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ON NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
F-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

HÜSEYIN BUDAK, PINAR KÖSEM AND SUNDAS KHAN

ABSTRACT. In this article, we investigate two new Hermite-Hadamard type in-
equalities forF-convex functions via fractional integrals. Some special cases are
also discussed as a refinement of previously known results.

1. INTRODUCTION

Convexity theory gives an effective and powerful techniquefor studying a wide
range of problems which arise in various branches of pure andapplied mathemat-
ics. Many inequalities have been obtained for the class of convex functions, but
among those one of the most prominent is the so called Hermite-Hadamard’s in-
equality.Suppose thatf : I ⊆ R→ R is a convex function on the intervalI of real
numbers anda,b ∈ I with a < b. Then the following double inequality, which is
well known in the literature as the Hermite–Hadamard inequality, holds [17]

f

(

a+b
2

)

≤
1

b−a

∫ b

a
f (x)dx≤

f (a)+ f (b)
2

. (1.1)

Note that some of the classical inequalities for means can bederived from (1.1) for
appropriate particular selections of the mappingf . Both inequalities hold in the
reversed direction if f is concave (1.1).

Various refinements of Hermite Hadamard type inequality forconvex functions
and their variant forms are being obtained by many researchers, (see, [5], [6],
[13], [18], [23]- [25]) and the references therein. In the last years, several ex-
tensions and generalizations have been considered for classical convexity, such
as quasi-convex [4], pseudo-convex [14], strongly convex [20], ε−convex [11],
s−convex [10],h−convex [29] and etc. A new concept of convexity was recently
introduced by Samet [21] that depends on a certain function satisfying some ax-
ioms, and generalizes different types of convexity, including ε−convex functions,
α−convex functions,h−convex functions, and many others.
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Recall the familyF of mappingsF : R×R×R×[0,1] → R satisfying the fol-
lowing axioms:

(A1) If ui ∈ L1(0,1), i = 1,2,3, then for everyλ ∈ [0,1] , we have

1∫

0

F(u1(t),u2(t),u3(t),λ)dt = F





1∫

0

u1(t)dt,

1∫

0

u2(t)dt,

1∫

0

u3(t)dt,λ



 .

(A2) For everyu∈ L1 (0,1) , w∈ L∞(0,1) and(z1,z2) ∈ R
2, we have

1∫

0

F(w(t)u(t),w(t)z1,w(t)z2, t)dt = TF,w





1∫

0

w(t)u(t)dt,z1,z2)



 ,

whereTF,w : R×R×R→ R is a function that depends on (F,w), and it is nonde-
creasing with respect to the first variable.

(A3) For any(w,u1,u2,u3) ∈R
4, u4 ∈ [0,1] , we have

wF(u1,u2,u3,u4) = F(wu1,wu2,wu3,u4)+Lw

whereLw ∈ R is a constant that depends only onw.

Definition 1.1. Let f : [a,b] → R, (a,b) ∈ R
2, a< b, be a given function. We say

that f is a convex function with respect to some F∈ F (or F−convex function) iff

F( f (tx+(1− t)y), f (x), f (y), t) ≤ 0, (x,y, t) ∈ [a,b]× [a,b]× [0,1] .

Remark1.1. 1) Letε ≥ 0, and let f : [a,b]→R, (a,b) ∈R
2, a< b, be anε-convex

function, that is (see [11])

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y)+ ε, (x,y, t) ∈ [a,b]× [a,b]× [0,1] .

Define the functionsF : R×R×R×[0,1]→ R by

F(u1,u2,u3,u4) = u1−u4u2− (1−u4)u3− ε (1.2)

andTF,w : R×R×R→ R by

TF,w(u1,u2,u3) = u1−





1∫

0

tw(t)dt



u2−





1∫

0

(1− t)w(t)dt



u3− ε. (1.3)

For
Lw = (1−w)ε, (1.4)

it is clear thatF ∈ F and

F( f (tx+(1− t)y), f (x), f (y), t) = f (tx+(1− t)y)− t f (x)− (1− t) f (y)− ε ≤ 0,

that is f is anF−convex function. Particularly, takingε = 0, we show that iff is a
convex function thenf is anF−convex function with respect toF defined above.
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2) Let f : [a,b]→R, (a,b) ∈R
2, a< b, be anα-convex function,α ∈ (0,1], that

is

f (tx+(1− t)y)≤ tα f (x)+ (1− tα) f (y), (x,y, t) ∈ [a,b]× [a,b]× [0,1] .

