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SLANT LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN
PRODUCT MANIFOLDS

TEJINDER KUMAR, SANGEET KUMAR1 AND PANKAJ KUMAR

ABSTRACT. The aim of the present paper is to investigate geometric charac-
teristics of slant lightlike submanifolds of semi-Riemannian product manifolds.
We obtain characterization theorems for the existence of slant lightlike subman-
ifolds of semi-Riemannian product manifolds. We also find a necessary and
sufficient condition enabling the induced connection on slant lightlike subman-
ifolds of semi-Riemannian product manifolds to be a metric connection. Then,
we establish some results for the integrability of distributions associated with
this class of lightlike submanifolds. Consequently, we investigate totally um-
bilical slant lightlike submanifolds of semi-Riemannian product manifolds. In
particular, we prove that every totally umbilical slant lightlike submanifold of a
semi-Riemannian product manifold is always totally geodesic.

1. INTRODUCTION

The concept of slant submanifolds arises from slant immersions, introduced by
Chen [3] and has been studied extensively in [4]. Literature suggests that a variety
of generalized classes of slant submanifolds have been investigated by Carriazo [2],
Papaghiuc [12] and Sahin [13]. On the other hand, the study of slant submanifolds
in contact geometry was introduced and developed by Lotta [10]- [11]. In the last
two decades, the study of lightlike submanifolds is a topic of special interest for
mathematicians and physicists. One may see that the geometry of lightlike sub-
manifolds is significantly different from those of non-degenerate submanifolds. In
the case of lightlike submanifolds, the tangent bundle is non-complementary with
the normal bundle, which makes the theory of lightlike submanifolds more com-
plicated and interesting than non-degenerate submanifolds. In recent years, the
theory of lightlike submanifolds developed many potential applications in mathe-
matical physics and relativity. For instance, the concept of lightlike submanifolds
has been successfully employed in the study of black holes, asymptotically flat
spacetimes, Killing horizon and electronic and radiation fields (see, [5] and [8]).
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Then, considering the effectiveness of the concept of lightlike submanifolds and in-
teresting geometric features of slant submanifolds, Sahin [14], introduced the idea
of slant lightlike submanifolds of indefinite almost Hermitian manifolds. Later,
Sahin proved the existence of slant lightlike submanifolds in Sasakian manifolds
in [15]. Afterwards, several other generalizations of slant lightlike submanifolds
namely screen slant lightlike submanifolds, pointwise slant lightlike submanifolds,
screen pseudo slant lightlike submanifolds and semi-slant lightlike submanifolds
of indefinite Kaehler manifolds were considered and investigated by many others
(for details, see [7], [16], [17], [18]).

It is interesting to note that semi-Riemannian product manifolds are a general-
ization of Riemannian product manifolds in the semi-Riemannian case and they
have rich geometric properties. Therefore, it is interesting to study lightlike sub-
manifolds of semi-Riemannian product manifolds. In this regard, the concept of
GCR-lightlike submanifolds of semi-Riemannian product manifolds has been in-
troduced and investigated by Kumar et al. [9]. But the concept of slant lightlike
submanifolds of semi-Riemannian product manifolds is yet to be explored.

Therefore, in the present paper, we investigate the geometry of slant lightlike
submanifolds of semi-Riemannian product manifolds and justify their existence
by obtaining several characterization theorems. Then, we give a non-trivial ex-
ample of slant lightlike submanifolds of semi-Riemannian product manifolds. We
also find a necessary and sufficient condition for the induced connection on a slant
lightlike submanifold of a semi-Riemannian product manifold to be a metric con-
nection. Then, we establish some results for the integrability of distributions aris-
ing in this class of lightlike submanifolds. Finally, we investigate totally umbilical
slant lightlike submanifolds of semi-Riemannian product manifolds and show that
every totally umbilical slant lightlike submanifold of a semi-Riemannian product
manifold is totally geodesic.

2. PRELIMINARIES

2.1. Geometry of lightlike submanifolds

Suppose we have a n - dimensional submanifold (K,g) of an (m+ n) real di-
mensional semi-Riemannian manifold (K̄, ḡ) such that ḡ is a metric with constant
index q satisfying m,n ≥ 1, 1 ≤ q ≤ m+n−1. If the metric ḡ is degenerate on T K,
then TpK and TpK⊥ both are degenerate and there exists a radical (null) subspace
Rad(TpK) such that Rad(TpK) = TpK ∩ TpK⊥. If Rad(T K) : p ∈ K → Rad(TpK)
is a smooth distribution on K of rank r(> 0), 1 ≤ r ≤ n, then K is known as an
r-lightlike submanifold of K̄ (see, [5]). Then the radical distribution Rad(T K) of
T K is defined as:

Rad(T K) = ∪p∈K{ξ ∈ TpK|g(u,ξ) = 0, ∀ u ∈ TpK,ξ ̸= 0}.
Further, let S(T K) be the screen distribution in T K such that T K = Rad(T K) ⊥
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S(T K) and similarly let S(T K⊥) be a screen transversal vector bundle in T K⊥

such that T K⊥ = Rad(T K)⊥ S(T K⊥).
Moreover, there exists a local null frame {Ni} of null sections with values in the
orthogonal complement of S(T K⊥) in S(T K⊥)⊥ such that

