
SARAJEVO JOURNAL OF MATHEMATICS DOI: 10.5644/SJM.19.01.02

Vol.19 (32), No.1 (2023), 13–27

APPROXIMATION OF A CONTINUOUS FUNCTION BY A SEQUENCE

OF CONVOLUTION OPERATORS VIA A MATRIX SUMMABILITY

METHOD USING IDEALS

RIMA GHOSH AND SUDIPTA DUTTA

ABSTRACT. In this paper, in the line of Duman [7], we deal with Korovkin type

approximation theory for a sequence of positive convolution operators defined

on C[a,b], the Banach space of all real valued continuous functions on [a,b]
endowed with the supremum norm || f ||= supx∈[a,b] | f (x)| for f ∈C[a,b], based

on the notion of AI -summability. We construct an example to exhibit that the

main result is more generalized than its statistical A-summable version. We also

study the rate of AI -summability.

1. INTRODUCTION AND BACKGROUND

The study of the Korovkin type approximation theory has a long history and is

a well-established area of research (see [5, 9, 10, 12]). For a sequence {Ln}n∈N of

positive linear operators on C(X), the space of real valued continuous functions on

a compact subset X of real numbers, Korovkin [17] first established the necessary

and sufficient conditions for the uniform convergence of {Ln( f )}n∈N to a function

f by using the test functions e1 = 1, e2 = x, e3 = x2 [1].

We are interested in obtaining a general Korovkin type approximation theory for

a sequence of positive convolution operators defined on C[a,b] via a generalized

matrix summability method, namely, the AI -summability method. We study the

rate of convergence via the AI -summability method.

The concept of statistical convergence of a sequence of real numbers was first

introduced by Fast [14]. This is a generalization of usual convergence. Further

investigations started in this area after the works of Šalát [22] and Fridy [15].

Consequently, the notion of I -convergence of real sequences was introduced by

Kostyrko et. al. [20]. Later a lot of works have been done on matrix summability

(see [2,4,11,18,19,21,23,26]). A general Korovkin type approximation theory and

the rate of convergence were studied using the notion of I -convergence in [6, 8].

In particular, in [24, 25] a very general notion of AI -summability was studied.
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Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal

in Y if (i)A,B ∈ I implies A ∪B ∈ I ;(ii)A ∈ I ,B ⊂ A implies B ∈ I , while an

admissible ideal I of Y further satisfies {x} ∈ I for each x ∈Y . If I is a non-trivial

proper ideal in Y (i.e. Y /∈ I ,I 6= { /0}) then the family of sets F(I ) = {M ⊂ Y :

there exists A ∈ I : M = Y \A} is a filter in Y . It is called the filter associated with

the ideal I . The real number sequence {xn}n∈N is said to be I -convergent to L

provided that for every ε > 0, the set {n ∈ N : |xn −L| ≥ ε} ∈ I [20].

Throughout the paper I will denote a non-trivial admissible ideal on N.
If {xn}n∈N is a sequence of real numbers and A = (a jn) is an infinite matrix, then

Ax is the sequence whose j-th term is given by

A j(x) =
∞

∑
n=1

a jnxn

provided the series converges for each j. We say that x is A-summable to L if

lim
j→∞

A j(x) = L [18]. A matrix A is called regular if A ∈ (c,c) and lim
j→∞

A j (x) =

lim
n→∞

xn for all x = {xn}n∈N ∈ c when c, as usual, stands for the set of all convergent

sequences. The well-known characterization of regularity for two dimensional ma-

trices is known as Silverman-Toeplitz conditions [16]. Connor and Leonetti re-

cently introduced in [3] the larger class of matrices, namely (I ,J )-regular matri-

ces. We are concerned to extend the results in Korovkin type approximation theory

using this new class of matrices in future.

2. APPROXIMATION FOR A SEQUENCE OF CONVOLUTION OPERATORS

For a non-negative regular matrix A = (a jn) following [18], a set K is said to

have A-density if δA(K) = lim
j

∑
n∈K

a jn exists.

We first recall the definition

Definition 2.1 ( [24]). Let A= (a jn) be a non-negative regular summability matrix.

