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RESULTS ON DIFFERENCE-DIFFERENTIAL POLYNOMIAL OF
ENTIRE FUNCTIONS

TAPAS LOWHA

ABSTRACT. In this paper, we deal with the uniqueness results of derivatives
of difference-differential polynomials of entire functions sharing a value with
CM(M). The results of this paper extend the results of K.Liu, X.L.Liu and
T.B.Cao[8,9] and K.Zhang and H.Yi[17] and many others.

1. INTRODUCTION

In this paper a meromorphic function f means that f is meromorphic for the
whole complex plane C. We shall use the standard notations of value distribution
theory such as T(r,f),m(r, f),N(r, f),S(r, f),...etc (see [5]). Two meromorphic
functions f and g share a point a(¢ C)CM provided that f —a and g — a have the
same zeros with the same multiplicities and similarly we can say that f and g share
a IM provided that f —a and g — a have the same zeros ignoring multiplicities.
The function which is denoted by N(r, f%a) counts the number of zeros of f —a

with multiplicity greater or equal to k and N(k(r, J%a) is the corresponding one for
which multiplicity is not counted.

Now we denote, N (r, ﬁ) = N(r, J%a) +Nea(r, ﬁ) +onn +N(n, J%a), where
a is any finite complex number and k is a constant. Further, we consider P(z) =
A" + a1 7" 4 + a1z + ap, a polynomial in z of degree m, where ag(#
0),a1,.....,am—1,an,(# 0) are complex constants.

In this paper, we establish theorem 2.2 and theorem 2.3, which improve theorem
1.1 ( Liu et al. [8]) and theorem 1.2 ( Liu et al. [8]); those theorems i.e.,theorem
2.2 and theorem 2.3, also improve theorem 1.3 ( Liu et al. [9]) and theorem 1.4
( Liu et al. [9]) as per as the polynomial functions is concerned. Moreover, our
intention in this chapter is to generalize the polynomial functions of theorem 1.5 (
Zhang et al. [17]) and the theorem 1.6 ( Zhang et al. [17]). We are quite successful
in doing so and in this direction, we prove theorem 2.4 and theorem 2.5 . In the
latter theorem, we have also taken into account the sharing properties with IM (i.e.,
while disregarding multiplicities) which the authors in [17] did not.
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We now begin by stating the theorems due to K. Liu, X. L. Liu and T. B. Cao [8]
in 2012:

Theorem 1.1. [8] Let f and g be transcendental entire functions of finite order,
n>2k+6. If [f(2)"f(z+¢)]® and [g(z)"g(z+ ¢)|¥) share the value 1 CM, then
either, f(z) = c1€%%, f(z) = coe~C% where c1,c; and C are constants satisfying
(—D*(c1e2) ™ [(n+1)C)** =1 or f =tg where t"+! = 1.

Theorem 1.2. [8] Let f and g be transcendental entire functions of finite order,
n>5k4+12. If [f(2)"f(z+¢)]® and [g(z)"g(z+ ¢)]%) share the value I IM, then
either, f(z) = c1e%, f(z) = cre % where c1,cy and C are constants satisfying
(—D*(c1c2) [(n+1)C)** =1 or f =tg where t"+! = 1.

Meanwhile, in 2011, the same author [9] obtained the following results:

Theorem 1.3. [9] Let f(z) and g(z) be transcendental entire functions of pa2(f) <
L n>2k+m+6. If [f*(f"—1)f(z+¢)]® and [g"(g" — 1)g(z+ )] share the
value 1 CM, then f = tg, where t""! = t™ = 1. ( pa(f) is the hyper order of f)

Theorem 1.4. [9] Let f(z) and g(z) be transcendental entire functions of p2(f) <
1, n>Sk+dm+12. If [f"(f" — D) f(z+¢)|® and [g"(g" — 1)g(z+ ¢)]*) share
the value 1 IM, then f = tg, where "7 =" = 1.

Subequently, Zhang and Yi [17] looked into the zeros of a certain kind of differ-
ence differential polynomial in 2014 and came up with the following theorems:

Theorem 1.5. [17] Let f and g be two transcendental entire functions of finite
order,0,(z) # 0 be a common small function with respect to f and g, c;(j=1.2,....,d)
be distinct finite complex numbers, and n,m,d and v(j=1,2,....,d) be non neg-
ative integers. If n > 2k+m+ 6 + 5 and the differential-difference polynomi-
als [f"(f"(2) = D)=y f(z+¢;)" )Y and [g"(g"(2) = DTy g(z+¢;)"]®) share
o(z) CM, then f =tg where "™ = ""° =1 where 6 =v| + ...... + v,.

