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ON A NEW CLASS RELATED TO THE SUBCLASS OF
CLOSE-TO-CONVEX FUNCTIONS

GAGANDEEP SINGH AND GURCHARANIJIT SINGH

ABSTRACT. This paper is concerned with a generalized class of analytic func-
tions which is related to the subclass of close-to-convex functions in the open
unit disc E = {z: |z] < 1}. The coefficient estimates, distortion theorem, growth
theorem, argument theorem, radius of convexity, Fekete-Szego inequality and
inclusion relation for the functions belonging to this class have been established.
The results so obtained will provide a new direction in the study of certain new
subclasses of analytic functions.

1. INTRODUCTION

Let U denote the class of Schwarzian functions of the form w(z) = Y, cx2,
which are analytic in the open unit disc E = {z: |z| < 1} and with the conditions
w(0) =0,|w(z)| < 1. Also |¢1| < 1 and |c| < 1— |e1|?. For two analytic functions
fand g in E, we say that f is subordinate to g, if a Schwarzian function w(z) € U
exists, such that f(z) = g(w(z)) and this is denoted by f < g. If g is univalent in
E, then f < g is equivalent to f(0) = g(0) and f(E) C g(E). Littlewood [5] and
Reade [10] introduced the concept of subordination.

The class of functions f which are analytic in £ and normalized by the condition
f(0) = f/(0) — 1 = 0 is denoted by 4 and has the Taylor series expansion of the
form

flz)=z+ iakzk. (1.1)
k=2

The well known classes of univalent, starlike and convex functions are denoted by
S, S5* and X respectively.
A function f € 4 is said to be close-to-convex if there exists a starlike function

!
g such that Re i2)

8\Z
C and was introduced by Kaplan [3]. For —1 < D < C < 1, Mehrok [8] introduced
and studied the subclass of close-to-convex functions C(C,D) which consists of

> 0. The class of close-to-convex functions is denoted by
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2f'(z) 1+Cz

=
8z) 14Dz
holds for a starlike function g. Obviously C(1,—1) = C.
Further Abdel Gawad and Thomas [1] studied the class (; of functions f € 4

2f'(2)

h(z)
is a subclass of close-to-convex functions. Following this, Mehrok and Singh [9]
studied the class C;(C, D) consisting of the functions f € 4 along with the condi-
zf'(z) . 1+Cz

h(z) 14Dz
related to other subclasses of analytic functions were studied recently by Matelje-
vic et al. [7]. Stelin and Selvaraj [13] studied the class &/.(a) (ot > 0) consisting of
the functions f € A satisfying the following condition:

ﬂ@v
Re >ao,he (.
<h/<z) 1

As a generalization, for —1 < D < C < 1, Singh and Singh [11] introduced the
class K/.(C,D) containing the functions f € 4 which satisfy the condition

flz) 1+Cz
W(z) 1+D7
For C =1—2a,D = —1, the class %X/(C,D) agrees with the class %\(at).
Further, for —1 <D < B <A < C <1, Singh and Singh [12] studied the class
K. (A,B;C,D) consisting of the functions f € 4 satisfying the condition
f'(z) . 1+Cz
W(z) 1+D7
In particular, %.(1,—1;C,D) = K.(C,D).
Getting motivation from the above work, now we define the following class
which is the subject of study in this paper;

Definition 1.1. For -1 <D<B<A<C<], ?@(A,B;C,D) denotes the class of
functions f € A4 satisfying the condition

() . 1+Cz

g 14Dz

the functions f € A4 with the condition that

, where the condition

satisfying the condition Re ( > > (0, where & is a convex function. Clearly (;

tion that

,h € K. Particularly Cj(1,—1) = (. Various properties

€ (.

he Cl(A7B)7

where
g(z) =z+ Z dit* € C(A,B).
k=2
The following observations are obvious:
() &&(1,-1;C,D) = K2 (C,D).
(i) %Z(1,-1;C,D) = K (C,D).
(iii) %5 (1,—1;C,D) = K5 (C,D).
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The present investigation deals with the study of the class X7 (A,B;C,D). We
establish the coefficient estimates, distortion theorem, growth theorem, argument
theorem, radius of convexity, Fekete-Szego inequality and inclusion relation for
the functions in this class. This paper will motivate the other researchers for the
further study in this direction.

