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THE IDEAL-BASED ZERO-DIVISOR GRAPH OF
COMMUTATIVE CHAINED RINGS

DAVID F. ANDERSON, S. EBRAHIMI ATANI, M. SHAJARI KOHAN, AND Z.
EBRAHIMI SARVANDI

Abstract. Let I be a proper ideal of a commutative ring R with 1 6= 0.
The ideal-based zero-divisor graph of R with respect to I, denoted by
ΓI(R), is the (simple) graph with vertices {x ∈ R \ I | xy ∈ I for some
y ∈ R \ I }, and distinct vertices x and y are adjacent if and only if
xy ∈ I. In this paper, we study ΓI(R) for commutative rings R such
that R/I is a chained ring.

1. Introduction

In the literature, there are many papers on assigning a graph to a ring
(see, for example, [1] - [7], [9], and [11]). Among the most interesting graphs
are zero-divisor graphs, because they involve both ring theory and graph
theory. By studying these graphs, we can gain a broader insight into the
concepts and properties that involve both graphs and rings. The concept
of zero-divisor graph for a commutative ring R was introduced by I. Beck
[7], where he was mainly interested in colorings. In his work, all elements
of R were vertices of the graph, and distinct vertices x and y were adjacent
if and only if xy = 0. This investigation of colorings of a commutative ring
was then continued by D. D. Anderson and M. Naseer in [1]. Let Z(R) be
the set of zero-divisors of R. In [5], D. F. Anderson and P. S. Livingston
associated a (simple) graph Γ(R) to R, with vertices Z(R)∗ = Z(R)\{0}, the
set of nonzero zero-divisors of R, and distinct vertices x and y are adjacent
if and only if xy = 0. The zero-divisor graph Γ(R) of R has been studied
extensively; see the the survey articles [2] and [9].

Let R be a commutative ring with 1 6= 0, I a proper ideal of R, and
ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I }. In [11], S. P. Redmond
introduced the ideal-based zero-divisor graph of R with respect to I, denoted
by ΓI(R), with vertices ZI(R)∗ = ZI(R) \ I = {x ∈ R \ I | xy ∈ I for some
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y ∈ R \ I }, and distinct vertices x and y are adjacent if and only if xy ∈ I.
Thus Γ{0}(R) = Γ(R) and ΓI(R) is the empty graph if and only if I is
a prime ideal of R. In [11], he explored the relationship between ΓI(R)
and Γ(R/I) and showed, among other things, that ΓI(R) is connected with
diam(ΓI(R)) ∈ {0, 1, 2, 3} and gr(ΓI(R)) ∈ {3, 4,∞}.

In [3], D. F. Anderson and A. Badawi studied Γ(R) for several classes
of rings which generalize valuation domains to the context of rings with
zero-divisors. These rings include chained rings and rings R whose prime
ideals contained in Z(R) are linearly ordered. Recall that a ring R is a
chained ring if the (principal) ideals of R are linearly ordered (by inclusion),
equivalently, if either x|y or y|x for all x, y ∈ R. Examples of chained rings
include valuation domains and factor rings of chained rings.

In this paper, we study ΓI(R) for commutative rings R such that R/I
is a chained ring. Clearly, R/I is a chained ring when R is a chained ring;
however, R/I may be a chained ring when R is not a chained ring. For
example, let J be a proper ideal of a chained ring S (e.g., a valuation do-
main), R = S[X] or S[[X]], and I = (J,X). Then R is not a chained ring,
but R/I ∼= S/J is a chained ring. As another example, let R1 and R2 be
chained rings and R = R1×R2 with ideals I1 = R1×{0} and I2 = {0}×R2.
Then R is not a chained ring, but R/I1

∼= R2 and R/I2
∼= R1 are both

chained rings.
In Section 2, we study the relationship between several natural subgraphs

of ΓI(R). Then, in Section 3, we specialize to the case when R/I is a chained
ring. We completely characterize the diameter and girth of the graph ΓI(R)
for such rings in Theorem 3.8 and Theorem 3.9, respectively. Moreover,
we extend several results in [3] to the more general ideal-based zero-divisor
graph case. In fact, results in [3] for Γ(R) when R is a chained ring are
actually special cases of the results in this paper for ΓI(R) when R/I is a
chained ring since if I = {0}, then R is a chained ring and Γ(R) = ΓI(R).
We invite the interested reader to compare the results in [3] for Γ(R) to the
results in this paper for ΓI(R).