Theorem 1.6. [17] Let f and g be two transcendental entire functions of finite
order,a,(z) # 0 be a common small function with respect to f and g, c;(j=1.2,....,d)
be distinct finite complex numbers, and n,m,d and vj(j=1,2,....,d) be non neg-
ative integers. If n > 2k+m+ 6+ 5 and the differential-difference polynomi-
als [f"(f(2) = )" TI5=y f(z+¢;)" )Y and [¢"(g(z) = 1) 11— 8(z+¢;)"7] Y share
o(z) CM, then f = tg where t™ = ""° = 1 where 6 = v| + ...... + vg.

Now the following questions naturally arise:
What would happen if we replace

(i) the polynomial function of theorem 1.3 and of theorem 1.4 by the polynomial
function f"P(f)f(z+c¢) ? and
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(i1) the polynomial function of theorem 1.5 and of theorem 1.6 by the polynomial
. d .
function f"P(f)[1j=; f(z+¢;)" ?
Furthermore, our investigation is concerned about the sharing properties of IM .
As mentioned earlier, in this paper, we are trying to answer those questions which
in turn also generalize the aforementioned theorems.

2. MAIN RESULTS

In this paper we are trying to figure out those questions which in turn generalize
the theorem (1.1 - 1.6) and many more theorems. Our theorems are the following:

Theorem 2.1. Let f be a transcendental entire function of finite order. Then
[F"P(f)f(z+¢)]%) — 1 has infinitely many zeros for n > k+2.

Theorem 2.2. Let f and g be transcendental entire functions of finite order and
¢ be a complex constant and n, m and k be non negative integers such that n >
2k+m+6. If[f"P(f)f(z+¢)]® and [g"P(g)g(z+ c)]®) share | CM, then :
() f=tgwheret! =1andd = g.cd. of (n+mn+m—1,...,n)
or
(ii) f(z) and g(z) satisfy the algebraic equation Q(f,g) = 0 where,
O(wi,wz) = wi(amw! +am_1w’1"71 +...+ao)wi(z+c) —wi(amnwhy
Wi L ag)wa(z o).

Theorem 2.3. Let f and g be transcendental entire functions of finite order and
¢ be a complex constant and n, m and k be non negative integers such that n >
Sk+4m+12. IF[f"P(f) f(z+¢)]®) and [g"P(g)g(z+¢)|*) share 1 IM, then :
() f=tgwheret?=1andd = g.c.d. of (n+mn+m—1,...,n)
or
(i) f(z) and g(z) satisfy the algebraic equation Q(f,g) = 0 where,
O(wi,w2) = WHamW + am Wi '+ ...+ ag)wi (z+¢) — Wi (amwh
+ W L ag)wa(z o).

Theorem 2.4. Let f and g be transcendental entire functions of finite order and
cj(j=1,......d) be distinct finite complex numbers and n,m,d and v;(j=1,....,d) be
non negative integers such that n > 2k+m+6+5 where 6 = v| + ..... +vq. If
P()TT f(z+¢))")® and [¢"P(g) [T 8(z+c;)"]®) share I CM, then

(1) f=tg where 4 =1 and d=g.c.d. of (n+mn+m-1,...,n)
or

(i) f(z) and g(2) satisfy the algebraic equation Q(f,g) = 0 where -
O(wi,w2) = wi(amw}' +am,1w’1"_1 +...4+ag)wi(z+c) —wh(amnwh
+am Wy ag)wa(z+ o).

Theorem 2.5. Let f and g be transcendental entire functions of finite order and
cj(j=1,.....,d) be distinct finite complex numbers and n,m,d and v;)(j=1,....,d) be
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non negative integers such that n > Sk+4m+46+ 8 where 6 = v+ ..... +vg. If
[f”P(f)H‘;Zlf(z—l—cj)vf](k) and [g"P(g )HJ 18(z+¢j)% share 1 IM, then
() f=tgwheret! =1 and d=g.c.d. of (n+mn+m-1,...,n)
or
(ii) f(z) and g(z) satisfy the algebraic equation Q(f,g) = 0 where -
O(wi,w2) = WiamwW]' + am 1w . A ag)wi(z+¢) — wh(amw
Wi L ag)wa(z o).

