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FINITE BETWEENNESS RELATIONAL STRUCTURES ARE NOT

FRAÏSSÉ

STANISLAV BALCHEV AND PAUL SZEPTYCKI

ABSTRACT. We consider the class of finite sets with ternary relations satisfying

certain axioms of betweenness. We show this class and a related larger class

are not Fraı̈ssé, correcting a claim in [2]. We also consider restricted Ramsey

properties of these classes.

Definition 0.1. A countable or finite set X together with a ternary relation R ⊆ X3

is called a betweenness structure if it satisfies the following four axioms

(1) (Symmetry) : (a,b,c) ∈ R ⇒ (c,b,a) ∈ R

(2) ∀a,b ∈ X(a,a,b) ∈ R

(3) (Minimality) : (a,b,a) ∈ R ⇒ a = b

(4) Transitivity

(a) (Weak Transitivity) (a,x,b)∧ (x,z,b) ∈ R ⇒ (a,z,b) ∈ R.

(b) (Strong Transitivity) (a,x,b)∧ (a,y,b)∧ (x,z,y) ∈ R ⇒ (a,z,b) ∈ R.

Note that 4a is indeed weaker and it is a consequence of 4b taking x = y.

Let us denote the class of finite sets with a betweenness relation C and let us

denote the class of finite sets with a ternary relation satisfying 1-4a but not nec-

essarily 4b by Cw This and related relational classes were introduced in [1] and

further studied in [2] from a categorical point of view. In this note we consider

Ramsey like properties of this class and show that neither C nor Cw is a Fraı̈ssé

class. Recall [4]

Definition 0.2. A class of finite relational strucures A is said to be a Fraı̈ssé class

if it satisfies the following

(1) It has countably many mutual non-isomorphic structures.

(2) It is closed under taking isomorphisms.

(3) It is closed under taking substructures.

(4) It satisfies the amalgamation property. I.e., whenever A,B1,B2 ∈ A and are

such that there are embeddings fi : A → Bi for i = 1,2, there is a C ∈ A and
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embeddings gi : Bi → C such that the resulting diagram commutes. That is

g1 ◦ f1 = g2 ◦ f2.

A related weaker property than the amalgamation property is the joint embed-

ding property: For all B1,B2 ∈ A there is a C ∈ A and embeddings gi : Bi →C for

i = 1,2.

It is rather straightforward to show that both C and Cw satisfy (JEP) and the

other axioms 1-3. However, we have the following

Theorem 0.1. Neither C nor Cw satisfies the amalgamation property, so neither is

a Fraı̈ssé class.

Proof. We give two examples. The first will show that the class of finite be-

tweenness structures does not satisfy the amalgamation property and hence is not

a Fraı̈ssé class. The second example will show the same class of finite ternary

relations satisfying only the weaker transitivity axiom 4a also does not satisfy the

amalgamation property, hence is also not a Fraı̈ssé class.

Example 1: Let

• (A,RA) :=
(

{x1,x2,c,y}; /0
)

,

• (B1,RB1
) =

(

{x1,x2,c,y,a,b};(a,x1 ,b),(a,x2,b),(a,y,b)
)

,

• (B2,RB2
) =

(

{x1,x2,c,y,x};(x1 ,x,x2),(x,c,y)
)

.

Each of these families generates a finite betweenness relational structure by

closing under the axioms 1-4 and let the embeddings f1 : (A,RA)→ (B1,RB1
) and

f2 : (A,RA)→ (B2,RB2
) be the inclusion mappings f1 = f2 = idA.

Next, consider an amalgamation of (A,RA),(B1,RB1
),(B2,RB2

), that is embed-

dings g1 : B1 →C and g2 : B2 →C with g1 ◦ f1 = g2 ◦ f2. WLOG we may assume

that g1 = idB1
so it follows that g1 ◦ f1 = g2 ◦ f2 = idA. So the structure (C,RC)

must satisfy

{(a,x1,b),(a,x2,b),(a,y,b),(x1 ,x,x2),(x,c,y)} ⊆ RC.

Then by the transitivity axiom 4b it follows that (a,x,b) ∈RC. Again by transitivity

it follows from (a,x,b),(a,y,b)(x,c,y) ∈ FC that also (a,c,b) ∈ RC. But {a,c,b} ⊂
B1 while (a,c,b) 6∈ RB1

, hence no such amalgamation is possible.

Next we consider the class of finite structures with ternary relations satisfying

axioms 1-3 and only weak transitivity 4a: (a,x,b)∧ (a,c,x) or (b,c,x) ⇒ (a,c,b).
And we show that this class is also not Fraı̈ssé by giving an example showing that

the amalgamation property fails.

Example 2: Let

• (A;RA) := ({a,c,m,x1}; /0),

• (B1;RB1
) :=

(

{a,c,m,x1,b};(a,m,b),(x1 ,m,b),(a,x1,b)
)

,
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• (B2;RB2
) :=

(

{a,c,m,x1,x};(a,c,x),(x1 ,x,m)
)

.

