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EXCEPTIONAL VALUES OF p-ADIC DERIVATIVES
A SURVEY WITH SOME IMPROVEMENTS

ALAIN ESCASSUT

In memory of Abdelbaki Boutabaa

ABSTRACT. Let K be a complete ultrametric algebraically closed field of char-
acteristic 0 and let f be a meromorphic function in K admitting primitives. We
show that f has no value taken finitely many times provided an additional hy-
pothesis is satisfied: either f has finitely many poles of order > 3, or f has two
perfectly branched values, or the logarithm of the number of poles in the disk of
center 0 and diameter r is bounded by O(Log(r)) (r > 1). We make the conjec-
ture: all additional hypotheses are superfluous.

1. INTRODUCTION AND MAIN RESULTS

Let f be a complex transcendental meromorphic function that admits primitives.
Thanks to the Nevanlinna theory, it is known that for f there exists at most one
value b taken finitely many times [8]. Consider now a transcendental meromorphic
function f in an algebraically closed complete ultrametric field K of characteristic
0 [1], [9]. It is well known that a transcendental meromorphic function f can
admit at most one value b taken finitely many times [7]. But suppose now that f
admits primitives. In this survey, we recall two hypotheses proving that f admits
no value b taken finitely many times. In both hypotheses, we assume that f admits
primitives. This suggests that if a transcendental meromorphic function f in the
field K admits primitives, then f has no value taken finitely many times.

Many important results are due to Jean-Paul Bézivin [2], [3], [4].

Notation and definitions: We denote by 4(K) the K-algebra of analytic functions
in K and by M (K) the field of meromorphic functions in K (i.e. the field of

functions of the form J—c with f, g € A(K)).
8

Given two meromorphic functions f, g € M (K) we will denote by W(f,g) the
Wronskian of fand g: f'g— fg'.

Given f € M (K) and b € K, b is called an exceptional value for f if f — b has
no zero in K and a quasi-exceptional value for f if f — b has finitely many zeros
in K.
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Here, Log is the Neperian logarithm and we denote by e the number such that
Log(e) = 1 and Exp is the Archimedean exponential function.

The following theorem is well known [7]:

Theorem 0: Let f € M(K). Then f has at most one quasi-exceptional value in
K. Moreover, if f € A(K), then f has no quasi-exceptional value.

The following theorem 1 is esential to prove the main results that follow.

Theorem 1 [2]: Let f, g € A(K) be such that W(f,g) is a non-identically zero
polynomial. Then both f, g are polynomials.

Remark: In Archimedean analysis, Theorem 1 does not hold. For example, take
f(x) =Exp(x), g(x) = Exp(—x). Then W(f,g) = 2. We can also consider f(x) =
xExp(x), g(x) = Exp(—x). Then W(f,g) = 2x+ 1.

Theorem 2: Let f € M (K)\K(x) have finitely many poles of order > 3 and admit
primitives. Then f has no quasi-exceptional value.

Corollary: Let F € M (K)\ K(x) have finitely many multiple poles. Then F' has
no quasi-exceptional value.

Definition: Let f € M (K) and b € K. Then b is called a perfectly branched value
of f if all zeros of f — b are multiple except maybe finitely many. Moreover, b is
called a totally branched value of f [6] if all zeros of f — b are multiple, without
exception.

Theorem 3: Ler f € M (K) admit primitives. If f has two perfectly branched val-
ues then, f has no quasi-exceptional value. Moreover, if f has one totally branched
value, then f has no exceptional value.

Notation: Let f € M (d(0,R™)). For each r €]0,R[, we denote by s(r, f) the
number of zeros of f in d(0,r), each counted with its multiplicity and we set
(. f) = s(r ).

Let f € A(K). We can factor f in the form 7f where the zeros of f are the
distinct zeros of f each with order 1. Moreover, if £(0) # 0 we can take £(0) = 1
and if £(0) = 0, we can take f so that (f)'(0) = 1.

Theorem 4: Let f € M (K)\ K(x) admit primitives and also satisfy Log(t(r, f)) <
O(Log(r)). Then f has no quasi-exceptional value.