Then a real sequence x = {xn}n∈N is said to be AI -summable to a number L if for

every ε > 0,
{

j ∈ N : |A j(x)−L| ≥ ε
}

∈ I where A j(x) =
∞

∑
n=1

a jnxn.

Thus x = {xn}n∈N is AI -summable to a number L if and only if {A j(x)} j∈N is

I -convergent to L. In this case, we write I -lim
j

∞

∑
n=1

a jnxn = L.

It should be noted that for I = Id , the set of all subsets of N with natural density

zero, AI -summability reduces to statistical A-summability [13].

We consider the Banach space C[a,b] endowed with the supremum norm || f ||=
sup

x∈[a,b]
| f (x)| for f ∈C[a,b]. Let L be a positive linear operator. Then L( f ) ≥ 0 for
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any positive function f . Also we denote the value of L( f ) at a point x ∈ [a,b] by

L( f ;x).

Theorem 2.1. Let {Ln}n∈N be a sequence of positive linear operators from C[a,b]
into C[a,b] and A = (a jn) be a non-negative regular matrix. If

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( fi)− fi

∥

∥

∥

∥

= 0 with fi(y) = yi, i = 0,1,2

then for all f ∈C[a,b] we have

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

= 0.

Proof. We start by observing for each x∈ [a,b], the function 0≤Ψ∈C[a,b] defined

by Ψ(y) = (y− x)2. Since each Ln is positive, Ln(Ψ;x) is a positive function. In

particular, we have for each x ∈ [a,b]

0 ≤
∞

∑
n=1

a jnLn(Ψ;x)

=
∞

∑
n=1

a jnLn(y
2;x)−2x

∞

∑
n=1

a jnLn(y;x)+x2
∞

∑
n=1

a jnLn(1;x)

=
( ∞

∑
n=1

a jnLn(y
2;x)−y2(x)

)

−2x
( ∞

∑
n=1

a jnLn(y;x)−y(x)
)

+x2
( ∞

∑
n=1

a jnLn(1;x)−1(x)
)

≤
∥

∥

∥

∥

∞

∑
n=1

a jnLn(y
2)−y2

∥

∥

∥

∥

+2b

∥

∥

∥

∥

∞

∑
n=1

a jnLn(y)−y

∥

∥

∥

∥

+b2

∥

∥

∥

∥

∞

∑
n=1

a jnLn(1)−1

∥

∥

∥

∥

.

Fix f ∈C[a,b]. Let M = ‖ f‖. Then we can write
∣

∣ f (y)− f (x)
∣

∣< 2M for all y,x∈
[a,b]. Also, since f is continuous on [a,b], it is uniformly continuous on [a,b].
Hence for any ε > 0, there exists a δ > 0 such that

∣

∣ f (y)− f (x)
∣

∣ < ε for all y,x
satisfying | y− x |< δ. On the other hand, if | y− x |≥ δ, then it follows that,

−2M

δ2
(y− x)2 ≤−2M ≤ f (y)− f (x)≤ 2M ≤ 2M

δ2
(y− x)2.

Therefore for all y,x ∈ [a,b] we get,

| f (y)− f (x) |< ε+
2M

δ2
(y− x)2

where δ is a fixed real number. Since each Ln is positive, we have

−ε
∞

∑
n=1

a jnLn( f0;x)−2M

δ2

∞

∑
n=1

a jnLn(Ψ;x) ≤
∞

∑
n=1

a jnLn( f (y);x)− f (x)
∞

∑
n=1

a jnLn( f0;x)

≤ ε
∞

∑
n=1

a jnLn( f0;x)+
2M

δ2

∞

∑
n=1

a jnLn(Ψ;x).



16 R. GHOSH, S. DUTTA

Next, let K = 2M
δ2 and we get

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f (y);x)− f (x)
∞

∑
n=1

a jnLn( f0;x)

∣

∣

∣

∣

≤ ε
∞

∑
n=1

a jnLn( f0;x)+
2M

δ2

∞

∑
n=1

a jnLn(Ψ;x)

= ε+ε

[

∞

∑
n=1

a jnLn( f0;x)− f0(x)

]

+K
∞

∑
n=1

a jnLn(Ψ;x)

≤ ε+ε

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

+K
∞

∑
n=1

a jnLn(Ψ;x).