2. PRELIMINARY RESULTS

1+CW(Z) k
L 21. 21 IfP(z) = ————= =1 - , th
emma 2.1. [2] If P(z) TS Dn(2) + Y Pkt then
|pn| < (C_D)vn > 1.
1+ C8"
The bound is sharp for the function P,(z) = ﬁ, 18] = 1.
Lemma 2.2. [8] If g(z) = 2+ Y5, diZ* € C(A,B), then,
n—1)(A—-B
|dn) <1+ n=1)4-58) )
2
o : 1 14+ Adz"!
Equality is attained for g'(z) = =527 <1—|—Bﬁzz"1 o1l =1,18:[ = 1.
Lemma 2.3. [8] If g(z) = z+ Y, di?* € C(A,B), then for |z| =r,0 <r <1, we
have
1—-Ar 1+Ar
<1g'(2)l <

(1—Br)(1+r)? (1+Br)(1—r)%

Lemma 2.4. [8] If g(z) = z+ Y, did* € C(A,B), then for |z| =r,0 <r <1, we
have
L (A=B)r

1 —ABr*

Lemma 2.5. [8] If g(z) = 2+ Y5, diZ* € C(A,B), then

A—B
<1+ @28,

larg(g'(z))] < 2sin” ' r+ sin”

s <1+ 2D a1 g

and

(A—B)
3

1
ds — 3| < Smax{1, 3 =3} +

[|2+3u|+max{1,B+MH.

Lemma 2.6. [4] If w(z) = Y5, cx2* € U, then for u complex,

|e2 — piet| < max{1,|ul}.
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Lemma 2.7. [6] Let —1 <D, <D <Cy <Cy <1. Then
1+Ciz - 1+Coz
1+Djz 14Dy

3. MAIN RESULTS

Theorem 3.1. If f(z) € K (A,B;C,D), then

n—1 A—B)(C—D)(n—2
|an|§1+(T)[(A—B)+(C—D)+( i 3 ) )]. (3.1
The bound is sharp.
Proof. By using the Principle of subordination in Definition 1.1, we have
14 Cw(z) )
") =¢ — |, 3.2
70 =¢0 (1) 62)

where w € U is a Schwarzian function.
After expanding (3.2), it yields

14 2a,z+3a32% + ...+ na,? ' + ...

= (14-2drz+3d32> + ...+ ndy " '+ . ) (1 + prz+p + oo+ puard 0.
(3.3)
On equating the coefficients of z"~! on both sides of (3.3), we obtain

na, = nd, +p1(n—1)d,—1 + p2(n—2)dp—3... + 2py—_2ds + pu—1. (3.4)
Applying the triangle inequality in (3.4), it yields
nlay| < nldy| + (n—1)|p1[|dp—1|+ (n = 2)[p2||dn—2| + ... + 2[pp—2lld2| + | Pa—1]-
Again using Lemma 2.1, the above inequality reduces to
nla,| <n|d,|+(C—D)[(n—1)|dy—1|+ (n—2)|dp—2]|... +2|d2| + 1]. (3.5

Making use of Lemma 2.2 in (3.5), the result (3.1) can be easily obtained.
For n > 2, equality in (3.1) holds for the function f,(z) defined as

1 14+A8;7"! 1+C8,7" !
(1-0812)2 \1+Bdz" ! ) \ 1+ Ddz"!

fi(2) = ),161\ L& =1 (6

For A =1,B = —1, Theorem 3.1 gives the following result:
Corollary 3.1. If f(z) € K (C,D), then,
(n—1)2n—1)(C—D)
5 .
Substituting A =1,B=—1,C =1—-20,D = —1, Theorem 3.1 agrees with the
result given below:

|an| <n+
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Corollary 3.2. If f(z) € &K (), then,
(I—a)(n—1)2n—1)
3 .
Substituting A =1,B=—1,C =1,D = —1 in Theorem 3.1, it yields the follow-
ing result:

Corollary 3.3. If f(z) € K, then,

‘an‘ <n+

Theorem 3.2. If f(z) € X[ (A,B;C,D), then for |z] = r,0 <r < 1, we have
(I—=Cr)(1—Ar) (1+Cr)(14+Ar)
(1—Dr)(1—=Br)(1+r) 1+Dr)(1+Br)(1—r)?’
r (1=Cr)(1—Ar) T (14+Cr)(1+Ar)
/0 (1—Dt)(1—Bt)(1+t)2dt§|f(z)| o (1+Dt)(1+Br)(1—1)?
These estimates are sharp.

Proof. From (3.2), we have
14+ Cw(z)

1f'(2)] = 1¢'(2)] T+ Dw(z)

It can be easily proved that the transformation
@) 14+Cw(z)
g'(z)  1+Dw(z)

maps |w(z)| < r onto the circle

f'(z) 1-CDr?