Example 1: Let (a,),cn be a sequence in K such that |a,| < |a,1| and lir_r: la,| =
n—s—oo

b

+eoand let f(x) = ) ———— with [b,| <1, s, >2Vnands, =2Vn>t. Then
n=0 (x - an) "

—= __ admits primitives and has no quasi-exceptional

the function f(x) =
f( ) o (x—an)x”

n
value by Theorem 2.
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Example 2: Let (a,)ncn be a sequence in K such that |a,| < |a,1| and lir_E lan| =
n—s—+oo

- b
+o0 and suppose that Log(n) = O(Log|a,|). Then the function f(x)=)_ ﬁ

= (x—ay)n
with |b,| <1, s, > 2 Vn, admits primitives and has no quasi-exceptional value by
Theorem 4.

Example 3: Let 2 € 4(K) \ K[x] be a function having only zeros of order 1 and

let P(x) € K[x]. Let f(x) = % Then f has no primitive.

U
Indeed, suppose that f has a primitive F' = v where U and V lie in 4(K) and

have no common zeros. Since the zeros of 4 are of order 1, it is~seen that all zeros
of V are of order 1 and are all the zeros of h. Consequently, V =1, V =V and
, uv-uv’
Fle——

V2
Theorem 1, U and V are polynomials and V2 = 42, a contradiction to the hypothesis
h e A(K)\ K[x].

admits no simplification. Therefore U’V — UV’ = P. But then, by

Remark: In Example 3, the function f certainly has residues different from 0
because if all residues were null, the function then would have primitives [7].

Now, by Theorems 2, 3 and 4 the following conjecture appears likely:

Conjecture: A transcendental meromorphic function in K admitting primitives
has no quasi-exceptional value.

2. THE PROOFS

Notation: Let f € M (K), let a € K and let r > 0. Then |f(x)| has a limit when
|x —a| tends to r (while remaining different from r) which is denoted by @, ,(f).
Particularly, if @ = 0 we put ‘h‘m |f ()] = |f](r).
[x[#r
The following proposition 1 is well known in ultrametric analysis [7].

Proposition 1: Let f € M (K). For each n € N and for all r €]0,R], we have
f1(r)

mo

7)< I

Proposition 2: Let h, | € A(K) be such that W'l — hl' = ¢ € K, with h non-affine.
Then ¢ =0 and — is a constant.
Suppose ¢ # 0. If h(a) = 0, then I(a) # 0. Next, h and / satisfy
h// l//

h l @)
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Remark first that since 4 is not affine, /4" is not identically zero. Next, every zero
of h or [ of order > 2 is a trivial zero of A'l — hl’, which contradicts ¢ # 0. So we
can assume that all zeros of 4 and [ are of order 1.

Now suppose that a zero a of & is not a zero of 4”. Since a is a zero of h of order
i "

1, m has a pole of order 1 at a and so does T hence /(a) = 0, a contradiction.

Consequently, each zero of & is a zero of order 1 of / and is a zero of 4" and hence,
1

" is an element ¢ of M (K) that has no pole in K. Therefore ¢ lies in A4(K).

The same holds for / and so, [” is of the form y/ with y € 4(K). But since
h// l//
W we have ¢ = .

Now, suppose &, [ belong to A(K). Since 4" is of the form ¢A with ¢ € 4(K), we

1
have |1"|(r) = |0|(r)|k|(r). But by Proposition 1, we know that |h”|(r) < r—2|h|(r),
a contradiction when r tends to 4. Consequently, ¢ = 0. But then #'l —hl' =0

implies that the derivative of 7 is identically zero, hence 7 is constant, which ends

the proof.

Corollary 2.a : Let h, | € A(K) with coefficients in Q, also be entire functions in
C, with h non-affine. If W'l — hl is a constant c, then ¢ = 0.

Proposition 3: Lety € M (K) and let (‘E) be the differential equations y") —yy =
0. Let E be the sub-vector space of M (K) of the solutions of (‘E).

If n =1, then the dimension of E is at most 1.

If v belongs to A(K), then E = {0}.

Proof. In each case, we assume that (£) admits a non-identically zero solution A.
Then A" may not be identically zero.
h
Suppose first that n = 1. Suppose that g € E. Let u = —. Since /' = yh we
g g :
have u'g + ug’ = yug therefore u> = uy = u' +u>- and hence ' =01i.e. uisa

constant. Consequently, E is at most of dimension 1.