In particular,
∣

∣

∣

∣

∞

∑
n=1

a jnLn( f (y);x)− f (x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∞

∑
n=1

a jnLn( f (y);x)− f (x)
∞

∑
n=1

a jnLn( f0;x)

∣

∣

∣

∣

+

∣

∣

∣

∣

f (x)

∣

∣

∣

∣

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

≤ ε+K
∞

∑
n=1

a jnLn(Ψ;x)+(M+ε)

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∥

∥

∥

∥

which implies
∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

≤ ε+C2

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f2)− f2

∥

∥

∥

∥

+C1

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f1)− f1

∥

∥

∥

∥

+C0

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

where, C2 = K, C1 = 2bK and C0 = (ε+b2K +M) i.e. ,
∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

≤ ε+C
2

∑
i=0

∥

∥

∥

∥

∞

∑
n=1

a jnLn( fi)− fi

∥

∥

∥

∥

, i = 0,1,2

where C = max{C0, C1, C2}. For a given ε
′
> 0, choose ε > 0 such that ε < ε

′
and

let us define the following sets

D =

{

j ∈N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

≥ ε
′
}

;

D1 =

{

j ∈N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

≥ ε
′ − ε

3C

}

;



APPROXIMATION FOR A SEQUENCE OF CONVOLUTION OPERATORS 17

D2 =

{

j ∈N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f1)− f1

∥

∥

∥

∥

≥ ε
′ − ε

3C

}

;

D3 =

{

j ∈N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f2)− f2

∥

∥

∥

∥

≥ ε
′ − ε

3C

}

.

It follows that D ⊆ D1 ∪ D2 ∪ D3 and from the hypotheses we have D1,D2,D3

belong to I . Therefore D ∈ I . Hence the proof is completed. �

We now consider the following convolution operators defined on C[a,b] by

Ln( f ;x) =

∫ b

a
f (y)Kn(y− x)dy, n ∈ N, x ∈ [a,b] and f ∈C[a,b] (2.1)

where a and b are two real numbers such that a < b.
Throughout the paper we assume that Kn is a continuous function on [a−b,b−a]
and also that Kn(u) ≥ 0 for all n ∈ N and for every u ∈ [a−b,b−a]. Consider the

function Ψ on [a,b] defined by Ψ(y) = (y− x)2 for each x ∈ [a,b].
In [26], the authors investigated the classical versions of the following results in

two variables and for sequences of infinite matrices. In particular, for the Frechet

ideal I , the following results give the classical versions for a single variable.

Theorem 2.2. Let A = (a jn) be a non-negative regular summability matrix and let

{Ln}n∈N be a sequence of convolution operators from C[a,b] into C[a,b]. If

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

= 0 with f0(y) = 1

and

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

= 0

then for all f ∈C[a,b] we have

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

= 0.

Proof. Fix f ∈ C[a,b] and x ∈ [a,b]. Let M = ‖ f‖ and ε > 0. By the uniform

continuity of f ∈C[a,b] and x∈ [a,b], there exists a δ> 0 such that | f (y)− f (x) |<
ε whenever | y− x |≤ δ. Let Iδ = [x−δ,x+δ]∩ [a,b]. So

∣

∣ f (y)− f (x)
∣

∣ = | f (y)− f (x) | ΨIδ
(y)+ | f (y)− f (x) | Ψ[a,b]−Iδ

(y)

≤ ε+2Mδ−2(y− x)2.

Since Ln’s are positive and linear we have,
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∣

∣

∣

∣

∞

∑
n=1

a jnLn( f ;x)− f (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∞

∑
n=1

a jn

∫ b

a
f (y)Kn(y− x)dy− f (x)

∣

∣

∣

∣

=|
∞

∑
n=1

a jn

∫ b

a
( f (y)− f (x))Kn(y− x)dy

+ f (x)
∞

∑
n=1

a jn

∫ b

a
Kn(y− x)dy− f (x) |

≤
∣

∣

∣

∣

∞

∑
n=1

a jn

∫ b

a
( f (y)− f (x))Kn(y− x)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

f (x)