ḡ(Ni,ξ j) = δi j, ḡ(Ni,N j) = 0, (2.1)

for any i, j ∈ {1,2, ..,r}, where {ξ j} is any local basis of Γ(Rad(T K)). It implies
that tr(T K) and ltr(T K), respectively, are vector bundles in T K̄|K and S(T K⊥)⊥

with the property
tr(T K) = ltr(T K)⊥ S(T K⊥)

and

T K̄|K =T K ⊕ tr(T K)=S(T K)⊥(Rad(T K)⊕ ltr(T K))⊥S(T K⊥). (2.2)

Let ∇̄ and ∇, respectively, denote the Levi-Civita connection on K̄ and torsion-free
linear connection on K. Then, the Gauss and Weingarten formulae are given as

∇̄Y Z = ∇Y Z +hl(Y,Z)+hs(Y,Z), (2.3)

∇̄Y N =−ANY +∇
l
Y N +Ds(Y,N), (2.4)

∇̄YW =−AWY +Dl(Y,W )+∇
s
YW, (2.5)

where Y,Z ∈ Γ(T K),N ∈ Γ(ltr(T K)) and W ∈ Γ(S(T K⊥)). Further by employing
Eqs. (2.3) and (2.5), we derive

g(AWY,Z) = ḡ(hs(Y,Z),W )+ ḡ(Z,Dl(Y,W )). (2.6)

Let us denote the projection morphism of T K on the screen distribution S(T K) by
η. It follows that

∇Y ηZ = ∇
∗
Y ηZ +h∗(Y,ηZ), ∇Y ξ =−A∗

ξ
Y +∇

∗t
Y ξ, (2.7)

where {h∗(Y,ηZ),∇∗t
Y ξ} ∈ Γ(Rad(T K)) and {∇∗

Y ηZ,A∗
ξ
Y} ∈ Γ(S(T K)). Further,

employing Eqs. (2.4), (2.5) and (2.7), we attain

ḡ(hl(Y,ηZ),ξ) = g(A∗
ξ
Y,ηZ). (2.8)

As ∇̄ is a metric connection on K̄, for any Y,Z,W ∈ Γ(T K), one has

(∇Y g)(Z,W ) = ḡ(hl(Y,Z),W )+ ḡ(hl(Y,W ),Z), (2.9)

which implies that ∇ is not always a metric connection on K.

2.2. Semi-Riemannian product manifolds

Suppose that (K1,g1) and (K2,g2) are two m1 and m2-dimensional semi- Rie-
mannian manifolds with constant index q1 > 0 and q2 > 0, respectively. Consider
π : K1×K2 →K1 and σ : K1×K2 →K2 the projection maps given by π(y,z) = y and
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σ(y,z) = z, for any (y,z) ∈ K1 ×K2. We denote the product manifold by (K̄, ḡ) =
(K1 ×K2, ḡ), where

ḡ(Y,Z) = g1(π∗Y,π∗Z)+g2(σ∗Y,σ∗Z),

for any Y,Z ∈ Γ(T K̄), where ∗ stands for the differential mapping. Then we have

π
2
∗ = π∗, σ

2
∗ = σ∗, π∗σ∗ = σ∗π∗, π∗+σ∗ = I,

where I is the identity map of T (K1 × K2). Thus (K̄, ḡ) is an (m1 + m2) - di-
mensional semi-Riemannian manifold with constant index (q1 + q2). The semi-
Riemannian product manifold K̄ = K1 ×K2 is characterized by K1 and K2, which
are totally geodesic submanifolds of K̄. Now if we put F = π∗−σ∗ we see that
F2 = I and

ḡ(FY,Z) = ḡ(Y,FZ), (2.10)

for any Y,Z ∈ Γ(T K̄), where F is called an almost product structure on K1 ×K2. If
we denote the Levi-Civita connection on K̄ by ∇̄, then it can be seen that

(∇̄Y F)Z = 0, (2.11)

for any Y,Z ∈ Γ(T K̄), that is, F is parallel with respect to ∇̄.

3. SLANT LIGHTLIKE SUBMANIFOLDS

Firstly, we prove two essential lemmas following [14], for later use.

Lemma 3.1. Consider an r-lightlike submanifold K of semi-Riemannian product
manifold K̄ with index 2q and FRad(T K) a distribution on K with Rad(T K)∩
FRad(T K)= {0}. Then, Fltr(T K) is a subbundle of S(T K) such that FRad(T K)∩
Fltr(T K) = {0}.

Proof. By the hypothesis, we have FRad(T K)⊂ S(T K). On the contrary, assume
that ltr(T K) is invariant. Choose ξ ∈ Γ(Rad(T K)) and N ∈ Γ(ltr(T K)), thus we
have 1= ḡ(ξ,N)= ḡ(Fξ,FN)= 0 as Fξ∈Γ(S(T K)) and FN ∈Γ(ltr(T K)), which
leads to a contradiction. It implies that ltr(T K) is not invariant w.r.t. F . Now
ḡ(Fξ,FN) = 0, as S(T K⊥) is orthogonal to S(T K). But ḡ(ξ,N) = ḡ(Fξ,FN) ̸= 0,
for ξ ∈ Γ(Rad(T K)), which is again a contradiction. Therefore, it implies that FN
does not belong to S(T K⊥). Thus, we conclude that Fltr(T K) is a distribution on
K. Therefore, FN does not belong to FRad(T K). Moreover, if FN ∈Γ(Rad(T K)),
then we have F2N = N ∈ Γ(FRad(T K)), which is not possible. On the other hand,
FN does not belong to FRad(T K). Hence, Fltr(T K) ⊂ S(T K) and Fltr(T K)∩
FRad(T K) = {0}. □