In order to make this paper easier to follow, we next recall various notions
which will be used in the sequel. For a graph Γ, let E(Γ) and V (Γ) denote
the sets of edges and vertices of Γ, respectively. By abuse of notation, we will
often refer to a subgraph of ΓI(R) by its set of vertices; all such subgraphs
will be induced subgraphs. We recall that a graph is connected if there
exists a path connecting any two distinct vertices. At the other extreme,
we say that a graph Γ is totally disconnected if no two vertices of Γ are
adjacent. The distance between two distinct vertices a and b in Γ, denoted
by d(a, b), is the length of a shortest path connecting them (d(a, a) = 0 and
d(a, b) = ∞ if there is no such path). The diameter of a graph Γ, denoted by
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diam(Γ), is sup{ d(a, b) | a, b ∈ V (Γ) }. A graph is complete if it is connected
with diameter less than or equal to one. The girth of a graph Γ, denoted
by gr(Γ), is the length of a shortest cycle in Γ, provided Γ contains a cycle;
otherwise, gr(Γ) = ∞. Recall that a graph Γ is a star graph if it has a vertex
that is adjacent to every other vertex and this is the only adjacency relation.
Throughout this paper, all rings are assumed to be commutative with 1 6= 0.
As usual, Z, Zn, and Q denote the rings of integers, integers modulo n, and
rational numbers, respectively; for an ideal I of R,

√
I = {x ∈ R | xn ∈ I

for some integer n ≥ 1 }; and nil(R) =
√
{0}. To avoid any trivalities when

ΓI(R) is the empty graph, we will implicitly assume when necessary that I
is not a prime ideal of R. For a ring theory reference, see [10]; for a graph
theory reference, see [8].

2. Subgraphs of ΓI(R)

Let I be a proper ideal of a commutative ring R. In this section, we
investigate the relationship between several subgraphs of ΓI(R). It will
be convenient to let ZI(R)∗ = ZI(R) \ I = {x ∈ R \ I | xy ∈ I for some
y ∈ R\I }. Note that Z{0}(R) = Z(R), Z(R/I) = ZI(R)/I, and V (ΓI(R)) =
ZI(R)∗. Moreover, ZI(R)∗ = ∅ (i.e., ZI(R) = I) if and only if I is a prime
ideal of R. Also, let NI(R) = {x ∈ R | x2 ∈ I } and NI(R)∗ = NI(R) \ I.
Clearly, I ⊆ NI(R) ⊆

√
I, and NI(R)∗ = ∅ (i.e., NI(R) = I) if and only if I

is a radical ideal of R (i.e.,
√

I = I).

Proposition 2.1. Let I be a proper ideal of a commutative ring R,
√

I
∗

=√
I \ I, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I }, ZI(R)∗ = ZI(R) \ I,

and NI(R) = {x ∈ R | x2 ∈ I }. Then the following hold.

(1)
√

I
∗ ⊆ ZI(R)∗.

(2) I ⊆ NI(R) ⊆
√

I ⊆ ZI(R).
(3) If ZI(R) is an ideal of R, then it is a prime ideal of R.
(4) NI(R) = I if and only if

√
I = I.

Proof. (1) Let x ∈
√

I
∗

=
√

I \ I. Let n (n ≥ 2) be the least positive
integer such that xn ∈ I. As x /∈ I, xn−1 /∈ I, and xxn−1 = xn ∈ I, we have
x ∈ ZI(R) \ I = ZI(R)∗.