∣

∣

∣

∣

∣

∣

∣

∣

∞

∑
n=1

a jn

∫ b

a
Kn(y− x)dy−1

∣

∣

∣

∣

≤
∞

∑
n=1

a jn

∫ b

a

∣

∣

∣

∣

f (y)− f (x)

∣

∣

∣

∣

∣

∣

∣

∣

Kn(y− x)

∣

∣

∣

∣

dy

+

∣

∣

∣

∣

f (x)

∣

∣

∣

∣

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

≤
∞

∑
n=1

a jn

∫ b

a
(ε+2Mδ−2(y− x)2)Kn(y− x)dy

+M

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

= ε+(ε+M)

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

+2Mδ−2

∣

∣

∣

∣

∞

∑
n=1

a jnLn(Ψ;x)

∣

∣

∣

∣

≤ ε+α

∣

∣

∣

∣

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

+α
∞

∑
n=1

a jnLn(Ψ;x)

where α = max{ε+M, 2M
δ2 }.

Therefore
∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

≤ ε+α

{
∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

+

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

}

.

For given r > 0, choose ε > 0 such that 0 < ε < r and define the following sets

D =

{

j ∈ N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

≥ r

}

;

D1 =

{

j ∈ N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

≥ r− ε

2α

}

;

D2 =

{

j ∈ N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

≥ r− ε

2α

}

.
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It follows that D ⊆ D1 ∪D2 and since D1,D2 belong to I then D ∈ I . Hence this

completes the proof. �

Let δ be a positive real number so that δ < b−a
2

and let ‖ f‖δ = sup
a+δ≤x≤b−δ

| f (x) |,

f ∈C[a,b].

We now study the main theorem of this paper.

Theorem 2.3. Let A = (a jn) be a non-negative regular summability matrix and

let {Ln}n∈N be a sequence of convolution operators on C[a,b] given by (1). If

conditions

I - lim
j

∞

∑
n=1

a jn

∫ δ

−δ
Kn(y)dy = 1 (2.2)

I - lim
j

∞

∑
n=1

a jn( sup
|y|≥δ

Kn(y)) = 0 (2.3)

hold for a fixed δ > 0 such that δ < b−a
2

, then for all f ∈C[a,b] we have

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

= 0.

In order to prove our main result we need the following lemma.

Lemma 2.1. Let A = (a jn) be a non-negative regular summability matrix. Assume

that δ is a fixed positive number such that δ <
b−a

2
. If the conditions (2) and (3)

hold, then for the operators Ln where Ln( f ;x) =
∫ b

a f (y)Kn(y− x)dy, n ∈ N, x ∈
[a,b], f ∈C[a,b] and a,b are real numbers a < b, we have

(i) I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

= 0 with f0(y) = 1

and

(ii) I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

= 0 with Ψ(y) = (y− x)2.

Proof. (i) Let 0 < δ < b−a
2

and let x ∈ [a+ δ,b− δ]. Then δ ≤ x− a ≤ b− a ⇒
−(b−a) ≤ a− x ≤ −δ and δ ≤ b− x ≤ b−a. Now Ln( f0;x) =

∫ b
a Kn(y− x)dy =∫ b−x

a−x Kn(y)dy. Then we have,

∫ δ

−δ
Kn(y)dy ≤ Ln( f0;x)≤

∫ b−a

−(b−a)
Kn(y)dy.

Therefore
∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≤ u j
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where u j := max

{∣

∣

∣

∣

∞

∑
n=1

a jn

∫ δ

−δ
Kn(y)dy−1

∣

∣

∣

∣

,

∣

∣

∣

∣

∞

∑
n=1

a jn

∫ b−a

−(b−a)
Kn(y)dy−1

∣

∣

∣

∣

}

.

Therefore from condition (2), I - lim
j

u j = 0 for all δ > 0 such that δ <
b−a

2
.

Now for given a ε > 0

(say) D :=

{

j ∈N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≥ ε

}

⊆
{

j ∈ N : u j ≥ ε

}

.

Since

{

j ∈ N : u j ≥ ε

}

∈ I , D ∈ I . Hence this completes the proof of (i).