3. LEMMAS

Before going to the details of the proof of the theorems, we need to mention
some results in the form of lemmas.

Lemma 3.1. [13] Let f be a non constant meromorphic function and p,k be pos-
itive integers. Then

T(r,fY) <T(r,f) +kN(r, f) +S(r. f)

Ny 25) < T ) =0 )+ Npoa 1 5) +S(1.)
Ny(r <) RN )+ Ny )+ 501 ).

Lemma 3.2. [11] Let f(z) and g(z) be two non constant meromorphic functions.
If f(z) and g(z) share the value 1 CM, then one of the following three cases holds :

() T(r,f) <Nir, %) + Na(r, )+N2(r f)+Na(r,8) +S(r,f) +S(r,g); the same
inequality holds for T (r, g)
(i) fg=1;
(i) f=g.
Lemma 3.3. [I/4] Let f and g be two non constant entire functions. If f and g
share 1 IM, then one of the following cases holds :

() T(5f) < Nalr2) + Mo 1) 42N (5 2) +- N (5 1) + S(. 1) + S(rg) the same
inequality holds for T (r, g)
(i) f=g
(iii) fg=1.
Lemma 3.4. [13] Let f1(z) and f>(z) be two non constant meromorphic functions.
If c1 fi + cofo = c3 where, c1,cp and c3 are non zero constants, then

1>+zv<r,f12>+s<r,fl>.

T(rafl) Sﬁ(nfl)—i_ﬁ(r?fl
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Lemma 3.5. Let f and g be two transcendental entire functions of finite order
and ¢ be a non zero constant and P(z) = a,, 7" + am_12""V+ ...+ a1z +ao where
ap(#0),a1,az,...,an(# 0) are complex constants.
IFIf"POA)f(z+0)]® = [g"P(g)g(z+ )], then:
() f=tgfora constantt such thatt’ = 1 whered = g.c.d. of (n+m,n+m—1,
oy n).

>

0
(i) f(z) and g(z) satisfy the algebraic equation Q(f,g) = 0, where -
( V) =t (@it + @y W™ 4 A ag)u(z 4 ¢) =V @V @ v+
..+ap)v(z+c).

Proof: From the given condition, we can say, f"P(f)f(z+c) = g"P(g)g(z+
¢) + R(z) where R(z) is a polynomial of degree at most (k— 1).

Now if R(z) # 0, then we have, £ (?(J; )(“C) — &P (fe)(i g”c) +1.

Using Lemma 3.4, we have -

(ntm+DT(r,f) = (

<(m+2)T(r,f)+(m+2)T(r,g)+S(r,f)+S(r,g).

Similarly, we have,

(n+m+1)T(r,g) < (m+2)T(r,g)+ (m+2)T(r,f)+S(r,f)+S(r,g).
Adding these two, we get

(n+m+ V[T (1 f) + T (r.)] < 2m+2)[T(r, ) + T (r.g)] + (. f) +S(r.8).
As n > m-+4, it is a contradiction.
Hence R(z) = 0, which means

"P(f)f(z+c) =g"P(g)g(z+c). (3.1
Suppose h = g and & is a constant. Then f = gh. Substitute this in (3.1) we have
(ang "W+ @y 18" W+ agh™h(z ) = (ang" + am 18"+ ... +ap)
ie., ang"(Wh(z+c)—1)+an_ 18" (W hiz+c)—1)+...
+ag(h"h(z+c¢)—1) =0.
Now since g is transcendental, from the last equation we have, h? =1 where d
is highest common divisor of (n+m,n+m-1,. .. ,n).
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Thus f = tg for a constant ¢ such that 1 = 1.
Now let & # a constant, then from (3.1) we can conclude that f(z) and g(z) satisfy
an algebraic equation Q(f,g) = 0 where -

O(u,v) =u"P(u)u(z+c) —v'"P(v)v(z+c).