¢ 1-D?

 <IFEI < G

IA

dt. (3.8)

. (3.9

(C—D)r
— (1-D%?)’

2| =r.

This implies that
(3.10)

l—Cr< 1+Cw(z) 1+Cr
1—Dr — ' 1+Dw(z)| ~ 1+Dr
Using Lemma 2.3 and (3.10) in (3.9), the result (3.7) is obvious. Again, on inte-
grating (3.7) with limits from O to r, the result (3.8) can be easily obtained.
Sharpness follows for the function defined in (3.6).
For A =1,B = —1, Theorem 3.2 gives the following result: Corollary 3.4 If

f(z) € K& (C,D), then

1-Cr)(1—r ,
((I—Dr))((l+r))3 SRACIE

" (1-Cr)(1—1)
/0 Dy sfls

(I+Cr)(1+47)
(14+Dr)(1—r)?’
rtenitn o
o (1+Dr)(1—1)3
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Substituting A =1,B=—1,C =1—-2a,D = —1, Theorem 3.2 agrees with the
result given below:

Corollary 3.5. If f(z) € &K (), then,

I1—(1-20)r)(1—r , I+ (1-20)r)(1+r
U=(=20001) L iy < (0200001,

(1+7)*
(1= (1=20)1)(1 —1) (14 (1 =20)1)(1+71)
/O < 11(0) </ T

On Substituting A =1,B=—1,C=1,D = —1, Theorem 3.2 gives the following
result:

Corollary 3.6. If f(z) € K, then,

(1—r)?
(147r)* =
T (1—1)? T (1+1)?
Jy e <@l = [ e
Theorem 3.3. If f(z) € KX (A,B;C,D), then

),
/ . . C— L A—B)r
i v () i (), o

The estimate is sharp.
Proof. (3.2) can be expressed as

040 (1o )

1+ Dw(z)

Therefore, we have

1+Cw(z) ,
—_— . 3.12
|arg f'(2)| < arg<1+Dw(Z)> ‘ + |argg'(2))| (3.12)
As in Theorem 2, it is clear that
f'(z) 1-CDr? (C—D)r
gk 1-D¥? |~ (1-Dr?)

So, it yields

1+CW(Z) .1 (C—D)r

— < — . 3.13
arg(l—l—Dw(z))‘ = \1-cpr (-13)
By using Lemma 2.4 and inequality (3.13) in (3.12), the result (3.11) is obvious.
O
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The result is sharp for the function defined in (3.6), where

—(C+D)r+i((1-C*?)(1-D*?))>
(1+CDr?)

8 =

NN

] 5 = g [—Dr+i(1—D2r2)%] .

For A =1,B = —1, Theorem 3.3 gives the following result:
Corollary 3.7. If f(z) € K (C,D), then
C-D 2
|largf'(z)| < 2sin”'r+sin™! (ﬁ) + sin”! <1 +rr2> .

Substituting A = 1,B=—1,C =1—-2a,D = —1, Theorem 3.3 agrees with the
result given below:

Corollary 3.8. If (z) € K (®), then,
!argf’(z)‘ < 2sin”'r+sin”! (L%) +sin”! ( 2r > )
I

14+ (1-20) 1+r?

ForA=1,B=—1,C=1,D = —1, Theorem 3.3 agrees with the result given
below:

Corollary 3.9. If f(z) € &, then,

2r
"(z)] < 2sin~'r+ 2sin”! :
largf'(z)| < 2sin™"'r+ 2sin 57

Theorem 3.4. If f(z) € K} (A,B;C,D), then f(2) is convex in |z| < ro where ry is
the smallest positive root of

14 [2D —2A — 1]r + [2B— 2C+AB — AC + BC — 3AD + CD — BD]r*
+ (—AB+3BC+BD +2ABD — CD — 2ACD + AC — AD)r?
+ (—2ABC +2BCD + ABCD)r* — ABCDr> = () (3.14)
in the interval (0,1).
Proof. As f(z) € K (A,B;C,D), we have
0 =¢0 (1)
After differentiating it logarithmically, we get

f"(z) . z28"(z)  ZP'(2)
e e TR

= £'(2)P(2).