(ii) For a fixed 0 < δ < b−a
2

, let x ∈ [a+ δ,b− δ]. Since Ψ(y) = y2 − 2xy+ x2

then Ψ ∈C[a,b] for all x ∈ [a+δ,b−δ]. Now Ln(Ψ;x) = Ln( f2;x)−2xLn( f1;x)+
x2Ln( f0;x) with fi(y) = yi, i = 0,1,2. Then for all n ∈ N

Ln(Ψ;x) =

∫ b

a
(y− x)2Kn(y− x)dy

=

∫ b−x

a−x
y2Kn(y)dy

≤
∫ b−a

−(b−a)
y2Kn(y)dy

Since the function f2 is continuous at y = 0, given ε > 0 there exists η > 0 such

that for every y satisfying | y |≤ η, y2 < ε holds. We have two cases η ≥ b− a or

η < b−a.

Case 1

Let η ≥ b− a. Therefore 0 ≤ Ln(Ψ;x) ≤ ε
∫ b−a
−(b−a) Kn(y)dy. By condition (2), 0 ≤

∞

∑
n=1

a jnLn(Ψ;x) ≤ ε and I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

= 0 for η ≥ b−a.

Case 2

Now let η < b−a. Therefore Ln(Ψ;x) ≤
∫
|y|≥η y2Kn(y)dy+

∫
|y|≤η y2Kn(y)dy

and hence we obtain for all j ∈N,
∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

≤
∞

∑
n=1

a jn pn

∫ b−a

η
y2dy+ ε

∞

∑
n=1

a jn

∫
|y|≤η

Kn(y)dy

=
(b−a)3 −η3

3

∞

∑
n=1

a jn pn + ε
∞

∑
n=1

a jnqn

where pn = sup|y|≥η Kn(y) and qn =
∫
|y|≤η Kn(y)dy.

Also we have from conditions (2) and (3),

I - lim
j

∞

∑
n=1

a jn pn = 0

and
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I - lim
j

∞

∑
n=1

a jnqn = 1.

Taking M = max{ (b−a)3−η3

3
,ε} we have for all j ∈ N that

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

≤ ε+M

(

∞

∑
n=1

a jn pn +

∣

∣

∣

∣

∞

∑
n=1

a jnqn −1

∣

∣

∣

∣

)

.

For given r > 0, choose ε > 0 such that ε < r.
Let

D =

{

j ∈ N :

∥

∥

∥

∥

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

≥ r

}

;

D1 =

{

j ∈ N :
∞

∑
n=1

a jn pn ≥
r− ε

2M

}

;

D2 =

{

j ∈ N :

∣

∣

∣

∣

∞

∑
n=1

a jnqn −1

∣

∣

∣

∣

≥ r− ε

2M

}

.

Therefore D ⊆ D1∪D2. Since from the hypotheses, D1 and D2 belong to I , D ∈ I .
Hence this completes the proof. �

Proof. Proof of Theorem 2.3

The main result (Theorem 2.3) follows from Theorem 2.2, Lemma 2.1. �

If we take I = Id, the ideal of all subsets of N with natural density zero, we get

the following

Corollary 2.1. Let A = (a jn) be a non-negative regular summability matrix and let

{Ln}n∈N be a sequence of convolution operators on C[a,b] given by

Ln( f ;x) =
∫ b

a
f (y)Kn(y− x)dy

n ∈N,x∈ [a,b] and f ∈C[a,b] where a and b are two real numbers such that a< b.

If conditions

st- lim
j

∞

∑
n=1

a jn

∫ δ

−δ
Kn(y)dy = 1

and

st- lim
j

∞

∑
n=1

a jn( sup
|y|≥δ

Kn(y)) = 0

hold for a fixed δ > 0 such that δ < b−a
2

, then for all f ∈C[a,b] we have

st- lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

= 0.

The above corollary can be proved independently in a straightforward way and

it is the statistical A-summable version of Theorem 2.4. in [7].
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Remark 2.1. We now exhibit a sequence of positive convolution operators for

which Corollary 2.1 does not apply but Theorem 2.3 does. Let

un =

{

1 for n even

0 otherwise.

Let I be a non-trivial admissible ideal of N such that I 6= I f in(Frechet ideal) and

I 6= Id . Choose an infinite subset C = {p1 < p2 < p3...} from I \ Id where Id

denotes the set of all subsets of N with natural density zero.