Define the functionsF : R×R×R×[0,1]→ R by

F(u1,u2,u3,u4) = u1−uα
4u2− (1−uα

4)u3 (1.5)

andTF,w : R×R×R→ R by

TF,w(u1,u2,u3) = u1−





1∫

0

tαw(t)dt



u2−





1∫

0

(1− tα)w(t)dt



u3. (1.6)

For Lw = 0, it is clear thatF ∈ F and

F( f (tx+(1− t)y), f (x), f (y), t) = f (tx+(1− t)y)− tα f (x)− (1− tα) f (y)≤ 0,

that is f is anF−convex function.
3) Let h : J → [0,∞) be a given function which is not identical to 0, whereJ is

an interval inR such that(0,1) ⊆ J. Let f : [a,b] → [0,∞), (a,b) ∈ R
2, a< b, be

anh-convex function, that is (see [29])

f (tx+(1− t)y)≤ h(t) f (x)+h(1− t) f (y), (x,y, t) ∈ [a,b]× [a,b]× [0,1] .

Define the functionsF : R×R×R×[0,1]→ R by

F(u1,u2,u3,u4) = u1−h(u4)u2−h(1−u4)u3 (1.7)

andTF,w : R×R×R→ R by

TF,w(u1,u2,u3) = u1−





1∫

0

h(t)w(t)dt



u2−





1∫

0

h(1− t)w(t)dt



u3. (1.8)

For Lw = 0, it is clear thatF ∈ F and

F( f (tx+(1− t)y), f (x), f (y), t) = f (tx+(1− t)y)−h(t) f (x)−h(1− t) f (y) ≤ 0,

that is f is anF-convex function.

In [21], the author established the following Hermite-Hadamard type inequali-
ties using the new convexity concept:

Theorem 1.1. Let f : [a,b] → R, (a,b) ∈ R
2, a< b, be an F-convex function, for

some F∈ F . Suppose that f∈ L1[a,b]. Then

F

(

f

(

a+b
2

)

,
1

b−a

∫ b

a
f (x)dx,

1
b−a

∫ b

a
f (x)dx,

1
2

)

≤ 0,

TF,1

(

1
b−a

∫ b

a
f (x)dx, f (a), f (b)

)

≤ 0.
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In the following we will give some necessary definitions and mathematical pre-
liminaries of fractional calculus theory which are used further in this paper. For
more details, one can consult [9,12,15,19].

Definition 1.2. Let f ∈ L1[a,b]. The Riemann-Liouville integrals Jα
a+ f and Jα

b− f
of orderα > 0 with a≥ 0 are defined by

Jα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x> a

and

Jα
b− f (x) =

1
Γ(α)

∫ b

x
(t −x)α−1 f (t)dt, x< b

respectively. Here,Γ(α) is the Gamma function and J0
a+ f (x) = J0

b− f (x) = f (x).

It is remarkable that Sarikaya et al. [26] first give the following interesting in-
tegral inequalities of Hermite-Hadamard type involving Riemann-Liouville frac-
tional integrals.

Theorem 1.2. Let f : [a,b] → R be a positive function with0 ≤ a < b and f∈
L1 [a,b] . If f is a convex function on[a,b], then the following inequalities for frac-
tional integrals hold:

f

(

a+b
2

)

≤
Γ(α+1)

2(b−a)α
[

Jα
a+ f (b)+Jα

b− f (a)
]

≤
f (a)+ f (b)

2
(1.9)

with α > 0.

Sarıkaya and Yıldırım also give the following Hermite-Hadamard type inequal-
ity for the Riemann-Liouville fractional integrals in [22].

Theorem 1.3. Let f : [a,b]→R be a positive function with a< b and f∈ L1 [a,b] .
If f is a convex function on[a,b] , then the following inequalities for fractional
integrals hold:

f

(

a+b
2

)

≤
2α−1Γ(α+1)

(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

≤
f (a)+ f (b)

2
. (1.10)

Budak et al. in [1], prove the following Hermite-Hadamard type inequalities for
F-convex functions via fractional integrals:

Theorem 1.4. Let I ⊆ R be an interval, f: I◦ ⊆ R → R be a mapping on I◦,
a,b ∈ I◦, a < b. Let F be linear with respect to the first three variables. If f is
F-convex on[a,b] for some F∈ F , then we have

F

(

f

(

a+b
2

)

,
Γ(α+1)
(b−a)α Jα

a+ f (b),
Γ(α+1)
(b−a)α Jα

b− f (a),
1
2

)

+
∫ 1

0
Lw(t)dt ≤ 0
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and

TF,w

(

Γ(α+1)
(b−a)α [Jα

a+ f (b)+Jα
b− f (a)] , f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0,

where w(t) = αtα−1.