(2) This follows from part (1) and the above comments.
(3) Suppose that ZI(R) is an ideal of R, and let x, y ∈ R such that

xy ∈ ZI(R). Then there is a z ∈ R \ I such that (xy)z ∈ I. If yz ∈ I, then
y ∈ ZI(R). If yz /∈ I, then x ∈ ZI(R). Thus ZI(R) is a prime ideal of R.
(This also follows since ZI(R) is a union of prime ideals of R).

(4) This is clear. �
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Theorem 2.2. Let I be a proper ideal of a commutative ring R,
√

I
∗

=
√

I\
I, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I }, and ZI(R)∗ = ZI(R) \ I.
Then the following hold.

(1) If x ∈
√

I
∗

and y ∈ ZI(R)∗, then d(x, y) ≤ 2 in ΓI(R).
(2) The subgraph ZI(R)\

√
I of ΓI(R) is totally disconnected if and only

if
√

I is a prime ideal of R.

Proof. (1) We may assume that x 6= y and xy /∈ I. Since y ∈ ZI(R) \ I and
xy /∈ I, there is a z ∈ ZI(R) \ (I ∪ {x}) such that zy ∈ I. There is a least
positive integer n such that xnz ∈ I since x ∈

√
I
∗
. If n = 1, then x− z− y

is a path of length 2 from x to y. If n ≥ 2, then x− xn−1z − y is a path of
length 2 from x to y. Thus d(x, y) ≤ 2 in ΓI(R).

(2) Assume that
√

I is a prime ideal of R, and let x and y be distinct
elements of ZI(R) \

√
I. If x and y are adjacent, then xy ∈ I ⊆

√
I. Thus

either x or y belongs to
√

I, a contradiction. Hence the subgraph ZI(R)\
√

I
is totally disconnected.

Conversely, assume that
√

I is not a prime ideal of R. Then there are
x, y ∈ R \

√
I with xy ∈

√
I. Thus xnyn = (xy)n ∈ I for some positive

integer n. If xn = yn, then x2n = xnyn ∈ I; so x ∈
√

I, a contradiction.
Hence xn, yn ∈ ZI(R) \

√
I, xn 6= yn, and xn and yn are adjacent. Thus the

subgraph ZI(R) \
√

I is not totally disconnected. �

Proposition 2.3. Let I be a proper ideal of a commutative ring R and
NI(R) = {x ∈ R | x2 ∈ I }. Then every vertex of the subgraph

√
I \NI(R)

of ΓI(R) is adjacent to a vertex of the subgraph NI(R)∗ = NI(R) \ I of
ΓI(R).

Proof. Let x ∈
√

I \NI(R), n (n ≥ 3) be the least positive integer such that
xn ∈ I, and y = xn−1. Then y = xn−1 /∈ I, xy = xxn−1 = xn ∈ I, and
y2 = (xn−1)2 = x2n−2 ∈ I since 2n− 2 ≥ n as n ≥ 3. Thus y ∈ NI(R) \ I =
NI(R)∗, x 6= y, and x is adjacent to y in ΓI(R) since xy ∈ I. �

Thus ΓI(R) is the union of three, possibly empty, disjoint subgraphs,
NI(R)∗ = NI(R) \ I,

√
I \NI(R), and ZI(R) \

√
I. Suppose that the ideal

I is not a prime ideal of R, but
√

I is a prime ideal of R. Then NI(R)∗ is
nonempty by Proposition 2.1 (4) and ZI(R) \

√
I is totally disconnected by

Theorem 2.2 (2).

3. Chained rings

In this section, we investigate the ideal-based zero-divisor graph ΓI(R)
with respect to a proper ideal I of a commutative ring R such that R/I is a
chained ring. In particular, these results all hold when R is a chained ring.
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Note that
√

I is a prime ideal of R when R/I is a chained ring since radical
ideals in chained rings are prime ideals.