Lemma 3.2. For an r-lightlike submanifold K of a semi-Riemannian product man-
ifold K̄, with the assumption of Lemma 3.1 (provided, r = q), any complementary
distribution to FRad(T K)⊕Fltr(T K) in S(T K) must be Riemannian.
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Proof. Assume that dim(K̄) = m+n and dim(K) = m. From lemma 3.1, we have
Fltr(T K)⊕FRad(T K)⊂ S(T K). Now, assume D is the complementary distribu-
tion to Fltr(T K)⊕FRad(T K) in S(T K). Take a local quasi-orthonormal field of
frames on K̄ along K written as {ξi,Ni,Fξi,FNi,X j,Wk}, for i ∈ {1, ...,r},
j ∈{3r+1, ...,m},k∈{r+1, ...,n}, where {ξi} and {Ni}, respectively, are lightlike
bases of Rad(T K) and ltr(T K), whereas {Fξi,FNi,X j} and {Wk} are orthonormal
basis of S(T K) and S(T K⊥), respectively. Then, we can construct orthonormal
basis {U1, ...,U2r,V1, ...,V2r} as follows.

U1 =
1√
2
(ξ1 +N1), U2 =

1√
2
(ξ1 −N1),

U3 =
1√
2
(ξ2 +N2), U4 =

1√
2
(ξ2 −N2),

.......... ..........

U2r−1 =
1√
2
(ξr +Nr), U2r =

1√
2
(ξr −Nr),

V1 =
1√
2
(Fξ1 +FN1), V2 =

1√
2
(Fξ1 −FN1),

V3 =
1√
2
(Fξ2 +FN2), V4 =

1√
2
(Fξ2 −FN2),

.......... ..........

V2r−1 =
1√
2
(Fξr +FNr), V2r =

1√
2
(Fξr −FNr),

for the basis {ξ1, ...,ξr,N1, ...,Nr,Fξ1, ...,Fξr,FN1, ...,FNr} of Rad(T K)⊕ltr(T K)⊕
FRad(T K)⊕Fltr(T K). Clearly, Span{ξi,Ni,Fξi,FNi} is a non-degenerate space,
thus we conclude that Rad(T K)⊕ ltr(T K)⊕ FRad(T K)⊕ Fltr(T K) is a non-
degenerate space with index 2r on K̄. As index(T K̄)= index(Rad(T K)⊕ltr(T K))+
index(FRad(T K)⊕Fltr(T K))+ index(D ⊥ S(T K⊥)). Therefore, we obtain 2q =
2r + index (D ⊥ S(T K⊥)), which implies that D ⊥ S(T K⊥) is Riemannian (pro-
vided, r = q), that is, index(D ⊥ S(T K⊥)) = 0. Hence, the result follows. □

We note that Rad(T K) is degenerate in T K, therefore vectors of Rad(T K) can
not be used to study the angle between them. In this regard, Lemma 3.2 plays a
crucial role in defining the angle between vectors. Thus, we define a slant light-
like submanifold of semi-Riemannian product manifolds following Sahin [14] as
follows.

Definition 3.1. A q-lightlike submanifold K of a semi-Riemannian product mani-
fold K̄ with index 2q, is called a slant lightlike submanifold of K̄, if

(A) Rad(T K) is a distribution on K such that FRad(T K)∩Rad(T K) = {0}.
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(B) For each non-zero vector field Z tangent to D at z ∈ U ⊂ K, the angle θ(Z)
between FZ and the vector space Dz is constant (known as slant angle), that
is, it is independent of the choice of z ∈ U ⊂ K and Z ∈ Dz, where D is com-
plementary distribution to FRad(T K)⊕Fltr(T K) in the screen distribution
S(T K).

Then, in view of Definition 3.1, T K of K is given as

T K = Rad(T K)⊥ (FRad(T K)⊕Fltr(T K))⊥ D. (3.1)

Note: In the forthcoming part, we shall denote a slant lightlike submanifold by
s.l.s. and a semi-Riemannian product manifold by K̄, unless otherwise indicated.
For Y ∈ Γ(T K), we have

FY = φY +SY, (3.2)
where φY ∈ Γ(T K) and SY ∈ Γ(tr(T K)). Similarly, for any V ∈ Γ(tr(T K)),

FV = tV +nV, (3.3)

where tV ∈ Γ(T K) and nV ∈ Γ(tr(T K)).
Consider P1, P2, P3 and P4 the projections of T K on Rad(T K), F(Rad(T K)),
F(ltr(T K)) and D, respectively. Then, for any Y ∈ Γ(T K), we have

Y = P1Y +P2Y +P3Y +P4Y, (3.4)

then applying F to Eq. (3.4), we obtain

FY = FP1Y +FP2Y +FP3Y +FP4Y, (3.5)

which after using Eq. (3.2) yields that

FY = FP1Y +FP2Y +φP4Y +SP3Y +SP4Y. (3.6)

