem 4.1. U

Theorem 4.2. If f; is a Gaussian Fibonacci function with Fibonacci function f,
then the limit of quotient

fc (x + k)
f(x)
exists and is given by
k
im 795K _ o6R 4 GR
o)

forall k € 7.

Proof. Suppose that fg; is a Gaussian Fibonacci function with Fibonacci function f.
Note that from Theorem 1.2, the limit of quotients ! gf(i)l) exists. Using the formula,
by definition,

fo(x+n)=GFE,f(x+ 1)+ GF,_ f(x).

we get
. folx+k) . GEf(x+1)+GF_1f(x)
im ————= = lim
v f(x) X0 f(x)
1
_tim6r YY) L 6R
e R
. . . fl+1) . . folxtk) -
Hence, since the limit of quotient ) exists, limy e ) exists and
k
lim M = oGF,+ GF_. O
S
Note that if we consider the Fibonacci function
fx) =o'

and the Gaussian Fibonacci function
fo(x+n) = (1 +ioa o™
then, we see that

k 1 sy — 1\ Xtk
fim JECHR) (0 O (i ot

x—e0  f (x) X—so00 o X—00

= (1 4io "ok, 4.1)
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Also, from Theorem 4.2, we know that

lim M = aGF.+ GF_;. 4.2)
T

Therefore, comparing (4.1) and (4.2), we obtain
oGF.+ GF,_ = (1 + iOC_l)OLk
for k € Z.

Corollary 4.2. If fi is a Gaussian Fibonacci function with Fibonacci function f,
then

. folx) :
1 =1 -1
lin Ty =1+
. folx+1) .
lim 2T/
T
. fex+2) -
lim —/————= = 1 .
xglolo o) o+ 14ou
Proof. Take k =0,1,2 in Theorem 4.2, respectively. O

We can generalize Theorem 4.2 as follows.

Theorem 4.3. If f; is a Gaussian Fibonacci function with Fibonacci function f,
then the limit of the quotient
fc (x + k)

fx+m)
exists and is given by
fG(x+k) _ N k—m—1
fratiy flx+m) (ati)or
for all k,m € 7.

Proof. Suppose that fg is a Gaussian Fibonacci function with Fibonacci function f.

Note that from Theorem 1.2, the limit of quotient flatl) exists and lim £ ) _ o.
fx) oo S(X)

Given x € R, there exists y € R and n € N such that x = y+n. By using the formulas

f(;(x—i- l’l) = Gan(X-l- 1) + GFn_lf(x)

and
f(x+n) :an(x+1)+Fn—1f(x)

we get
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folx+k) . . fely+nt+k) . fe(x+ntk)
im =—-—— = lim lim —~——— = lim lim =—~—————~
xoeo fxdm)  yoenoe f(y+ntm)  asen—se f(x4n4m)
1
GFn-l—k% +GFir1
= lim lim
X—y00 i—ro0 f(x—l—])

n+mW + Fuyma
GFyir f(x+1) i GFy i1
Fn+m71 f(X) Fn+m71

= lim li
et Fpm ft1) i
Fn-l—m—l f(x)
Since
1. Fn+p o pP—q
m— =0« , Dyq € Z’
n—yoo Fn+q
GF, F, F,,_
lim —242 = Jim —22 2l gpayjop e pg e Z,
n—e Fyig n—e Fyig Futq
1
lim flat1) =0,
x—e f(x)
it follows that .
tim 260K oyt O
= (e m)

5. MATRIX FORMULATION OF f(x) AND fg(x+n)

The matrix method is a very useful method in order to obtain some identities for
special sequences. We define the square matrix M of order 2 as:

7=(1 o)
such that detM = —1. Note that for all n € Z, we have
M — <1 1>n: <Fn+1 F, > '
1 0 E,  F,4
Matrix formulation of F, can be given as
(%) -0 o) (2)
F, 1 0 F )
Consider the matrices Ng, Ep defined by as follows:
Np = (1 —IH 1) ;

Ep — GFnJrZ GFnJrl
= \GF4u GF, )
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The following theorem presents the relations between M", Ny and EF.

Theorem 5.1. For all n € 7, we have
M"Np = Ef..

Proof. It can be proved by mathematical induction. U
Define o <f(x+2) f(x+1)>
TE\farD) ) )
B.— fx+n+2) f(x+n+1)
=\ fx4+n+1)  flx+n)

Theorem 5.2. For all integers n € 7. and x € R, we have
M"Ay = By. G.D
Proof. By using
f(x+n) = an(x+ 1) +Fn71f(x)
fxr+2) = flx+ 1)+ f(0),
the case n > 0 can be proved by mathematical induction. Then for the case n <0,

we take m = —n in (5.1) and then the case m > 0 can be proved by mathematical
induction, as well. O

and

Note that if we consider the Fibonacci function

fx) =a
then, we see that

(xx+2 aerl (xx+n+2 (xx+n+l
Af = o<1 o 7Bf = oxtntl ot

1 1 n (xx+2 aerl (xx+n+2 (xx+n+l
< 1 O) <ax+l oF > = <(xx+n+l aern >
for alln € Z and x € R.

Define o GF,., GF,
6F =\ GF, GF,_,

Cr — fG(x+n+2) f(;(x—i-n)
Jo felx+n+1) fe(x+n—1))"
Theorem 5.3. For all integers n € Z and x € R, we have
DgrAy = Cy, (5.2)

and

and

Proof. By using
fG(x+ n) = GF,,f(X+ 1) + GF,,_lf(x).

fr+2) = flx+ 1)+ f(0),

the case n > 0 can be proved by mathematical induction. Then for the case n < 0,

and
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we take m = —n in (5.2) and then the case m > 0 can be proved by mathematical
induction, as well. O

Note that if we consider the Fibonacci function
flx)=a'
and the Gaussian Fibonacci function

fo(x+n) = (1 +io o™

ax+2 ot
Af: <ax+1 (xx—1>7

then, we see that

and

(1+io Hor ™2 (1 +io)or
Cfc;: (1+ia71)ax+n+l (1+i0r1)ocx+"*1 )

and so

(GF,,+1 GF, )(ocx” of >_ ((1+i0c1)ocx+”+2 (1+io~ o™ )

GFn GFn—l aerl (xxfl - (1+ia71)ax+n+l (l_i_iorl)(x)ﬁnfl
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