We first show, among other things, that every vertex of the subgraph
ZI(R) \NI(R) is adjacent to a vertex of the subgraph NI(R)∗ = NI(R) \ I
and every two distinct vertices of NI(R)∗ are adjacent (i.e., NI(R)∗ is a
complete subgraph of ΓI(R)).

Proposition 3.1. Let I be a proper ideal of a commutative ring R such
that R/I is a chained ring, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I },
ZI(R)∗ = ZI(R) \ I, NI(R) = {x ∈ R | x2 ∈ I }, NI(R)∗ = NI(R) \ I, and
x, y ∈ R.

(1) If xy ∈ I, then either x ∈ NI(R) or y ∈ NI(R).
(2) If x, y ∈ NI(R), then xy ∈ I.
(3) If x, y ∈ ZI(R) \NI(R), then xy /∈ I.
(4) If x ∈ ZI(R)∗, then xy ∈ I for some y ∈ NI(R)∗.
(5) If x1, . . . , xn ∈ ZI(R)∗, then there is a y ∈ NI(R)∗ such that xiy ∈ I

for every integer i, 1 ≤ i ≤ n.
(6) NI(R) is an ideal of R. Moreover, NI(R) = I if and only if I is a

prime ideal of R.
(7) NI(R) is a prime ideal of R if and only if NI(R) =

√
I.

(8) ZI(R) is a prime ideal of R.

Proof. (1) Since R/I is a chained ring, we may assume that (x + I)|(y + I)
in R/I. Thus y = ax + i for some a ∈ R and i ∈ I. Hence y2 = (ax + i)y =
axy + iy ∈ I since xy ∈ I; so y ∈ NI(R).

(2) Since R/I is a chained ring, we may assume that (x + I)|(y + I) in
R/I. Thus y = ax + i for some a ∈ R and i ∈ I. Hence xy = x(ax + i) =
ax2 + xi ∈ I since x2 ∈ I.

(3) This follows from part (1) above.
(4) If x ∈ NI(R)∗, then let y = x. If x ∈ ZI(R) \NI(R), then there is a

y ∈ R \ I such that xy ∈ I. By part (3) above, we have y ∈ NI(R)∗.
(5) Since R/I is a chained ring, there is an integer j, 1 ≤ j ≤ n, such that

(xj + I)|(xi + I) for every integer i, 1 ≤ i ≤ n. Thus xi = aixj + bi for some
ai ∈ R and bi ∈ I for every integer i, 1 ≤ i ≤ n. By part (4) above, there is
a y ∈ NI(R)∗ such that xjy ∈ I. Hence xiy = (aixj + bi)y = aixjy + biy ∈ I
for every integer i, 1 ≤ i ≤ n.

(6) Let x, y ∈ NI(R) and r ∈ R. Then (rx)2 = r2x2 ∈ I since x2 ∈ I; so
rx ∈ NI(R). Thus we need only show that x + y ∈ NI(R). By assumption,
x2, y2 ∈ I, and xy ∈ I by part (2) above; so (x + y)2 = x2 + 2xy + y2 ∈
I. Hence NI(R) is an ideal of R. The “moreover” statement follows from
Proposition 2.1 (4) since I is a prime ideal of R if and only if I is a radical
ideal of R as R/I is a chained ring.
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(7) Suppose that NI(R) is a prime ideal of R. Then NI(R) =
√

I since
I ⊆ NI(R) ⊆

√
I. Conversely, assume that NI(R) =

√
I. Then

√
I is a prime

ideal of R since R/I is a chained ring.
(8) Since ZI(R) is closed under multiplication and by Proposition 2.1 (3),

we need only show that ZI(R) is closed under addition. Let x, y ∈ ZI(R).
Since R/I is a chained ring, we may assume that (x+ I)|(y + I) in R/I, and
thus y = ax + i for some a ∈ R and i ∈ I. Let z ∈ R \ I such that xz ∈ I.
Then (x + y)z = (x + ax + i)z = (1 + a)xz + iz ∈ I; so x + y ∈ ZI(R). �

Remark 3.2. If R/I is not a chained ring, then NI(R) need not be an ideal
of R. For example, let R = Z[X, Y ] and I = (X2, Y 2). Then X, Y ∈ NI(R),
but X + Y /∈ NI(R). However, NI(R) is an ideal of R when char(R) = 2.