Lemma 3.6. Let f and g be two transcendental entire functions of finite order

and cj(j=1,...,d) be non zero complex constant and P(z) = ay7"™ + am—12""' +
..+aiz+ap where ag(# 0),a1,az, ... ,a,(# 0) are complex constant. If

[P TTG=1 fz+¢))" 1% = [g"P(e) 11 g(z+¢,)"]®) and n > m+G+3, where

n,m,v;(j=1,...,d) are non negetive integers and 6 = vi + ... +vq then:

() f =tgfora constantt such that t* =1 where d = g.c.d.of(n+m,n+m—1,
.oy n),

or,
(ii) f(z) and g( ) satisfy the algebraic equation Q(f,g) = 0,where -
0(p.q) = P"P(P)TTj-1 p(z+c;)" = q"P(q) TT§=y q(z+ ;)"

Proof. From the given condition, we can say,

S"P(ATTI=) f(z+cj)" = g"P(g) 19— 8(z+ ;)" + Q(z), where Q(z) is a polyno-
mial of degree at most (k— 1). Now if Q(z) # 0, then we have,

PN flz+¢)"T g"P()TIL, g(z+c¢))"

0(z) 0(z) +1.
Using Lemma 3.4, we have -

(n+m+0)T(r,f) = +S(r

(rf"P(f) j=1f(z+c;)" )

=

<

(r PN ] 1f z+cj) < 0(z) )
7 f*P(f H?:l f(z+cj)vi

)
+N< () ]gz+cj >+S
> (H 1f(lz+c,) ) (r’ ";(g))

+N< — wj >+s
(m—i—(H—l)[ (n)+T(r,g)|+S(rf)+S(r,g).

Similarly, we get-

(n+m+0)T(r,g) <(m+o+ V[T (r,f)+T(r,g)|+S(r,f)+S(rg).

Adding these two ineuality, we get-

(n+m+0)[T(r,f)+T(rg) <2(m+0+ [T (rf)+T(rg)]+S(rf)+S(rg).
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This contradicts the fact that n > m+ ¢ + 3. Hence R(z) = 0, which means
d d
PO TS+ =g"P(e) [T 8z +cj)". (3.2)
j=1 j=1

Now suppose h = g and £ is a constant. Then f = gh. Substitute this in(3.2), we
have

h(z+c;)" = [amg" +am18™ "' +. ... +ao]

=

Wt [amgznhm+am71gm—l hm—l 4., -+Clo]
=1
d d
ie., ang"[W""[Th(z+c;)" —1] +ay_ g R [TrG+c) —1]+...
j=1 =1

d
—|—a0[h"Hh(Z+Cj)vf — 1] =0.
=l

~
Il

As g is transcendental, we have, h¢ = 1, where d is g.c.d. of (n+m,n+m-1,...,n)
Thus f = tg for a constant t such that t¢ = 1.

Now let & # a constant, then from (3.2) we can say that f(z) and g(z) satisfy an
algebraic equation Q(f,g) = 0 where

0(p.q) = P"P(p) 1= p(z+¢)" — q"P(@) TTj=1 a(z+¢))". O

Lemma 3.7. Let [ be an entire function of finite order and F = f"P(f)f(z+ c).
Then T (r,F) = (n+m+1)T(r, f)+S(r,f).

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 2.1. :
Let F(z) = f"P(f)f(z+c). Then F(z) is not a constant. Now let us consider that
F% —1 has only finitely many zeros. Then

T(r,F®) <N(rF®)+N(r,—) +N(r, )+8(r,FW).

F&) Fk —1
Since F is a transcendental entire function, by the Lemma 3.1, we have

1 —
T(r,F®) <Ni(r, W) +N(r, m) +8(rF®)
ST F®) =T (1 F) +Nea ) + 50 Y).

So,
(n+m+ DT (1 f) < (k+ 0T (rf)+mT(r,f)+T(r,f)+Srf)
=(k+m+2)T(r,f)+S(r,f)

which contradicts our assumption that n > k4 2. Hence the conclusion of the the-
orem is proved.
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Proof of Theorem 2.2. :

Let, F = f"P(f)f(z+¢), G = g"P(g)g(z+¢)

and Fiy = [/"P(f)f(z+¢)]0 = F¥, Gi = [¢"P(g)g(z+ )| = G¥.

Then F; and G, are also entire functions. Now by the given condition and the
lemma 3.2, we have,

Case I:

T(r,F1) < Na(r, ) +Na(r, )+ S(r f) +S(r.g)

ie., T(nF®) < Na(r, 57) +Na (1, gy ) +S(r, ) +S(rg).-

By Lemma 3.1, we have

T(rF) < T(,F9) = T(F) + Negalr ) + T(560) T (5G)

1
r, E) +S8(r,f)+S(rg)

1 1
e, T(RF)+T(nG) < T(nGY)+Niwalr 1) +Nesa(r 5) +S(nf) +S(r.8)

+ Nigo (

T(r,G)+kN(r,G) + Neio(r, %) + Nisa(r, l) +8(r,f) +S(r8).