Let A = (a jn) be given by

a jn =











1 if j = pi,n = 2pi for some i ∈ N

1 if j 6= pi, for any i, n = 2 j+1

0 otherwise.

Observe that

y j =
∞

∑
n=1

a jnun =

{

1 if j = pi for some i ∈N

0 if j 6= pi, for any i ∈ N.

Let ε > 0 be given and { j ∈ N : |y j − 0| ≥ ε} = C ∈ I \ Id . Thus {un}n∈N is AI -

summable to 0 but not statistically A-summable.

Now let the operators Ln on C[a,b] be defined by

Ln( f ;x) =
n(1+ yn)√

π

∫ b

a
f (y)e−n2(y−x)2

dy.

If we choose Kn(y) =
n(1+yn)√

π
e−n2y2

then

Ln( f ;x) =
n(1+ yn)√

π

∫ b

a
f (y)Kn(y− x)dy.

Now for every δ > 0 such that δ < b−a
2

, we have

∫ δ

−δ
Kn(y)dy =

n(1+ yn)√
π

(

∫ ∞

−∞
e−n2y2

dy−
∫
|y|≥δ

e−n2y2

dy
)

=
2(1+ yn)√

π

(

∫ ∞

0
e−y2

dy−
∫ ∞

δ.n
e−y2

dy
)

.

Since
∫ ∞

0 e−y2

dy =
√

π
2

< ∞, it is clear that lim
n

∫ ∞

δ.n
e−y2

dy = 0.

Also since I - lim
j
||1+ y j||= 1, we immediately get

I - lim
j

∞

∑
n=1

a jn

∫ δ

−δ
Kn(y)dy = 1.

On the other hand, we have
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sup
|y|≥δ

Kn(y) =
n(1+ yn)√

π
sup
|y|≥δ

e−n2y2

≤ n(1+un)

en2δ2
.

Since lim
n

n

en2δ2
= 0 we conclude that

I - lim
j

∞

∑
n=1

a jn( sup
|y|≥δ

Kn(y)) = 0.

Therefore from Theorem 2.3

I - lim
j

∥

∥

∥

∥

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

= 0 for all f ∈C[a,b].

However note that, as {un}n∈N is not statistical A-summable to zero so Corollary

2.1. does not work for the operator defined above.

We now recall the following note from [3] and make a remark in support of the

existence of the set C in the above remark.

Remark 2.2. The simple density ideal Zg for which n
g(n) is bounded does not neces-

sarily coincide with Z, where in particular, Z is the simple density ideal generated

by g(n) = n and in fact Z = Id . Consider the set Sk = [(2k)!,(2k+1)!] for all k ∈N

and S := ∪kS2k. If we consider the simple density ideal Zg where g : N→ [0,∞) is

defined by

g(n) =

{

n2 if n ∈ S

n if n /∈ S

then S ∈ Zg \Z [3].

3. RATE OF AI -SUMMABILITY

In this section we study the rates of AI -summability in Theorem 2.3 using the

modulus of continuity. Let f ∈ C[a,b]. The modulus of continuity denoted by

ω( f ,α), is defined to be

ω( f ,α) = sup
|y−x|≤α

| f (y)− f (x) | .

The modulus of continuity of the function f in C[a,b] gives the maximum oscil-

lation of f in any interval of length not exceeding α > 0. It is well-known that if

f ∈C[a,b], then

lim
α→0

ω( f ,α) = ω( f ,0) = 0,

and that for any constants c > 0, α > 0,

ω( f ,cα) ≤ (1+[c])ω( f ,α),

where [c] is the greatest integer less than or equal to c.
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Next we introduce the following definition

Definition 3.1. Let A = (a jn) be a non-negative regular summability matrix and let

{cn}n∈N be a positive non-increasing sequence of real numbers. Then a sequence

x = {xn}n∈N is said to be AI -summable to a number L with the rate of o(cn) if for

every ε > 0
{

j ∈N :

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnxn −L

∥

∥

∥

∥

≥ ε

}

∈ I .

In this case we write AI -sum-o(cn)- lim
n

xn = L.

In particular, for the non-increasing sequence {cn}n∈N, where cn = 1 for all n ∈
N, Definition 3.1 implies AI -summability to a number L.