(3.15)

Also from (3.10), we have

14+Cw(z)

T+ Dw(z) = [P(z)| <
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which implies

zP'(z) r(C—D)

P(z) |~ (1+Cr)(1+Dr)’
f € C(A,B), so as proved by Mehrok [8], we have

28" (2) 1—(14+2A)r+B(2+A)r? —ABr
Re(” e ) =T (- AN(-Br)

(3.16)

(3.17)

(3.15) yields,

ZP'(2)
P(z)

Re <1+Zf”(z)> > Re <1+Zg”<z)> - (3.18)

(@) g ()
Therefore using inequalities (3.16) and (3.17), (3.18)gives
zf"(z) - 1—(1+2A)r+B(2+A)r>—ABr r(C—D)
fllz) ) — (I+r)(1—Ar)(1—Br) (1+Cr)(1+Dr)
After simplification, the above inequality can be expressed as
zf”(z)> o 14+[2D—AJr+[CD—AC—AD + BC — BD]r* — ACDr?
fz) ) — (1—=Br)(14+Cr)(1+Dr) ’

Hence f(z) is convex in |z| < ro where ry is the smallest positive root of

Re<1+

Re<1+

142D —2A — 1]r + [2B —2C+AB — AC + BC — 3AD +CD — BD]r*
+ (—~AB+3BC+BD +2ABD — CD — 2ACD + AC— AD)r?
+ (—2ABC +2BCD +ABCD)r* — ABCDr> = 0 in the interval (0, 1).

Sharpness follows for the function f;,(z) defined in (3.6). O

For A =1,B = —1, Theorem 3.4 gives the following result:

Corollary 3.10. If f(z) € X (C,D), then f(z) is convex in |z| < r| where ry is the
smallest positive root of 1+ [2D — 3]r+ [—4C — 2D+ CD — 3]r* + (—2C — 4D —
3CD +1)r* + (2C —3CD)r* + CDr> = 0 in the interval (0,1).

Substituting A = 1,B=—1,C =1—-2a,D = —1, Theorem 3.4 agrees with the
result given below:
Corollary 3.11. If f(z) € K (@), then f(2) is convex in |z| < ry where r is the
smallest positive root of
1—5r+2(=3+5a)r* +2(3—a)r* +5(1 —20)r* — (1 —2a)r° =0
in the interval (0,1).

Substituting A = 1,B= —1,C = 1,D = —1, Theorem 3.4 agrees with the result
given below:

Corollary 3.12. If f(z) € K, then f(z) is convex in |z| < r3 where r3 =3 —2/2.
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Theorem 3.5. For f € X (A,B;C,D),

@l <145 [(A—B)+ (D)), (3.19)

A—B
<1+ AP s c by c-p) (3.20)
and for u complex,
a3 — pa3| < tmax{1,[3u—3[} + @ [\2+3y[+max{1,B+3<A4;B)“H
—-D A—B —D
—|—(C3 ) [(14—( 3 )> |2—3,u|—|—max{1,D+MH. (3.21)

Proof. Expanding (3.2), gives
14+ 2az+3a32%> + ... +na,2 ' + ...

= (142dpz+3d372> + ...+ nd, 2" ' +...) (1+(C—D)c1z+ (C—D)[cy — D32 +...).

(3.22)
Equating coefficients of z and z? in (3.22), it yields
Cc-D
a2:b2+( 3 )Cl, (3.23)
and
2 C-D
a3 =b3+ §(C— D)bycy + ( 3 ) [c2—Dci]. (3.24)

After applying the triangle inequality, (3.23) and (3.24) reduce respectively to
(€-D)

laz| < |b2| + 3

el (3.25)

and
C-D)

2
] < o]+ 2(C = D)baller |+

Using |c1]| < 1 and Lemma 2.5, the result (3.19) can be easily obtained from (3.25).
Again applying Lemma 2.5, Lemma 2.6 and the inequality |c;| < 1, the result
(3.20) can be derived from (3.25).
From (3.23) and (3.24), we obtain |a3 — ua3| < |b3 — ub3|+ (C—D)|bs||c1 |3 — ]

|c2 = Dcil. (3.26)

C-D 3(C-D
( ) ¢ — D+u cil. (3.27)
3 4
Using the inequality |c;| < 1, and applying Lemma 2.5, Lemma 2.6, the result
(3.21) can be easily obtained from (3.27). O

Theorem 3.6. [f —1 < D, <D <C; <(Cy <1, then
%(A,B;Cl,Dl) C ?G‘((A,B;C2,D2).
Proof. As K (A,B;Cy,Dy),
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f(z) - 1+Ciz
¢g(z) 1+Diz
As —1<D, <D <C; £(C <1, by Lemma 2.7, we have
flz) 14+Cz 14+Cxz
g(z) 14Dz 14Dy
which proves the desired result. O
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