G
1 1
So,T(rF) < Nk+2(r’F) +Nk+2(r’6) +S(r, f)+S(r,8). (4.1)
Similarly we have,
1 1
T(I’,G) SNk+2(ra6)+Nk+2(r7f)+S(r7f)+S(r)g)‘ 4.2)

Adding (3.3) and (3.4), we get,
(n+m+D)[T(r, f)+T(r,g)] <2(k+2+m~+1)[T(r,f)+T(r,8)]+S(r.f)+S(r,g).
This contradicts n > 2k+m+6.

Case II:
G =1

ie, [f"P(f)f(z+0)]W[g"P(g)g(z+ )] ¥ =1. (4.3)

Asn > 2k+m+6, from (3.5) we can say that f(z) has no zeros. Therefore we may
assume f(z) = e*.
Then,
[fnP(f)f(Z+C)}(k> — [en(x(z) (amema(z) +am,le(”’_1)°‘(z)+. . .+ale(x(z) +a0)ea(z+c)](k)'
Set, a(z+¢) = B(z), we have
= [ame(n+m)a(z)+l3(z) _|_ . _|_ ale(n"’_l)(x(z)"’_ﬁ(z) _|_ aoena(z)+l3(z)](k)
= e(ﬂ+fﬂ) @+ p, (oc( ) B, ol R 4 4 el D) HBE) py (D) B
B )+ena )P ((x(l)7B(1)7‘"J(X(k)?B(k))
( e V[P, . 4 Pe®d) 1 Py

Now,T(r,P,)—S(r,f)forz—O,l, .,m and T(,m) S(r, f).

cey
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Therefore from the second fundamental theorem,
mT(r,f) =T(r,Ppe™ + ...+ P1e*)+S(r, 1)
1 _
)+N( )
P,em*+ ...+ Pie® P+ . .+ Py

—|—N(r,Pmem°‘—|— .. —|—Ple°‘> +S8(r, f)
1
+ S(r,
Pelm1e —|—...+P0) 1)
< (m= DT (=) +S().
Thus we arrive at a contradiction.
Case III: F1 = G;.

By Lemma 3.5., we get the desired results.

Proof of Theorem 2.3. :
The functions F,G,F; and G are defined the same as in the proof of theorem 2.2.
As Fy and G| share 1 IM, then by the lemma 3.3, we have

Case I:
T(r,Fy) < Na(r, i)+N2( EVH2N(r L)+ N &) +S(rf) +S(rg)

+
1
Le., T(r’F(k)) <N2( )+N2( %) N(F,F%)—I-N(T,G%) (l’ f)+S(r,g).
Applying the lemma 3. 1 we have

<N(x

<N<

T(}",F(k)) < T(F,F(k))—T(I’,F)—|—Nk+2(}”,%)—|—T(I’,G(k))—T(F,G)

+ Nia( +8(r.f)+5(r8)

1

1 — 1 — 1
r,6)+2N(r,m)+N(r,%)

_ 1
i.e.,T(r,F) +T(}’7 G) < T(r7 G) +kN(r7 G) +Nk+2(r7f) +Nk+2(r’6)

1
%)'FS(V,f)‘i‘S(I’,g)
1
r——)

1 1 —
f) + Ny (1, 6) +2N( F k)

1
%)‘f‘s(’?f)"‘s(’?g)

< Nisa(r, f) + Nija(n, 5) + 2Ny (r, m)
+S8(r,f)+S(r,g)

+2N(r, +N(r,

1
F®)
i.e.,T(r,F) < Nisa(r,

+N(r

1
+N1(r,%)

1 1 _
r, 6) + 2N (1, f) +2kN(r, F)

N (7 ) HRN(G)+5(.) + (1),

1
< Nisa(r, f) + Nt (
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So, (n+m+1)T(r,f) < Bk+3m~+T7)T(r,f)+ (2k+2m+5)T(r,g) + S(r, f) +
S(r.g).

Similarly, (n+m+1)T (r,g) < (3k+3m~+7)T(r,g) + (2k+2m~+5)T (r, f)+S(r, f)+
S(r.g).