Theorem 1.5.Let I⊆R be an interval, f: I◦ ⊆R→R be a differentiable mapping
on I◦, a,b∈ I◦, a< b. Suppose that| f ′| is F-convex on[a,b] for some F∈ F and
the function t∈ [0,1] → Lw(t) belongs to L1 [0,1] , where w(t) = |(1− t)α − tα|.
Then

TF,w

(

2
b−a

∣

∣

∣

∣

f (a)+ f (b)
2

−
Γ(α+1)
2(b−a)α [Jα

a+ f (b)+Jα
b− f (a)]

∣

∣

∣

∣

,
∣

∣ f ′(a)
∣

∣ ,
∣

∣ f ′(b)
∣

∣ , t

)

+
∫ 1

0
Lw(t)dt ≤ 0. (1.11)

For the other papers on inequalities forF-convex functions, see [2,3,16,27,28].

2. HERMITE-HADAMARD TYPE INEQUALITY INVOLVING FRACTIONAL

INTEGRALS

In this section, we establish some inequalities of Hermite-Hadamard type in-
cluding fractional integrals viaF-convex functions.

Theorem 2.1. Let I ⊆ R be an interval, f: I◦ ⊆ R → R be a mapping on I◦,
a,b ∈ I◦, a < b. Let F be linear with respect to the first three variables. If f is
F-convex on[a,b] , for some F∈ F , then we have

F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

+ f (b),
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

− f (a),
1
2

)

+
∫ 1

0
Lw(t)dt ≤ 0. (2.1)

TF,w

(

2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)
]

, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0 (2.2)

where w(t) = αtα−1.

Proof. Since f is F-convex, we have

F

(

f

(

x+y
2

)

, f (x), f (y),
1
2

)

≤ 0, x,y∈ [a,b] .
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For

x=
t
2

a+
2− t

2
b, andy=

t
2

b+
2− t

2
a,

we have

F

(

f

(

a+b
2

)

, f

(

t
2

a+
2− t

2
b

)

, f

(

t
2

b+
2− t

2
a

)

,
1
2

)

≤ 0, t ∈ [0,1] .

Multiplying this inequality byw(t) = αtα−1 and using axiom (A3), we get

F

(

αtα−1 f

(

a+b
2

)

,αtα−1 f

(

t
2

a+
2− t

2
b

)

,αtα−1 f

(

f ract2b+
2− t

2
a

)

,
1
2

)

+Lw(t) ≤ 0,

for t ∈ [0,1] . Integrating over[0,1] with respect to the variablet and using axiom
(A1), we obtain

F

(

f

(

a+b
2

)

α
∫ 1

0
tα−1dt, α

∫ 1

0
tα−1 f

(

t
2

a+
2− t

2
b

)

dt,

α
∫ 1

0
tα−1 f

(

t
2

b+
2− t

2
a

)

dt,
1
2

)

+

∫ 1

0
Lw(t)dt ≤ 0.

Here we get,
∫ 1

0
tα−1 f

(

t
2

a+
2− t

2
b

)

dt =
2α

(b−a)α

∫ b

a
(b−x)α−1 f (x)dx

=
2αΓ(α)
(b−a)α Jα

( a+b
2 )

+ f (b)

and ∫ 1

0
tα−1 f

(

t
2

b+
2− t

2
a

)

dt =
2α

(b−a)α

∫ b

a
(x−a)α−1 f (x)dx

=
2αΓ(α)
(b−a)α Jα

( a+b
2 )

− f (a).

Using these equalities, we obtain

F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

+ f (b),
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

− f (a),
1
2

)

+

∫ 1

0
Lw(t)dt ≤ 0

which gives (2.1).
On the other hand, sincef is F-convex, we have

F

(

f

(

t
2

a+
2− t

2
b

)

, f (a), f (b),
t
2

)

≤ 0, t ∈ [0,1]
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and

F

(

f

(

t
2

b+
2− t

2
a

)

, f (b), f (a),
t
2

)

≤ 0, t ∈ [0,1] .