Moreover, Eq. (3.6) can be rewritten as

FY = φY +SP3Y +SP4Y, (3.7)

where φY = FP1Y +FP2Y +φP4Y .
Further differentiating Eq. (3.6) along with Eqs. (2.3)-(2.5), (3.2) and (3.3) and
then considering the components on Rad(T K),FRad(T K),Fltr(T K),
D, ltr(T K) and S(T K⊥), respectively, we derive

P1(∇Y1FP1Y2)+P1(∇Y1FP2Y2)+P1(∇Y1φP4Y2) =

P1(ASP3Y2Y1)+P1(ASP4Y2Y1)+FP2∇Y1Y2. (3.8)

P2(∇Y1FP1Y2)+P2(∇Y1FP2Y2)+P2(∇Y1φP4Y2) =

P2(ASP3Y2Y1)+P2(ASP4Y2Y1)+FP1∇Y1Y2. (3.9)

P3(∇Y1FP1Y2)+P3(∇Y1FP2Y2)+P3(∇Y1φP4Y2) =

P3(ASP3Y2Y1)+P3(ASP4Y2Y1)+Fhl(Y1,Y2). (3.10)
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P4(∇Y1FP1Y2)+P4(∇Y1FP2Y2)+P4(∇Y1φP4Y2) =

P4(ASP3Y2Y1)+P4(ASP4Y2Y1)+φP4∇Y1Y2 + ths(Y1,Y2). (3.11)

hl(Y1,FP1Y2)+hl(Y1,FP2Y2)+hl(Y1,φP4Y2) =

SP3∇Y1Y2 −∇
l
Y1

SP3Y2 −Dl(Y1,SP4Y2). (3.12)

hs(Y1,FP1Y2)+hs(Y1,FP2Y2)+hs(Y1,φP4Y2) =

SP4∇Y1Y2 −∇
s
Y1

SP4Y2 −Ds(Y1,SP3Y2)+nhs(Y1,Y2). (3.13)

Lemma 3.3. For a s.l.s. K of K̄, one has SP4Y ∈ Γ(S(T K⊥)), for Y ∈ Γ(T K).

Proof. For Y ∈ Γ(T K), we have SP4Y ∈ Γ(S(T K⊥)) if and only if ḡ(SP4Y,ξ)
= 0, for ξ∈Γ(Rad(T K)). Therefore, ḡ(SP4Y,ξ)= ḡ(FP4Y −φP4Y,ξ)= ḡ(FP4Y,ξ)=
g(P4Y,Fξ) = 0 implies SP4Y has no components in ltr(T K). Hence the result fol-
lows. □

Note: From Lemma 3.3, we have SD ⊂ S(T K⊥), which implies that there exist
µ ⊂ S(T K⊥) such that S(T K⊥) = SD ⊥ µ.

Theorem 3.1. (Existence Theorem) A q-lightlike submanifold K of K̄ is s.l.s., if
and only if

(i) Fltr(T K) is a distribution on K.
(ii) φ2P4Z = cos2 θ(P4Z) f or Z ∈ Γ(T K).

Proof. Assume that K be a s.l.s. of K̄. Then from Lemma 3.1, we have Fltr(T K)
is also a distribution on K such that Fltr(T K) ⊂ S(T K), which proves (i). On the
other hand, the angle between Dz and FP4Z is constant, thus we acquire

cosθ(P4Z) =
ḡ(FP4Z,φP4Z)
|FP4Z||φP4Z|

=
ḡ(P4Z,FφP4Z)
|P4Z||φP4Z|

=
ḡ(P4Z,φ2P4Z)
|P4Z||φP4Z|

. (3.14)

Moreover, we also have

cosθ(P4Z) =
|φP4Z|
|FP4Z|

. (3.15)

Thus from Eqs. (3.14) and (3.15), we derive

cos2
θ(P4Z) =

ḡ(P4Z,φ2P4Z)
|P4Z|2

. (3.16)

As θ(P4Z) is constant, thus we have

φ
2P4Z = cos2

θ(P4Z), (3.17)

which proves (ii).
Conversely, suppose that K is a q-lightlike submanifold of K̄ satisfying (i) and (ii).
Then by (i), it follows that FRad(T K) is a distribution on K. Further, Lemma 3.2



162 TEJINDER KUMAR, SANGEET KUMAR AND PANKAJ KUMAR

gives that the complementary distribution of FRad(T K)⊕Fltr(T K) in S(T K) is
Riemannian. Therefore

g(φP4Z,φP4Z) = g(φ2P4Z,P4Z) = cos2
θ(P4Z)g(P4Z,P4Z), (3.18)

for any P4Z ∈ Dz, which implies that

cos2
θ(P4Z) =

g(φP4Z,φP4Z)
g(P4Z,P4Z)

. (3.19)

Hence, the proof is complete. □

Theorem 3.2. (Existence Theorem) A q-lightlike submanifold K of K̄ is s.l.s., if
and only if

(i) Fltr(T K) is a distribution on K.
(ii) tSP4Z = sin2

θ(P4Z), for every vector Z on K.