As in the previous examples we consider the relational structures generated by

closing under axioms 1-3 and 4a and consider the obvious embeddings f1 = f2 =
idA. We note that B1 and B2 are transitively closed and that (A;RA) is embedded in

each. As before we assume (C,RC) is an amalgamation of B1 and B2 and WLOG

that g1 = idB1
and so both g1 ◦ f1 = g2 ◦ f2 = idA. Then (C,RC) will have

{(a,m,b),(x1 ,m,b),(a,x1,b),(a,c,x),(x1 ,x,m)} ⊆ RC

and in particular (x1,m,b),(x1,x,m) ∈ RC implies that (x1,x,b) ∈ RC. Together

with (a,x1,b) ∈ RC we may conclude that (a,x,b) ∈ RC. Finally, using this with

(a,c,x) ∈ RC we may conclude that (a,c,b) ∈ RC which is a contradiction since

(a,c,b) 6∈ RB1
. �

This immediately allows us to conclude that neither C nor Cw are Ramsey, even

if we augment them with linear orders. This follows from the classical result of

Nešetřil and Rödl that Ramsey implies Fraı̈ssé [5], but we present the argument to

exhibit the counterexample.

Corollary 0.1. Neither C nor Cw are Ramsey classes.

Proof.Let A,B1,B2 be as in Example 1 (or Example 2 if we consider Cw). Let B =
B1

⋃̇
B2. Given a C define a coloring of any A′ ∈

(

C
A

)

to be 1 if A′ is a substructure

in some B′
1 ∈

(

C
B1

)

, to be 2 if A′ ∈
(

C
A

)

s.t. A′ is a substructure in some B′
2 ∈

(

C
B2

)

,

and to be 0 otherwise. This is a well defined map since A′ can not be colored by

1 and 2 simultaneously, because otherwise this would be an amalgamation. Then

any B′ ∈
(

C
B

)

will not be monochromatic since it contains disjoint copies of B1 and

B2. �

The structure A witnessing the failure of the Ramsey property has 4 elements. It

is natural to ask if a particular class has a restricted form of Ramsey. E.g., given a

class of finite structures M and given A ∈ M , M is said to be A-Ramsey if for all

B ∈ M and all k ∈ ω, there is a C ∈ M such that

C → (B)A
k .

I.e., for all partitions of the copies of A inside of C into k pieces, there is an homo-

geneous copy of B inside C, i.e., a copy of B all whose copies of A lie inside one

piece of the partition. In the above counterexamples A had at least 4 elements and,

moreover, these examples show that even if we enrich the structures with linear

orders, then the resulting classes are not Ramsey. The next result shows that there

is an A with only 3 elements witnessing the failure of A-Ramsey. However, this

example exploits the Sierpiński type partition that fails if we enrich the structure

with linear orders.
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Example 0.1. Let A = {x,y,z} with the betweenness relation RA generated by one

triple (x,y,z). And let B = {a,b,c,d,e} with the betweenness relation RB gener-

ated by the triples {(a,b,c),(b,c,d),(c,d,e),(d,e,a)}. Then for no betweenness

structure C do we have C → (B)A
2 .

Proof. Let (C,RC) be a betweenness structure and fix a linear order of C. Partition

the copies of A in C into two colors. For a particular copy of A∼= { f (x), f (y), f (z)},

put it into P1 if f (x) ≤C f (y) ≤C f (z) or f (x) ≥C f (y) ≥C f (z) and put it into P0

otherwise.

Now, for any copy of B in C, without loss of generality we may assume that

B ⊆ C. So, if it is 1-homogeneous we must have a ≤C b ≤C c ≤C d ≤C e ≤C a or

a ≥C b ≥C c ≥C d ≥C e ≥C a which is impossible for distinct points. On the other

hand, if it were 0-homogeneous, then since b cannot lie between a and c this would

imply that either b <C min{a,c} or b >C max{a,c}.

Case 1. b <C min{a,c}. In this case, again because of 0-homogeneity, we must

have that c >C max{b,d} which then implies in order that d <C min{c,e} and

e >C max{d,a} which finally must imply that a <C min{e,b}. But this contradicts

our assumption that b <C min{a,c}.

Case 2. The alternative that b >C max{a,c} leads to a similar contradiction.

This completes the proof. �

Finally we show that the class of betweenness relations is point-Ramsey. We

do not know if it is A-Ramsey for 2-point sets A, or if, when enriched with linear

orders, it is A-Ramsey for structures with 3 elements.

Theorem 0.2. The betweenness classes C and Cw are point-Ramsey.

Proof. The proof is fairly standard and based on the existence of hypergraphs with

large chromatic number:

Definition 0.3. A hypergraph (X ,M ) has chromatic number > k if every partition

of X into ≤ k parts contains a monochromatic M ∈ M . The chromatic number of

(X ,M ) is the least such k and is denoted χ(X ,M ).

The key theorem is due to Erdös and Hajnal, [3].

Theorem 0.3. Let 2 ≤ l,k,n ∈ N . There is a hypergraph (X ,M ) which is n-

uniform (i.e., M ⊆ [X ]n), has chromatic number > k and is such that (X ,M ) has

girth at least l. That is, it does not contain cycles of length less than l.

The only consequence of no short cycles we need is that a hypergraph with

no cycles of length 3 has the property that any pair of hyperedges M1,M2 ∈ M

intersect as sets in at most one point.

To apply this result, let’s suppose that (B,RB) ∈ C is given. Let n = |B| and

fix k ≥ 2. Let l = 3. Let (X ,M ) be the hypergraph given by the Theorem. For

all M ∈ M , fix a bijection from B to M and let RM be the resulting betweenness



FINITE BETWEENNESS RELATIONAL STRUCTURES ARE NOT FRAÏSSÉ 103

relation on M which is the image of RB under the bijection. Since any two elements

of M overlap in at most a point, it is easy to check that

R =
⋃

{RM : M ∈ M }

is a betweenness relation on X . Now, since (X ,M ) has chromatic number greater

than k it easily follows that

(X ,RM)→ (B)1
k

completing the proof. �
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