Let R = Z2[X, Y ] and I = (X4, Y 4). Then R/I is not a chained ring,
NI(R) is an ideal of R since char(R) = 2, and I ( (X2, Y 2) = NI(R) (
(X, Y ) =

√
I = ZI(R).

The next result improves Theorem 2.2 (2) when R/I is a chained ring.

Theorem 3.3. Let I be a proper ideal ideal of a commutative ring R such
that R/I is a chained ring, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I },
NI(R) = {x ∈ R | x2 ∈ I }, and NI(R)∗ = NI(R) \ I. Then NI(R)∗ is
a complete subgraph of ΓI(R) and the subgraph ZI(R) \ NI(R) of ΓI(R) is
totally disconnected. Moreover, NI(R)∗ is nonempty if and only if ΓI(R) is
nonempty.

Proof. The first statement follows from parts (2) and (3) of Proposition 3.1,
respectively. The “moreover” statement follows since NI(R)∗ = ∅ (i.e.,
NI(R) = I) if and only if

√
I = I by Proposition 2.1 (4), if and only if I is

a prime ideal of R (since R/I is a chained ring), if and only if ZI(R)∗ = ∅
(i.e., ΓI(R) is the empty graph). �

Corollary 3.4. Let I be a proper ideal ideal of a commutative ring R such
that R/I is a chained ring. Then ΓI(R) is a complete graph if and only if
ZI(R) = NI(R). Moreover, if ΓI(R) is a complete graph, then Z(R/I) =
nil(R/I).

Proof. We first show that ΓI(R) is complete if and only if ZI(R) = NI(R).
If ZI(R) = NI(R), then ΓI(R) is complete by Theorem 3.3. Conversely,
suppose that NI(R) ( ZI(R). Let x ∈ ZI(R)\NI(R). Then xy ∈ I for some
y ∈ NI(R)∗ = NI(R) \ I by Proposition 3.1 (4), and thus x + y ∈ ZI(R) by
Proposition 3.1 (8). Moreover, x + y /∈ NI(R) since y ∈ NI(R), x /∈ NI(R),
and NI(R) is an ideal of R by Proposition 3.1 (6). Hence x and x + y are
distinct, nonadjacent vertices since ZI(R)\NI(R) is totally disconnected by
Theorem 3.3. Hence ΓI(R) is not complete.
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For the “moreover” statement, suppose that ΓI(R) is a complete graph.
Then ZI(R) = NI(R) by above, and thus ZI(R) =

√
I by Proposition 2.1

(2). Hence nil (R/I) =
√

I/I = ZI(R)/I = Z(R/I). �

Remark 3.5. (1) Corollary 3.4 also follows from [4, Theorem 4.6] and [6,
Theorem 4.7]. Note that the converse of the “moreover” statement in Corol-
lary 3.4 need not hold. For example, let R = Z2 × Z8 and I = Z2 × {0}.
Then R/I ∼= Z8 is a finite local ring; so nil(R/I) = Z(R/I). However, ΓI(R)
is not complete (cf. Example 3.10). Also, Corollary 3.4 may fail if R/I is
not a chained ring. For example, let R = Z2 × Z2 and I = {(0, 0)}. Then
ΓI(R) = Γ(R) is the complete graph on two vertices, but NI(R) = I (
R \ {(1, 1)} = ZI(R).