Proof. Suppose that K is a s.l.s. of K̄. Then employing Lemma 3.1, Fltr(T K) is
also a distribution on K such that Fltr(T K) ⊂ S(T K), which proves (i). Further,
applying F to Eq. (3.6) and using Eqs. (3.2) and (3.6), we acquire Z = P1Z +
P2Z + φ2P4Z + SφP4Z +FSP3Z + tSP4Z + nSP4Z. Then comparing the tangential
components on both sides, we derive

Z = P1Z +P2Z +φ
2P4Z +P3Z + tSP4Z. (3.20)

Further, employing Eq. (3.4), we get

P4Z = φ
2P4Z + tSP4Z. (3.21)

Since K is s.l.s., then using Theorem 3.1, we have φ2P4Z = cos2 θP4Z, which fur-
ther gives tSP4Z = sin2

θ(P4Z),which proves (ii).
Conversely, let K be a q-lightlike submanifold of K̄ such that (i) and (ii) hold.
By (ii), we have tSP4Z = sin2

θ(P4Z) and further using Eq. (3.21), we obtain
φ2P4Z = (1−sin2

θ(P4Z)) = cos2(P4Z). Hence, the result follows by taking similar
steps as in the proof of Theorem 3.1. □

Corollary 3.1. For a s.l.s. K of K̄, one has

g(φP4Y1,φP4Y2) = cos2
θg(P4Y1,P4Y2) (3.22)

and
ḡ(SP4Y1,SP4Y2) = sin2

θg(P4Y1,P4Y2), (3.23)
for Y1,Y2 ∈ Γ(T K).

Example 3.1. Consider K a submanifold of the semi-Euclidean space (R10
2 , ḡ)

given by the equations

x1 = u1, x2 = u2, x3 = u1, x4 = u5, x5 = u4 sinθ,

x6 = u3k sinθ, x7 = u4 cosθ, x8 = u3k cosθ, x9 = ku4, x10 = u3
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where the signature of g is (−,−,+,+,+,+,+,+,+,+) with respect to the basis
(∂x1,∂x2,∂x3,∂x4,∂x5,∂x6,∂x7,∂x8,∂x9,∂x10). Then T K is spanned by Z1,Z2,Z3,Z4,Z5,
where

Z1 = ∂x1 +∂x3, Z2 = ∂x2, Z3 = k sinθ∂x6 + k cosθ∂x8 +∂x10,

Z4 = sinθ∂x5 + cosθ∂x7 + k ∂x9, Z5 = ∂x4.

Clearly, K is a 1-lightlike submanifold as {Z1} ∈ Γ(Rad(T K)). Moreover, FZ1 =
Z2+Z5, which implies that FRad(T K)= Span{Z2,Z5}. Choose D= Span{Z3,Z4},
which is Riemannian. Then, K is a s.l.s. with slant angle cos−1( 2k

1+k2 ) with screen
transversal bundle S(T K⊥) spanned by

W =−k sinθ∂x5 + sinθ∂x6 − k cosθ∂x7 + cosθ∂x8 +∂x9 − k∂x10,

which is also Riemannian. Furthermore, ltr(T K) is spanned by

N1 =
1
2
{−∂x1 +∂x3}.

Therefore, we obtain FN1 =
1
2{−∂x2+∂x4}= 1

2{−Z2+Z5}∈Γ(Fltr(T K)⊆ S(T K)).
Hence K is a proper s.l.s. of R10

2 .

Theorem 3.3. Suppose that K is a proper s.l.s. of K̄. Then the induced connection
∇ is a metric connection, if and only if,

∇Y Fξ ∈ Γ(FRad(T K)) and th(Y,Fξ) = 0,

for Y ∈ Γ(T K) and ξ ∈ Γ(Rad(T K)).

Proof. For Y ∈Γ(T K) and ξ∈Γ(Rad(T K)), employing Eq. (2.11), one has ∇̄Y ξ=
∇̄Y F2ξ = F∇̄Y Fξ. Further, using Eqs. (2.3) and (3.3), we acquire

∇Y ξ+h(Y,ξ) = F∇Y Fξ+ th(Y,Fξ)+nh(Y,Fξ). (3.24)

Then, equating the tangential components on both sides, we derive

∇Y ξ = F∇Y Fξ+ th(Y,Fξ). (3.25)

Hence, from Eq. (3.25), ∇Y ξ ∈ Γ(Rad(T K)) if and only if ∇Y Fξ ∈ Γ(FRad(T K))
and th(Y,Fξ) = 0, which gives the result. □

Next, we will examine some conditions for integrability of distributions associ-
ated with a s.l.s. of K̄. Firstly, we present a basic lemma.

Lemma 3.4. Consider a s.l.s. K of K̄, then

(∇Y1φ)Y2 = ASP1Y2Y1 +ASP4Y2Y1 + th(Y1,Y2) (3.26)

and

S∇Y1Y2 −h(Y1,φY2)+Ch(Y1,Y2)=Ds(Y1,SP3Y2)

+Dl(Y1,SP4Y2)+∇
s
Y1

SP4Y2 +∇
l
Y1

SP3Y2, (3.27)
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where
(∇Y1φ)Y2 = ∇Y1φY2 −φ∇Y1Y2, (3.28)

for any Y1,Y2 ∈ Γ(T K).

Proof. Employing Eqs. (2.3)-(2.5), (3.2) and (3.3) and equating the tangential and
transversal components, the proof follows. □

Theorem 3.4. Assume that K is a s.l.s. of K̄. Then the slant distribution D is
integrable if and only if

∇Z1φZ2 −ASP4Z2Z1 − th(Z1,Z2)−φ∇Z2Z1 ∈ Γ(D),

for each Z1,Z2 ∈ Γ(D).