Adding these two, we have

(n+m+ DT (r.f) +T(rg)] < (Sk+5m+12)[T (1, f) + T(r.g)] +S(r, f) +S(r.8)-
As n > 5k+4m+ 12, the above inequality is not valid.

Proof of the remaining part of the theorem is in the same line as the previous theo-
rem.

Proof of Theorem 2.4. :
LetF:f”P(f)H 1 f(z+¢;),G=g"P(g )Hd 18(z+c¢j)" and
R =[f"P(f)TI4 L flete) O =[], G = [¢" P(&)TT g(z+c))")M =[G)®.

Then F; and G1 are also entire functions. Now by Lemma 3.2, we have -

Case I:

Following the same procedure as in the proof of theorem 2.2 (Casel), we have -
T(I’,F) < Nk+2(r7 %) +Nk+2(r7é) +S(I",f) +S(rag)'

So, (n+m+0)T(r,f) =T(r,F) < (k+m+c+2)[T(r,f)+T(r,g)]+S(r,f)+
S(r,g).

Similarly, we get-

(n+m+0)T(r,g) = T(r,G) < (k+m+G+2)[T(r,f) + T(r,g)] +S(r,f) +S(r.g):
Adding these two inequalities, we have -

(n+m+0)[T (1, /) +T(1,8)] < 2(k+m+6+2)[T (1, f)+T(r,g)] +S(r. ) +S(r.8).
As n > 2k+m+ o6+ 5, the inequality in not valid.

Case II:

FiG =1
d
e, [f"P(N) ][] f(z+cj)"] &) [Tgz+ep) ™ =1. (4.4)

j=1 Jj=1

QU

Asn>2k+m+06+5, from (3.6),we see that f(z) has no zeros. So we may assume
f(z) = €*@. Now, [f"P(f)TT%, f(z+c;)"]®.

Set, a(z+c¢j) =Bj(z)

= [e”“(z) (amema(l) + a1 D) 4 gy e _|_a0> (eB/ ) ](k)

= [ape T mEE T B | s QDo) +EL lv,ﬁ,<z>+aoe Ao+ 541 18,2 )
— el B p (o ,[31 . B el B gy 4
telntDa (R)+X%1viBj(2) (a Bdl - (k)’ng)’___ﬁl(jk))
1" MHEL B p Py(al) [3 Bd a ng)’_”’ng))
no(Q)+Ef Vi) [p, emola) 4 +P1e <)+P0].
Now, T'(r,P;) =S(r, f) for i=0,1,...,m and T(r. L )=S8(r, f).

B pem @@ 1P 1 R



ENTIRE FUNCTION 225

Therefore from the second fundamental theorem,
mT (r, f) = T(r,Ppe"*@ + . 4+ Pe*9) +5(r, f)
1 — 1
O ey ) AR G =y ey

+N(r, P +Ple°‘(z)) +5S(r, f)

§N<r | )—I—S(r,f)

’pme(m—l)oc+...+P0
< (m—1T(r,f)+S(r,f).
Thus we arrive at a contradiction.

Case III:
Gy =1.
By Lemma 3.6., we get the desired results.

=

<

Proof of Theorem 1.5. :

The functions F, G, F; and G| are defined the same as in the proof of theorem 2.4.
Now by Lemma 3.3 and Casel of the proof of theorem 2.3, we can easily deduce
that -

1 1 1 —
T(F,F) SNk+2(r,f)+Nk+2(}’,6)+2Nk+1(}’,F)+2kN(I",F)

Nkt 5 ) +RNG) 4 50 ) + 5(08).

So,

(n+m+0)T(r,f)=T(r,F) < (3k+3m+36+4)T(r, f)+ (2k+2m+206+3)T (r,g) +
S(r, f)+5(r.8)-

Similarly,

(n+m+0)T(r,g) =T (r,G) < (3k+3m+306+4)T(r,g)+ (2k+2m+206+3)T(r, f) +
S(rnf)+5(r.g).

Adding these two, we get -

(n+m+0)[T(r,f) +T(rg)] < (Sk+5m+56+T)[T(r,f)+T(rg)] +S(rf)+
S(r.g)

This contradicts

n>5k+4m+4c6+8.

Proof of the remaining part of the theorem is in the same line as the proof of theo-
rem 2.4.
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