Using the linearity ofF, we get

F

(

f

(

t
2

a+
2− t

2
b

)

+ f

(

t
2

b+
2− t

2
a

)

, f (a)+ f (b), f (a)+ f (b),
t
2

)

≤ 0,

for t ∈ [0,1]. Applying the axiom (A3) forw(t) = αtα−1, we obtain

F

(

αtα−1
[

f

(

t
2

a+
2− t

2
b

)

+ f

(

t
2

b+
2− t

2
a

)]

,αtα−1 [ f (a)+ f (b)] ,

αtα−1 [ f (a)+ f (b)] ,
t
2

)

+Lw(t) ≤ 0,

for t ∈ [0,1] . Integrating over[0,1] and using axiom (A2), we have

TF,w

(∫ 1

0
αtα−1

[

f

(

t
2

a+
2−t

2
b

)

+ f

(

t
2

b+
2−t

2
a

)]

dt, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0.

This gives

TF,w

(

2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

+ f (b)+
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

− f (a), f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0,

which completes the proof. �

Corollary 2.1. If we choose F(u1,u2,u3,u4) = u1−u4u2− (1−u4)u3−ε in Theo-
rem 2.1 then the function f isε-convex on[a,b] , ε ≥ 0 and we have the inequality

f

(

a+b
2

)

− ε ≤
2α−1Γ(α+1)

(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

≤
f (a)+ f (b)

2
+

ε
2
.

Proof. Using (1.4) withw(t) = αtα−1, we have

1∫

0

Lw(t)dt = ε
1∫

0

(1−αtα−1)dt = 0. (2.3)
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Using (1.2), (2.1) and (2.3), we get

0≥ F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

+ f (b),
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

− f (a),
1
2

)

+
∫ 1

0
Lw(t)dt

= f

(

a+b
2

)

−
2α−1Γ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

− ε.

That is

f

(

a+b
2

)

− ε ≤
2α−1Γ(α+1)

(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

.

On the other hand, using (1.3) withw(t) = αtα−1, we have

TF,w(u1,u2,u3) = u1−α





1∫

0

tαdt



u2−α





1∫

0

(1− t)tα−1dt



u3− ε

= u1−
αu2+u3

α+1
− ε (2.4)

for u1,u2,u3 ∈ R. Hence, from (2.2) and (2.4), we obtain

0≥TF,w

(

2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt

=
2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

−
1

α+1
[α( f (a)+ f (b))+( f (a)+ f (b))]− ε

=
2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

− ( f (a)+ f (b))− ε.

Thus we get the inequality

2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

≤ f (a)+ f (b)+ ε

and thus the proof is completed. �

Remark2.1. If we takeε = 0 in Corollary 2.1, thenf is convex and we have the
inequality (1.9).
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Corollary 2.2. If we choose F(u1,u2,u3,u4) = u1−h(u4)u2−h(1−u4)u3 in The-
orem 2.1, then the function f is h-convex on[a,b] and we have the inequality

1

2h
(

1
2

) f

(

a+b
2

)

≤
2α−1Γ(α+1)

(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

≤ α
(∫ 1

0
[h(t)+h(1− t)] tα−1dt

)

f (a)+ f (b)
2

.

Proof. Using (1.4) and (2.1) withLw(t) = 0, we have

0≥F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

+ f (b),
2αΓ(α+1)
(b−a)α Jα

( a+b
2 )

− f (a),
1
2

)

+
∫ 1

0
Lw(t)dt

= f

(

a+b
2

)

−h

(

1
2

)

2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

.

That is
1

2h
(

1
2

) f

(

a+b
2

)

≤
2α−1Γ(α+1)

(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

.

On the other hand, using (1.8) and (2.2) withw(t) = αtα−1, we obtain

0≥TF,w

(

2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt

=
2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

−α
[∫ 1

0
h(t)tα−1dt+

∫ 1

0
h(1− t)tα−1dt

]

[ f (a)+ f (b)]

=
2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

−α
(∫ 1

0
[h(t)+h(1− t)] tα−1dt

)

[ f (a)+ f (b)] ,

i.e.
2αΓ(α+1)
(b−a)α

[

Jα
( a+b

2 )
+ f (b)+Jα

( a+b
2 )

− f (a)

]

≤ α
(∫ 1

0
[h(t)+h(1− t)] tα−1dt

)

[ f (a)+ f (b)]

and thus the proof is completed. �
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Theorem 2.2. Let I ⊆ R be an interval, f: I◦ ⊆ R → R be a mapping on I◦,
a,b ∈ I◦, a < b. Let F be linear with respect to the first three variables. If f is
F-convex on[a,b] , for some F∈ F , then we have

F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

a+ f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

b− f

(

a+b
2

)

,
1
2

)

+
∫ 1

0
Lw(t)dt ≤ 0 (2.5)

and

TF,w

(

2αΓ(α+1)
(b−a)α

[

Jα
a+ f

(

a+b
2

)

+Jα
b− f

(

a+b
2

)]

, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0

where w(t) = αtα−1.