Proof. For Z1,Z2 ∈ Γ(D), employing Eqs. (3.26) and (3.28), we attain

φ[Z1,Z2] = ∇Z1φZ2 −ASP4Z2Z1 − th(Z1,Z2)−φ∇Z2Z1,

which proves the assertion. □

Theorem 3.5. Assume that K is a s.l.s. of K̄. Then the anti-invariant distribution
Fltr(T K) is integrable if and only if

ASP3Y2Y1 + th(Y1,Y2)+φ∇Y2Y1 = 0,

for Y1,Y2 ∈ Γ(Fltr(T K)).

Proof. For Y1,Y2 ∈ Γ(Fltr(T K)), employing Eqs. (3.26) and (3.28), we get

φ[Y1,Y2] =−ASP3Y2Y1 − th(Y1,Y2)−φ∇Y2Y1,

which gives the result. □

Theorem 3.6. Consider a s.l.s. K of K̄, then Rad(T K) is integrable if and only if
(i) P1(∇ξ1FP1ξ2) = P1(∇ξ2FP1ξ1) and P4(∇ξ1φP4ξ2) = P4(∇ξ2φP4ξ1),

(ii) hl(ξ1,FP1ξ2) = hl(ξ2,FP1ξ1) and hs(ξ1,FP1ξ2) = hs(ξ2,FP1ξ1),

for ξ1,ξ2 ∈ Γ(Rad(T K)).

Proof. Consider Eq. (3.8), for ξ1,ξ2 ∈ Γ(Rad(T K)), we derive

P1(∇ξ1FP1ξ2) = FP2∇ξ1ξ2. (3.29)

Interchanging the role of ξ1 and ξ2, Eq. (3.29) yields

P1(∇ξ2FP1ξ1) = FP2∇ξ2ξ1. (3.30)

Then from Eqs. (3.29) and (3.30), we derive

P1(∇ξ1FP1ξ2)−P1(∇ξ2FP1ξ1) = FP2[ξ1,ξ2]. (3.31)

Now, for ξ1,ξ2 ∈ Γ(Rad(T K)), using Eq. (3.11), we have

P4(∇ξ1φP4ξ2) = φP4∇ξ1ξ2 + ths(ξ1,ξ2). (3.32)
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By interchanging the role of ξ1 and ξ2 in Eq. (3.32), we get

P4(∇ξ2φP4ξ1) = φP4∇ξ2ξ1 + ths(ξ2,ξ1). (3.33)

Further, from Eqs. (3.32) and (3.33), we obtain

P4(∇ξ1φP4ξ2)−P4(∇ξ2φP4ξ1) = φP4[ξ1,ξ2]. (3.34)

Next, consider Eq. (3.12), for ξ1,ξ2 ∈ Γ(Rad(T K)), we acquire

hl(ξ1,FP1ξ2) = SP3∇ξ1ξ2. (3.35)

By interchanging the role of ξ1 and ξ2 in Eq. (3.35), we get

hl(ξ2,FP1ξ1) = SP3∇ξ2ξ1. (3.36)

Then using Eqs. (3.35) and (3.36), we acquire

hl(ξ1,FP1ξ2)−hl(ξ2,FP1ξ1) = SP3[ξ1,ξ2]. (3.37)

Next, using Eq. (3.13), for ξ1,ξ2 ∈ Γ(Rad(T K)), we have

hs(ξ1,FP1ξ2) = SP4∇ξ1ξ2 +nhs(ξ1,ξ2). (3.38)

Then interchanging the role of ξ1 and ξ2 in Eq. (3.38), we get

hs(ξ2,FP1ξ1) = SP4∇ξ2ξ1 +nhs(ξ2,ξ1). (3.39)

Further from Eqs. (3.38) and (3.39), we attain

hs(ξ1,FP1ξ2)−hs(ξ2,FP1ξ1) = SP4[ξ1,ξ2]. (3.40)

Hence the proof follows from Eqs. (3.31), (3.34), (3.37) and (3.40). □

Theorem 3.7. For a s.l.s. K of K̄, the distribution FRad(T K) is integrable if and
only if

(i) P2(∇ξ∗1
FP2ξ∗2) = P2(∇ξ∗2

FP2ξ∗1) and P4(∇ξ∗1
φP4ξ∗2) = P4(∇ξ∗2

φP4ξ∗1),

(ii) hl(ξ∗1,FP2ξ∗2) = hl(ξ∗2,FP2ξ∗1) and hs(ξ∗1,FP2ξ∗2) = hs(ξ∗2,FP2ξ∗1),

for ξ∗1,ξ
∗
2 ∈ Γ(FRad(T K)).

Proof. From Eq. (3.9), for ξ∗1,ξ
∗
2 ∈ Γ(FRad(T K)), we have

P2(∇ξ∗1
FP2ξ

∗
2) = FP1∇ξ∗1

ξ
∗
2. (3.41)

After interchanging ξ∗1 and ξ∗2, Eq. (3.41) becomes

P2(∇ξ∗2
FP2ξ

∗
1) = FP1∇ξ∗2

ξ
∗
1. (3.42)

From Eqs. (3.41) and (3.42), we obtain

P2(∇ξ∗1
FP2ξ

∗
2)−P2(∇ξ∗2

FP2ξ
∗
1) = FP1[ξ

∗
1,ξ

∗
2]. (3.43)

