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THE IDEAL-BASED ZERO-DIVISOR GRAPH OF
COMMUTATIVE CHAINED RINGS

DAVID F. ANDERSON, S. EBRAHIMI ATANI, M. SHAJARI KOHAN, AND Z.
EBRAHIMI SARVANDI

ABSTRACT. Let I be a proper ideal of a commutative ring R with 1 # 0.
The ideal-based zero-divisor graph of R with respect to I, denoted by
I';(R), is the (simple) graph with vertices {z € R\ I | zy € I for some
y € R\ I}, and distinct vertices x and y are adjacent if and only if
zy € I. In this paper, we study I';(R) for commutative rings R such
that R/I is a chained ring.

1. INTRODUCTION

In the literature, there are many papers on assigning a graph to a ring
(see, for example, [1] - [7], [9], and [11]). Among the most interesting graphs
are zero-divisor graphs, because they involve both ring theory and graph
theory. By studying these graphs, we can gain a broader insight into the
concepts and properties that involve both graphs and rings. The concept
of zero-divisor graph for a commutative ring R was introduced by I. Beck
[7], where he was mainly interested in colorings. In his work, all elements
of R were vertices of the graph, and distinct vertices = and y were adjacent
if and only if zy = 0. This investigation of colorings of a commutative ring
was then continued by D. D. Anderson and M. Naseer in [1]. Let Z(R) be
the set of zero-divisors of R. In [5], D. F. Anderson and P. S. Livingston
associated a (simple) graph I'(R) to R, with vertices Z(R)* = Z(R)\{0}, the
set, of nonzero zero-divisors of R, and distinct vertices x and y are adjacent
if and only if xy = 0. The zero-divisor graph I'(R) of R has been studied
extensively; see the the survey articles [2] and [9].

Let R be a commutative ring with 1 # 0, I a proper ideal of R, and
Zi(R) ={x € R|xy € I for some y € R\ I}. In [11], S. P. Redmond
introduced the ideal-based zero-divisor graph of R with respect to I, denoted
by I';(R), with vertices Zj(R)* = Zj(R)\I ={x € R\ I | zy € I for some

2000 Mathematics Subject Classification. 05C25, 05C38, 13A15.
Key words and phrases. Zero-divisor graph, deal-based zero-divisor graph, chained ring.



4 D. F. ANDERSON, S. E. ATANI, M. S. KOHAN, AND Z. E. SARVANDI

y € R\ I}, and distinct vertices z and y are adjacent if and only if zy € I.
Thus I'gpy(R) = I'(R) and I';(R) is the empty graph if and only if I is
a prime ideal of R. In [11], he explored the relationship between I';(R)
and I'(R/I) and showed, among other things, that I';(R) is connected with
diam(T'7(R)) € {0,1,2,3} and gr(I';(R)) € {3,4, c0}.

In [3], D. F. Anderson and A. Badawi studied I'(R) for several classes
of rings which generalize valuation domains to the context of rings with
zero-divisors. These rings include chained rings and rings R whose prime
ideals contained in Z(R) are linearly ordered. Recall that a ring R is a
chained ring if the (principal) ideals of R are linearly ordered (by inclusion),
equivalently, if either x|y or y|z for all x,y € R. Examples of chained rings
include valuation domains and factor rings of chained rings.

In this paper, we study I';(R) for commutative rings R such that R/I
is a chained ring. Clearly, R/I is a chained ring when R is a chained ring;
however, R/I may be a chained ring when R is not a chained ring. For
example, let J be a proper ideal of a chained ring S (e.g., a valuation do-
main), R = S[X] or S[[X]], and I = (J, X). Then R is not a chained ring,
but R/I = S/J is a chained ring. As another example, let Ry and Ry be
chained rings and R = R; x Ry with ideals Iy = R; x {0} and I» = {0} x Ra.
Then R is not a chained ring, but R/I1 = Ry and R/I» = R; are both
chained rings.

In Section 2, we study the relationship between several natural subgraphs
of I'y(R). Then, in Section 3, we specialize to the case when R/I is a chained
ring. We completely characterize the diameter and girth of the graph I';(R)
for such rings in Theorem 3.8 and Theorem 3.9, respectively. Moreover,
we extend several results in [3] to the more general ideal-based zero-divisor
graph case. In fact, results in [3] for I'(R) when R is a chained ring are
actually special cases of the results in this paper for I';/(R) when R/I is a
chained ring since if I = {0}, then R is a chained ring and I'(R) = I';(R).
We invite the interested reader to compare the results in [3] for I'(R) to the
results in this paper for I';(R).