(2) Let I be a proper ideal of a commutative ring R such that R/I is a
chained ring. Note that if

√
I ( ZI(R), then R/I is infinite. This follows

since if R/I is finite, then
√

I/I is a prime, hence maximal, ideal of R/I

contained in the prime ideal ZI(R)/I; so
√

I = ZI(R). Moreover, if ΓI(R)
is an infinite graph (i.e., I is not a prime ideal of R and either I is infinite or
R/I is infinite), then the subgraph ZI(R)\NI(R) is infinite if it is nonempty.
This is clear if NI(R) is finite. If NI(R) is infinite, it follows since x +
NI(R) ⊆ ZI(R) \NI(R) for x ∈ ZI(R) \NI(R).

(3) Let I be a proper ideal of a commutative ring R such that R/I is a
chained ring. Then there are eight possibilities for equals or strict inclusion
in the chain of ideals I ⊆ NI(R) ⊆

√
I ⊆ ZI(R) (i.e., for the subgraphs

NI(R)\I,
√

I \NI(R), and ZI(R)\
√

I of ΓI(R) being empty or nonempty).
If NI(R) = I, then I is a prime ideal of R by Proposition 3.1 (6); so in
this case, all four ideals are equal and ΓI(R) is the empty graph. Easy
examples show that the other four cases are all possible. For example, let
R = Z(2)+XQ[[X]] and I = (X2). Then R is a valuation domain; so R/I is a
chained ring. Note that I ( (X) = NI(R) ( XQ[[X]] =

√
I ( (2) = ZI(R).

When R/I is a chained ring, the graph ΓI(R) is easy to describe. It is the
union of two disjoint subgraphs, NI(R)∗ = NI(R)\I (nonempty when ΓI(R)
is nonempty) and ZI(R)\NI(R) (possibly empty), where NI(R)∗ is complete
and ZI(R)\NI(R) is totally disconnected by Theorem 3.3, and every vertex
of ZI(R)\NI(R) is adjacent to some vertex of NI(R) by Proposition 3.1(4).

Recall that diam(ΓI(R)) ∈ {0, 1, 2, 3} and gr(ΓI(R)) ∈ {3, 4,∞} for ev-
ery proper ideal I of a commutative ring R. Stronger results hold for the
diameter and girth of ΓI(R) when R/I is a chained ring.

Theorem 3.6. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring. Then diam(ΓI(R)) ∈ {0, 1, 2}.
Proof. Let ZI(R)∗ = ZI(R) \ I = V (ΓI(R)) and NI(R) = {x ∈ R | x2 ∈ I }.
If |ZI(R)∗| ≤ 1, then diam(ΓI(R)) = 0. So we may assume that |ZI(R)∗| ≥ 2.
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Let x, y ∈ ZI(R)∗ with x 6= y. If x, y ∈ NI(R), then xy ∈ I by Proposi-
tion 3.1 (2), and thus d(x, y) = 1. If x ∈ NI(R) and y /∈ NI(R), then
yz ∈ I for some z ∈ NI(R)∗ ⊆ ZI(R)∗ by Proposition 3.1 (4) and xz ∈ I
by Proposition 3.1 (2). If x = z, then d(x, y) = 1. Otherwise, x − z − y
is a path of length 2 from x to y, and hence d(x, y) ≤ 2. Finally, let
x, y /∈ NI(R). Then xz, yz ∈ I for some z ∈ NI(R)∗ ⊆ ZI(R)∗ by Proposi-
tion 3.1 (5). Thus x − z − y is a path of length 2 from x to y, and hence
d(x, y) ≤ 2 (actually, d(x, y) = 2 since xy /∈ I by Proposition 3.1(3)). Thus
diam(ΓI(R)) ∈ {0, 1, 2}. �

Remark 3.7. diam(ΓI(R)) = 0 (i.e., |ZI(R)∗| ≤ 1) if and only if either
ΓI(R) is the empty graph (i.e., I is a prime ideal of R) or I = {0} (i.e.,
ΓI(R) = Γ(R)) and R ∼= Z4 or Z2[X]/(X2), both of which are chained rings.

Next, we explicitly determine when the diameter of ΓI(R) is either 0, 1,
or 2.