Proof. We can prove this theorem in a way similar to the proof of Theorem 2.1.
Since f is F-convex, we have

F

(

f

(

x+y
2

)

, f (x), f (y),
1
2

)

≤ 0, x,y∈ [a,b]

For

x=
1+ t

2
a+

1− t
2

b, andy=
1+ t

2
b+

1− t
2

a,

we have

F

(

f

(

a+b
2

)

, f

(

1+ t
2

a+
1− t

2
b

)

, f

(

1+ t
2

b+
1− t

2
a

)

,
1
2

)

≤ 0, t ∈ [0,1] .

Multiplying this inequality byw(t) = αtα−1 and using axiom (A3),and then inte-
grating the result over[0,1] , we obtain (by using axiom (A1))

F

(

f

(

a+b
2

)

α
∫ 1

0
tα−1dt,α

∫ 1

0
tα−1 f

(

1+ t
2

a+
1− t

2
b

)

dt,

α
∫ 1

0
tα−1 f

(

1+ t
2

b+
1− t

2
a

)

dt,
1
2

)

+
∫ 1

0
Lw(t)dt ≤ 0.

This gives

F

(

f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

a+ f

(

a+b
2

)

,
2αΓ(α+1)
(b−a)α Jα

b− f

(

a+b
2

)

,
1
2

)

+

∫ 1

0
Lw(t)dt ≤ 0.

The proof of (2.5) is completed.
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On the other hand, sincef is F-convex, we have

F

(

f

(

1+ t
2

a+
1− t

2
b

)

, f (a), f (b),
1+ t

2

)

≤ 0, t ∈ [0,1]

and

F

(

f

(

1+ t
2

b+
1− t

2
a

)

, f (b), f (a),
1+ t

2

)

≤ 0, t ∈ [0,1] .

Using the linearity ofF, we get

F

(

f

(

1+t
2

a+
1−t

2
b

)

+ f

(

1+t
2

b+
1−t

2
a

)

, f (a)+ f (b), f (a)+ f (b),
1+t

2

)

≤ 0,

for t ∈ [0,1]. Applying the axiom (A3) forw(t) = αtα−1, we obtain

F

(

αtα−1
[

f

(

1+ t
2

a+
1− t

2
b

)

+ f

(

1+ t
2

b+
1− t

2
a

)]

,

αtα−1 [ f (a)+ f (b)] ,αtα−1 [ f (a)+ f (b)] ,
1+ t

2

)

+Lw(t) ≤ 0,

for t ∈ [0,1] . Integrating over[0,1] and using axiom (A2), we have

TF,w

(∫ 1

0
αtα−1

[

f

(

t
2

a+
2−t

2
b

)

+ f

(

t
2

b+
2−t

2
a

)]

dt, f (a)+ f (b), f (a)+ f (b)

)

+

1∫

0

Lw(t)dt ≤ 0.

This completes the proof of the theorem. �

Corollary 2.3. If we choose F(u1,u2,u3,u4) = u1−u4u2− (1−u4)u3−ε in Theo-
rem 2.2, then the function f isε-convex on[a,b] , ε ≥ 0 and we have the inequality

f

(

a+b
2

)

− ε ≤
2α−1Γ(α+1)

(b−a)α

[

Jα
a+ f

(

a+b
2

)

+Jα
b− f

(

a+b
2

)]

≤
f (a)+ f (b)

2
+

ε
2
.

Remark2.2. If we takeε = 0 in Corollary 2.1, thenf is convex and we have the
following inequality

f

(

a+b
2

)

≤
2α−1Γ(α+1)

(b−a)α

[

Jα
a+ f

(

a+b
2

)

+Jα
b− f

(

a+b
2

)]

≤
f (a)+ f (b)

2

which was given by Dragomir in [7].
One can also find the same inequality in [8].
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Corollary 2.4. If we choose F(u1,u2,u3,u4) = u1−h(u4)u2−h(1−u4)u3 in The-
orem 2.1, then the function f is h-convex on[a,b] and we have the inequality

1

2h
(

1
2

) f

(

a+b
2

)

≤
2α−1Γ(α+1)

(b−a)α

[

Jα
a+ f

(

a+b
2

)

+Jα
b− f

(

a+b
2

)]

≤ α
(∫ 1

0
[h(t)+h(1− t)] tα−1dt

)

f (a)+ f (b)
2

.
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