Further using Eq. (3.11), for ξ∗1,ξ
∗
2 ∈ Γ(FRad(T K)), we acquire

P4(∇ξ∗1
φP4ξ

∗
2) = φP4∇ξ∗1

ξ
∗
2 + ths(ξ∗1,ξ

∗
2). (3.44)



166 TEJINDER KUMAR, SANGEET KUMAR AND PANKAJ KUMAR

By interchanging the role of ξ∗1 and ξ∗2 in Eq. (3.44), we get

P4(∇ξ∗2
φP4ξ

∗
1) = φP4∇ξ∗2

ξ
∗
1 + ths(ξ∗2,ξ

∗
1). (3.45)

Using Eqs. (3.44) and (3.45), we obtain

P4(∇ξ∗1
φP4ξ

∗
2)−P4(∇ξ∗2

φP4ξ
∗
1) = φP4[ξ

∗
1,ξ

∗
2]. (3.46)

Next, for ξ∗1,ξ
∗
2 ∈ Γ(FRad(T K)), using Eq. (3.12), we have

hl(ξ∗1,FP2ξ
∗
2) = SP3∇ξ∗1

ξ
∗
2. (3.47)

Interchanging ξ∗1 and ξ∗2, Eq. (3.47) yields

hl(ξ∗2,FP2ξ
∗
1) = SP3∇ξ∗2

ξ
∗
1. (3.48)

Following Eqs. (3.47) and (3.48), we obtain

hl(ξ∗1,FP2ξ
∗
2)−hl(ξ∗2,FP2ξ

∗
1) = SP3[ξ

∗
1,ξ

∗
2]. (3.49)

Finally, using Eq. (3.13), for ξ∗1,ξ
∗
2 ∈ Γ(FRad(T K)), we attain

hs(ξ∗1,FP2ξ
∗
2) = SP4∇ξ∗1

ξ
∗
2 +nhs(ξ∗1,ξ

∗
2). (3.50)

By interchanging ξ∗1 and ξ∗2 in Eq. (3.50), we have

hs(ξ∗2,FP2ξ
∗
1) = SP4∇ξ∗2

ξ
∗
1 +nhs(ξ∗2,ξ

∗
1). (3.51)

Then from Eqs. (3.50) and (3.51), we obtain

hs(ξ∗1,FP2ξ
∗
2)−hs(ξ∗2,FP2ξ

∗
1) = SP4[ξ

∗
1,ξ

∗
2]. (3.52)

Hence the proof follows from Eqs. (3.43), (3.46), (3.49) and (3.52). □

4. TOTALLY UMBILICAL SLANT LIGHTLIKE SUBMANIFOLDS

Definition 4.1. [6] A lightlike submanifold (K,g) of a semi-Riemannian manifold
(K̄, ḡ) is called totally umbilical, if there exist a transversal curvature vector field
H ∈ Γ(tr(T K)) on K such that

h(Y1,Y2) = ḡ(Y1,Y2)H,

for Y1,Y2 ∈ Γ(T K). Using Eqs. (2.3) and (2.5), we say that K is totally umbilical, if
and only if, there exist smooth vector fields H l ∈ Γ(ltr(T K)) and Hs ∈ Γ(S(T K⊥))
such that

hl(Y1,Y2) = g(Y1,Y2)H l, hs(Y1,Y2) = g(Y1,Y2)Hs, Dl(Y1,W ) = 0,

for Y1,Y2 ∈ Γ(T K) and W ∈ Γ(S(T K⊥)). On the other hand, a lightlike submani-
fold is totally geodesic if h(Y1,Y2) = 0, for Y1,Y2 ∈ Γ(T K). Thus, a lightlike sub-
manifold is totally geodesic, if H l = 0 and Hs = 0.

Theorem 4.1. Consider K a totally umbilical s.l.s. of K̄. Then at least one of the
following statements is true:
(a) K is an anti-invariant submanifold.
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(b) D = {0}.
(c) If K is a proper slant lightlike submanifold, then Hs ∈ Γ(µ).

Proof. For a totally umbilical s.l.s. K of K̄, using Definition 4.1 and Eq. (3.22), for
Z = P4Z ∈ Γ(D), we have

h(φP4Z,φP4Z) = g(φP4Z,φP4Z)H. (4.1)

Then, using Eq. (2.3), we obtain

cos2
θg(P4Z,P4Z)H = ∇̄φP4ZφP4Z −∇φP4ZφP4Z, (4.2)

which yields

cos2
θg(P4Z,P4Z)H =F∇̄φP4ZP4Z − ∇̄φP4ZSP4Z −∇φP4ZφP4Z. (4.3)

Further using Eqs. (2.3)-(2.5), we derive

cos2
θg(P4Z,P4Z)H =F∇φP4ZP4Z +Fhl(φP4Z,P4Z)+Fhs(φP4Z,P4Z)

+ASP4ZφP4Z −∇
s
φP4ZSP4Z −Dl(φP4Z,SP4Z)

−∇φP4ZφP4Z.