JAQ)
Suppose now that y lies in 4(K). Then |y|(r) = | 7 (’ ()r ) is an increasing
r
o - . A (O N R
function in r in ]0,+oo[, a contradiction to the inequality A7) < — coming
r 7

from Proposition 1.

Proof of Theorem 1 [2]
First, by Proposition 2 we check that the claim is satisfied when W(f,g) is a
polynomial of degree 0. Now, suppose the claim holds when W (f, g) is a polyno-
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mial of certain degree n. We will show it for n+ 1. Let f,g € A(K) be such that
W (f,g) is a non-identically zero polynomial P of degree n+ 1

Thus, by the hypothesis, we have f'g — fg' = P, hence f”g — fg” = P'. We can
extract g’ and get g’ = (fg—;l)). Now consider the function Q = f”¢’ — f'g” and
replace g’ by what we just found: we can get Q = f’((fgj;fg)) - %

Now, we can replace g — fg” by P’ and obtain Q = M. Thus, in that

expression of Q, we can write |Q|(R) < %

0. But by definition, Q belongs to 4(K). Consequently, Q is a polynomial of
degree t <n—1.

Now, suppose Q is not identically zero. Since Q =W (f’,¢’) and since deg(Q) <
n, by the induction hypothesis f’ and g’ are polynomials and so are f,g. Finally,
suppose Q = 0. Then P'f' — Pf” = 0 and therefore f’, P are two solutions of the
differential equation of order 1 for meromorphic functions in K: () y' = yy with
Y= %, whereas y belongs to 4(K). By Proposition 3, the space of solutions of
(‘E) is of dimension 0 or 1. Consequently, there exists A € K such that /' = AP,
hence f is a polynomial. The same holds for g. This ends the proof of Theorem 1.

, hence |Q|(R) < ‘P;L& VR >

U
Proposition 4: Let U,V € A(K) have no common zero and let f = v If ' has
finitely many zeros, there exists a polynomial P € K|x| such that U'V —UV' = PV.

Proof. 1If V is a constant, the statement is obvious. So, we assume that V is not
a constant. Now V divides V' and hence V' factorizes in the way V' = VY with
Y € A(K). Then no zero of Y can be a zero of V. Consequently, we have

B u'v-uv’ B U'v-uy
v vy
The two functions U’V — UY and 7217 have no common zero since neither have

U and V. So, the zeros of f’ are those of U'V — UY which therefore has finitely
many zeros and consequently is a polynomial P, hence U'V — UV’ = PV. O

f'(x)

Proof of Theorem 2:

Proof. Suppose that f admits a quasi-exceptional value. Without loss of generality,
we can assume that this value is 0. Let F' be a primitive of f and let F = v with
U, V € 4(K), having no common zero. By Proposition 4, there exists a polynomial
P such that U'V — UV’ = PV. But since f has finitely many poles of order > 3, F
has finitely many poles of order > 2 hence V' has finitely many zeros, hence it is a

polynomial. But then PV is a polynomial and then, by Theorem 1, both U, V are
polynomials, therefore F € K(x) a contradiction. 0



122 ALAIN ESCASSUT

Notation: Given r > 0, we denote by d(0,r) the disk {x € K | |x| < r}. Given
f € M(K), we denote by Z(r, f) the counting function of the zeros of f in the disk
d(0,r), counting multiplicity, and by Z(r, f) the counting function of the zeros of f

T f) =

in the disk d(0, r), ignoring multiplicity. Next we put N(r, f) = Z(r, 7

1

max(Z(r, f),N(r,f)) and N(r, f) = Z(r, ?)

Let us now recall a simplified version of the Second Main Theorem [5], [7]:

Second Main Theorem: Let f € M (K) and let oy, ..., 0, € K, with g > 2. Then
q p— J—
(g—1DT(r,f) < ZZ(r,f—Ocj)—i-N(r,f) —logr+0O(1)Vrel
=1

Proof of Theorem 3 Suppose that f has two perfectly branched values a and b and
a quasi-exceptional value c¢. Since f admits primitives, N(r, f) satisfies N(r, f) <

N
# +0o(T (r, f)) hence by the second Main Theorem, we have

(Z(raf_a)+Z(r7f_b)+N(r7f))

27 (1 f) < : )
hence 27 (r, f) < w +0o(T(r,f)), a contradiction.