We establish the following Theorem

Theorem 3.1. Let A = (a jn) be a non-negative regular summability matrix and

let {Ln}n∈N be a sequence of convolution operators given by (1). Assume further

that {cn}n∈Nis a positive non-increasing sequence. If for a fixed δ > 0 such that

δ < b−a
2

,
AI -sum-o(cn)- lim

n
Ln( f0) = f0

and
I - lim

j
ω( f ,α j) = 0

where α j :=

√

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

, then for all f ∈C[a,b] we have

I - lim
j

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

= 0.

Proof. Let 0< δ< b−a
2
, f ∈C[a,b] and x∈ [a+δ,b−δ]. By positivity and linearity

of the operators Ln and using the inequalities for any α > 0 we get
∣

∣

∣

∣

1

c j

∞

∑
n=1

a jnLn( f ;x)− f (x)

∣

∣

∣

∣

≤ 1

c j

∞

∑
n=1

a jnLn(| f (y)− f (x) |;x)

+ | f (x) |
∣

∣

∣

∣

1

c j

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

≤ 1

c j

∞

∑
n=1

a jnLn

(

ω( f ,α
| y− x |

α

)

;x)

+ | f (x) |
∣

∣

∣

∣

1

c j

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

≤ ω( f ,α)
1

c j

∞

∑
n=1

a jnLn

(

1+

[ | y− x |
α

]

;x

)

+ | f (x) |
∣

∣

∣

∣

1

c j

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣
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≤ ω( f ,α)

{

1

c j

∞

∑
n=1

a jnLn( f0;x)+
1

α2

1

c j

∞

∑
n=1

a jnLn(Ψ;x)

}

+ | f (x) |
∣

∣

∣

∣

1

c j

∞

∑
n=1

a jnLn( f0;x)− f0(x)

∣

∣

∣

∣

.

Therefore for all n ∈N
∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

≤ ω( f ,α)

{
∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)

∥

∥

∥

∥

δ

+
1

α2

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

}

+M1

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

where M1 := ‖ f‖δ. Now let α := α j =

√

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn(Ψ)

∥

∥

∥

∥

δ

, then we have

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

≤ ω( f ,α j)

{∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)

∥

∥

∥

∥

δ

+1

}

+M1

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≤ 2ω( f ,α j)+ω( f ,α j)

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

+M1

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

.

Let M = max{2, M1}. Then we can write for all n ∈ N that
∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

≤ M

{

ω( f ,α j)+

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

}

+ω( f ,α j)

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

.

Given ε > 0, define the following sets:

D :=

{

j ∈ N :

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f )− f

∥

∥

∥

∥

δ

≥ ε

}

;

D1 :=

{

j ∈ N : ω( f ,α j)≥
ε

3M

}

;

D2 :=

{

j ∈ N : ω( f ,α j)

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≥ ε

3

}

;

D3 :=

{

j ∈ N :

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≥ ε

3M

}

.
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Then D ⊆ D1 ∪D2 ∪D3. Also, we define

D
′
2 =

{

j ∈N : ω( f ,α j)≥
√

ε

3

}

;

D
′′
2 =

{

j ∈N :

∥

∥

∥

∥

1

c j

∞

∑
n=1

a jnLn( f0)− f0

∥

∥

∥

∥

δ

≥
√

ε

3

}

.

Therefore D2⊆D
′
2∪D

′′
2. Hence we get D⊆D1∪D

′
2∪D

′′
2∪D3. Since D1,D

′
2,D

′′
2,D3

belong to I then D ∈ I . This completes the proof. �

4. CONCLUSIONS

We generalize Korovkin type approximation theory for a sequence of positive

convolution operators defined on C[a,b] in some sense with a generalized matrix

summability method, namely, AI -summability method for real sequences. We con-

struct an example in support of this generalization. We are very much interested

whether the results of this paper are valid for the function f with two variables.

Again we are interested whether the results are relevant on an infinite interval.

We now leave an open problem that the results of this paper may be extended to

a larger class of matrices, namely (I ,J )-regular matrices, the one which maps I -

convergent sequences into J -convergent sequences and preserves the ideal limits,

for some choice of ideals I and J [3].
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