Theorem 3.8. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I },
ZI(R)∗ = ZI(R) \ I, and NI(R) = {x ∈ R | x2 ∈ I }. Then exactly one of
the following three cases must occur.

(1) |ZI(R)∗| ≤ 1. In this case, diam(ΓI(R)) = 0.
(2) |ZI(R)∗| ≥ 2 and NI(R) = ZI(R). In this case, diam(ΓI(R)) = 1.
(3) |ZI(R)∗| ≥ 2 and NI(R) ( ZI(R). In this case, diam(ΓI(R)) = 2.

Proof. This follows directly from Proposition 3.1 and the proof of Theo-
rem 3.6. �

We next show that gr(ΓI(R)) ∈ {3,∞} when R/I is a chained ring.

Theorem 3.9. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring, ZI(R) = {x ∈ R | xy ∈ I for some y ∈ R \ I },
NI(R) = {x ∈ R | x2 ∈ I }, and NI(R)∗ = NI(R) \ I. Then exactly one of
the following four cases must occur.

(1) |NI(R)∗| ≤ 1. In this case, gr(ΓI(R)) = ∞.
(2) |NI(R)∗| = 2 and NI(R) = ZI(R). In this case, gr(ΓI(R)) = ∞.
(3) |NI(R)∗| = 2 and NI(R) ( ZI(R). In this case, gr(ΓI(R)) = 3.
(4) |NI(R)∗| ≥ 3. In this case, gr(ΓI(R)) = 3.

Proof. (1) We may assume that NI(R)∗ 6= ∅ by the “moreover” statement in
Theorem 3.3. Let NI(R)∗ = {x}. If NI(R)∗ = ZI(R)∗, then gr(ΓI(R)) = ∞.
If NI(R)∗ ( ZI(R)∗, then ΓI(R) is a star graph with center x by parts (3)
and (4) of Proposition 3.1. Thus gr(ΓI(R)) = ∞.

(2) By hypothesis, |ZI(R)∗| = 2; hence gr(ΓI(R)) = ∞.
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(3) Let NI(R)∗ = {x, y}. Then xy ∈ I by Proposition 3.1 (2) and x+ y ∈
NI(R) by Proposition 3.1 (6). If x + y ∈ NI(R) \ I = NI(R)∗, then either
x + y = x or x + y = y. Thus either y = 0 or x = 0, a contradiction.
Hence x + y ∈ I. Let z ∈ ZI(R) \ NI(R)∗. Then either xz ∈ I or yz ∈ I
by Proposition 3.1 (4). However, in either case, xz, yz ∈ I since x + y ∈ I.
Thus x− y − z − x is a triangle in ΓI(R); so gr(ΓI(R)) = 3.

(4) If |NI(R)∗| ≥ 3, then gr(ΓI(R)) = 3 by Proposition 3.1 (2). �

The final example illustrates the above results. In particular, it shows that
all possible values may be realized for diam(ΓI(R)) and gr(ΓI(R)) when R/I
is a chained ring and I is a nonzero ideal of R. For the diam(ΓI(R)) = 0
case, see Remark 3.7.

Example 3.10. Note that Zn is a chained ring if and only if n is a prime
power. Let p be a prime number, and for every positive integer n, let
Rn = Z2 × Zpn and In = Z2 × {0}. Then Rn/In

∼= Zpn is a chained ring.
It is easily verified (cf. Theorem 3.9) that ΓI1(R1) is the empty graph,
gr(ΓI2(R2)) = ∞ if p = 2, gr(ΓI2(R2)) = 3 if p 6= 2, and gr(ΓIn(Rn)) = 3
for n ≥ 3 since (0, p) − (1, pn−1) − (0, pn−1) − (0, p) is a triangle. It is also
easily verified that diam(ΓI2(R2)) = 1 and diam(ΓIn(Rn)) = 2 for n ≥ 3 (cf.
Theorem 3.8).
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