Suppose now that f has one totally branched values a and an exceptional value
c¢. Since f admits primitives, by the second Main Theorem, now we have

(raf_a)+N(r7f)
2

T(r,f) < z
2T (1, f)
2

—log(r)+0(1)

hence T'(r, f) <

—log(r) + O(1), a contradiction.

Notation: For each n € N*, we set A, = max{ﬁ, 1 <k < n}. Given positive
n!

q'(n—q)!’
Remark: Forevery n € N*, we have A,, < n because k|k| > 1 Vk € N. The equality
holds for all n of the form p.

Proposition 5: Let U, V € A(d(0,R™)). Then for all r €]0,R| and n > 1 we have
UV —Uv'|(r)

rnfl

integers n, ¢, we denote by C;! the binomial coefficient

Y —uv®|(r) < n!A,
More generally, given j, | € N, we have

lu'v—-uv’|(r)

j 1 l j .
|U(J)V( ) _ ! )V(J)|(r) <UD .
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U / . . .
Proof. Set g = v and f = g'. Applying Proposition 1 to f for k — 1, we obtain

#9109 = 101 < - i) = ey S

U
As in the proof of Proposition 1, we set U = V(V) By Leibniz formula again,

now we can obtain

o= Faveo(7)" eve ()
hence

um _y o <%> _ i cay (=4 (%)(4)' ()
g=1

Now we have
‘ <g>(q)‘(r) =18 9|(r) < |(g— 1)!\%

and

V0 |(7) < [(n— g )

-

Consequently, the general term in (1) is upper bounded as

o (UND ()= @))((a— DY) UV —UV'|(r)
() 0 < g e
|n!||U'V —=UV'|(r)

Ay
Vi(r)rm!
Therefore by (1) we obtain
ny /
(Um _V<n><9> ((r) <, )LV = UV
4 V{(r)r=!
and finally
u'v-uv’
(UWV—V(")U (r) < |”!|7‘n’,n—1’(r)-

We can now generalize the first statement. Set P; = U Wy —uvl). By induc-
tion, we can show the following equality that already holds for / < j:
l
/(1 Dy (i h hp(l—h
vy _yy () = Z Cr(—1) Pj('+h )
h=0

Then, the second statement follows by applying the first. O
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Proposition 6: Let U,V € A(K) and let r, R €]0,+oo[ satisfy r < R. For all
x,y € Kwith |x| <R and |y| < r, we have the inequality:

RIU'V —UV'|(R)
e(LogR —Logr)
Proof. By Taylor’s formula at the point x, we have

U™ (x)V (x) = U (x)V™ (x)
n!

Ux+y)V(x) —UX)V(x+y)| <

n

y.

Ux+y)V(x) —U@)V(x+y) =Y

n>0

Now, by Proposition 5, we have

U'v-UV'|(R
<2,V 0VIR),,
r n
R) '
As remarked above, we have A,, < n. Hence one has

lim 7»,,(%)" —0.

n—r—+oo

(n) _ (n
Consequently, on one hand lim UM )V (x) U@V (x)

n—+oeo n!

UV () -~ UV,

n!

= MR|IU'V —UV'|(R)(

y"| =0, on the other

n
hand, we can define B = max,>{A, (1%) R|U'V —UV'|(R) and we have |U (x+

YV (x) —U(x)V(x+y)| < B. Now, we can check that the function & defined in
1

e(LogR —Logr)

r

t
10, +-oo] as h(t) = t(R) reaches its maximum at the point u =

1
Consequently, B < ———— and therefore
e(LogR —Logr)

RIU'V —UV'|(R)

. U
e(LogR —Logr)

U(x+y)V () =UE)V(x+y)| <

Notation: Let D = d(a,s) and let H(D) be the K-algebra of analytic elements on
d(a,s), i.e. the K-Banach space of converging power series converging in d(a,s)
[9]. Given b € d(a,s) and r €]0,s], then |f(x)| has a limit whenever |x — b| tends
to r, with [x — b| # r and we denote by @, () the number |_librln |f(x)] 161, [7].
- bir
Given f € M (K) and r > 0, we denote by s(r, f) the number of zeros of f in

1
the disk d(0, r), each counted with its multiplicity and we put ¢(r, f) = s(r, ?)