Employing Eqs. (3.2), (3.3) and using Definition 4.1, we obtain

cos2
θg(P4Z,P4Z)H = φ∇φP4ZP4Z +S∇φP4ZP4Z +g(φP4Z,P4Z)FH l

+g(φP4Z,P4Z)tHs +g(φP4Z,P4Z)nHs +ASP4ZφP4Z

−∇
s
φP4ZSP4Z −Dl(φP4Z,SP4Z)−∇φP4ZφP4Z. (4.4)

Then considering the inner product of Eq. (4.4) w.r.t. SP4Z, we get

cos2
θg(P4Z,P4Z)ḡ(Hs,SP4Z) = ḡ(S∇φP4ZP4Z,SP4Z)

−ḡ(∇s
φP4ZSP4Z,SP4Z). (4.5)

Taking Y1 = Y2 ∈ Γ(D) in Eq. (3.23) and then considering the covariant derivative
w.r.t. φP4Z, we derive

ḡ(∇s
φP4ZSP4Z,SP4Z) = sin2

θg(∇φP4ZP4Z,P4Z). (4.6)

Next using Eqs. (3.23) and (4.6) in Eq. (4.5), we obtain

cos2
θg(P4Z,P4Z)ḡ(Hs,SP4Z) = 0. (4.7)

Thus Eq. (4.7) yields that either P4Z = 0 or θ = π/2 or Hs ∈ Γ(µ). Hence, the
proof follows. □

Theorem 4.2. Every totally umbilical proper s.l.s of K̄ is totally geodesic.
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Proof. Since K̄ is a semi-Riemannian product manifold, therefore for Z = P4Z ∈
Γ(D), from Eq. (2.11), we have ∇̄ZFZ = F∇̄ZZ, which gives that

∇ZφP4Z +hl(Z,φP4Z)+hs(Z,φP4Z)−ASP4ZZ +∇
s
ZSP4Z

+Dl(Z,SP4Z) = φ∇ZZ +S∇ZZ +Fhl(Z,Z)+ ths(Z,Z)+nhs(Z,Z). (4.8)

In view of Definition 4.1 and equating the tangential components on both sides of
above equation, we derive

∇ZφP4Z −ASP4ZZ = φ∇ZZ +Fhl(Z,Z)+ ths(Z,Z). (4.9)

Next taking the inner product of Eq. (4.9) w.r.t. Fξ ∈ Γ(Rad(T K)), we obtain

g(ASP4ZZ,Fξ)+ ḡ(hl(Z,Z),ξ) = 0. (4.10)

Then employing Eq. (2.6), we have

ḡ(hs(Z,Fξ),SP4Z)+ ḡ(Fξ,Dl(Z,SP4Z))+ ḡ(hl(Z,Z),ξ) = 0. (4.11)

In view of Definition 4.1, the above equation reduces to

ḡ(Hs,SP4Z)g(Z,Fξ)+ ḡ(H l,ξ)g(Z,Z) = 0. (4.12)

From Theorem 4.1, we have Hs ∈ Γ(µ), therefore from Eq. (4.12), we have

ḡ(H l,ξ)g(Z,Z) = 0. (4.13)

As D is non-degenerate, therefore we obtain ḡ(H l,ξ) = 0, which further gives

H l = 0. (4.14)

Moreover, Hs ∈ Γ(µ) for a proper totally umbilical s.l.s. of K̄. Therefore, equating
the transversal components on both sides of Eq. (4.8), we have

S∇ZZ +nhs(Z,Z) =hl(Z,φP4Z)+hs(Z,φP4Z)+∇
s
ZSP4Z +Dl(X ,SP4Z).

Then using Definition 4.1, we derive

S∇ZZ +g(Z,Z)nHs =g(Z,φP4Z)H l +g(Z,φP4Z)Hs +∇
s
ZSP4Z.

On taking the inner product of the above equation w.r.t. FHs, we obtain

g(Z,Z)ḡ(Hs,Hs) = ḡ(∇s
ZSP4Z,FHs). (4.15)

Furthermore, one has ∇̄ZFHs = F∇̄ZHs and it implies

−AFHsZ +∇
s
ZFHs +Dl(Z,FHs) =−φAHsZ −SAHsZ

+t∇s
ZHs +n∇

s
ZHs +FDl(Z,Hs). (4.16)

Since µ is invariant by taking the inner product of Eq. (4.16) w.r.t. SP4Z, we obtain

ḡ(∇s
ZFHs,SP4Z) =−ḡ(SAHsZ,SP4Z) =−sin2

θg(AHsZ,P4Z). (4.17)
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As ∇̄ is a metric connection, thus we have (∇̄Z ḡ)(SP4Z,FHs) = 0, which implies
that ḡ(∇s

ZSP4Z,FHs) =−ḡ(∇s
ZFHs,SP4Z), therefore Eq. (4.17) becomes

ḡ(∇s
ZSP4Z,FHs) = sin2

θg(AHsZ,P4Z). (4.18)

Then using Eq. (4.18) in Eq. (4.15), we have

g(Z,Z)ḡ(Hs,Hs) = sin2
θg(AHsZ,P4Z). (4.19)

Now, employing Eqs. (2.6), the above equation yields

g(Z,Z)ḡ(Hs,Hs) = sin2
θg(Z,Z)ḡ(Hs,Hs), (4.20)

which implies that
(1− sin2

θ)g(Z,Z)ḡ(Hs,Hs) = 0.
As K is a proper s.l.s., therefore sin2

θ ̸= 1 and from the non-degeneracy of D, we
derive

Hs = 0. (4.21)
Hence, the result follows from Eqs. (4.14) and (4.21). □

Theorem 4.3. For a proper totally umbilical s.l.s. K of K̄, ∇ is always a metric
connection.

Proof. The proof follows directly from Eqs. (2.9) and (4.14). □
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