Finally we denote by B(r, f) the number of multiple poles of f, each counted
with its multiplicity.
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Schwarz Lemma [6] Let D = d(a,s) and let f be a power series converging in
the disk d(a,s) and having at least (resp. at most) q zeros in d(a,r) with g > 0 and
q q
0 <r<s. Then we have M > (s) , (resp. M < (f) ).
@ar(f) Qar(f) ~ N1
Schwarz Corollary: Ler f € A(K). The following two statements are equivalent:
f is a polynomial of degree q,
|f1(r)

rd

Proposition 7: Let f € M (K) be such that for some c,q €]0,+co|, t(r, f) satisfies
t(r,f) <crlin [1,+oo[. If f' has finitely many zeros, then f € K(x) .

there exists q € N such that has a finite limit when r tends to +o.

U
Proof. Suppose f has finitely many zeros and set f = v If V is a constant, the
statement is immediate. So, we suppose V is not a constant and hence it admits
at least one zero a. By Proposition 4, there exists a polynomial P € Klx] such
that U'V — UV’ = PV. Next, we take r,R € [1,4oo[ such that |a| < r < R and
x€d(0,R), y€d(0,r). By Proposition 5 we have

R|U'V —UV'|(R)
|U(x+y)V(x) =Ux)V(x+y)| < e¢(LogR —Logr)

Notice that U(a) # 0 because U and V have no common zero. Now set [ =

1
max (1, |a|) and take r > [. Putting ¢c; = —————, we have
e|lU(a)]
RIP|(R)|V|(R
Viaty)| < o SRV,
ogR — Logr
Then taking the supremum of |V (a+y)| inside the disk d(0,r), we can derive
RIP|(R)|V|(R)
Vv <cl————=-. 1
Vie) < LogR — Logr (1)

1
Let us apply Schwarz Lemma, by taking R = r+ - after noticing that the number
. r
of zeros of V(R) is bounded by s(r,V). So, we have

~ 1 \B(r+7)V) ~
VIR < (14-m)" " IVI0): 2)

Now, due to the hypothesis: s(r,V) =t(r, f) < cr?in [1,4oo[, we have
1 \B(r+7).Y) 1 lert57)"]
<1+r‘1+1) = (1+r‘1+1> - 3

1 1
Exp [c(r—l— ﬁ)qLog(l + E)] .
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The function A(r) = c(r+ = )"Log(1+ r,,,%) is continuous on ]0, 4-oo[ and equiva-
lent to © when r tends to +oo. Consequently, it is bounded on [/, 4co|. Therefore,

,
by (2) and (3) there exists a constant M > 0 such that, for all r € [I,+oo[ by (3) we
obtain

- 1 -
Plr+ ) < MIVI(r). )
On the other hand,

1 1
Log(r+ ﬁ) —Logr = Log(l + W)

clearly satisfies an inequality of the form

1 )
Log(1+777) = i
in [/,+oo[ with ¢, > 0. Moreover, we can obviously find positive constants c3, ¢4
such that . |
_ _ c4

(r WPl (r+ ) S ear.
Consequently, by (1) and (4) we can find positive constants cs, c¢ such that [V|(r)
csrs|V|(r) Vr € [l,+oo[. Thus, writing again V = VV, we have |V|(r)|V|(r)
csr°s|V|(r) and hence

<
<

[VI(r) < csr Vr € [l,+oo].
Consequently, by Schwarz Corollary V is a polynomial of degree < c¢ and hence

it has finitely many zeros and so does V. But then, by Theorem 2, f must be a
rational function. U

Corollary 7.a: Let f be a meromorphic function on K such that, for some c,q €
10, o0, t(r, f) satisfies t(r, f) < cr?in [1,~+oo[. If for some b € K f' — b has finitely
many zeros, then f is a rational function.

Proof. Suppose f' — b has finitely many zeros. Then f — bx satisfies the same
hypothesis as f, hence it is a rational function and so is f. O

Theorem 4 is now a simple corollary of Corollary 7.a:

Proof of Theorem 4

Proof. Indeed, since f admits primitives, all poles are multiple, and given a prim-
itive F of f, we have t(r,F') <t(r,f). Consequently, by the hypothesis we have
Log(7(r,F)) < O(Log(r)) and hence, thanks to Corollary 7.a, F’ has no quasi-
exceptional value. O
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