In order to make this paper easier to follow, we next recall various notions
which will be used in the sequel. For a graph I', let E(I') and V(I") denote
the sets of edges and vertices of I, respectively. By abuse of notation, we will
often refer to a subgraph of I';(R) by its set of vertices; all such subgraphs
will be induced subgraphs. We recall that a graph is connected if there
exists a path connecting any two distinct vertices. At the other extreme,
we say that a graph I' is totally disconnected if no two vertices of I' are
adjacent. The distance between two distinct vertices a and b in I', denoted
by d(a,b), is the length of a shortest path connecting them (d(a,a) = 0 and
d(a,b) = oo if there is no such path). The diameter of a graph I', denoted by
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diam(T"), is sup{ d(a,b) | a,b € V(T') }. A graph is complete if it is connected
with diameter less than or equal to one. The girth of a graph I', denoted
by gr(I"), is the length of a shortest cycle in I', provided I' contains a cycle;
otherwise, gr(I") = oo. Recall that a graph I' is a star graph if it has a vertex
that is adjacent to every other vertex and this is the only adjacency relation.
Throughout this paper, all rings are assumed to be commutative with 1 # 0.
As usual, Z, Z,,, and Q denote the rings of integers, integers modulo n, and
rational numbers, respectively; for an ideal T of R, VI = {z € R| 2" € I
for some integer n > 1 }; and nil(R) = 1/{0}. To avoid any trivalities when
I'7(R) is the empty graph, we will implicitly assume when necessary that I
is not a prime ideal of R. For a ring theory reference, see [10]; for a graph
theory reference, see [8].

2. SUBGRAPHS OF I'j(R)

Let I be a proper ideal of a commutative ring R. In this section, we
investigate the relationship between several subgraphs of I'j(R). It will
be convenient to let Z;(R)* = Z;(R)\I = {x € R\ I | xy € I for some
y € R\I }. Note that Zyo,(R) = Z(R), Z(R/I) = Z;(R)/I, and V(I'1(R)) =
Zr(R)*. Moreover, Zr(R)* = 0 (i.e., Zr(R) = I) if and only if I is a prime
ideal of R. Also, let Ny(R) = {z € R| 2? € I'} and N;(R)* = Ny(R)\ I.
Clearly, I € N;(R) C VI, and Ni(R)* =0 (i.e., N;(R) = I) if and only if T
is a radical ideal of R (i.e., v I = I).

Proposition 2.1. Let I be a proper ideal of a commutative ring R, VIT =
VINI, Z{(R)={xz € R|zy €I for somey € R\I}, Z;(R)* = Z;(R)\ I,
and Ni(R) = {z € R| 2% € I}. Then the following hold.

1) VI' C Zi(R)*.

2) I C N;(R) CVIC Zi(R).

3) If Z;(R) is an ideal of R, then it is a prime ideal of R.
4) Ni(R) = I if and only if VI = 1.

P

Proof. (1) Let # € VI™ = VI\ I. Let n (n > 2) be the least positive
integer such that 2" € I. Asx ¢ I, 2" 1 ¢ I, and 2"~ ! = 2™ € I, we have
zxeZi(R)\I=Z(R)".

(2) This follows from part (1) and the above comments.

(3) Suppose that Z;(R) is an ideal of R, and let x,y € R such that
xy € Zr(R). Then there is a z € R\ I such that (zy)z € I. If yz € I, then
y € Zi(R). If yz ¢ I, then z € Z;(R). Thus Z;(R) is a prime ideal of R.
(This also follows since Zr(R) is a union of prime ideals of R).

(4) This is clear. O
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Theorem 2.2. Let I be a proper ideal of a commutative ring R, VIT = VT\
I, Zi(R)={zx € R|xy el forsomeyc R\1}, and Z;(R)* = Z;(R) \ I.
Then the following hold.
(1) Ifz e VI" and y € Z;(R)*, then d(z,y) < 2 in T1(R).
(2) The subgraph Z;(R)\V1 of T'1(R) is totally disconnected if and only
if VI is a prime ideal of R.

Proof. (1) We may assume that x # y and zy ¢ I. Since y € Z;(R) \ I and
xy ¢ I, there is a z € Z7(R) \ ({ U{z}) such that zy € I. There is a least
positive integer n such that "z € I since = € VIT. Ifn= 1, thenx —2z—y
is a path of length 2 from x to y. If n > 2, then  — 2" 'z — y is a path of
length 2 from x to y. Thus d(z,y) <2 in I'/(R).

(2) Assume that /T is a prime ideal of R, and let 2 and y be distinct
elements of Z;(R) \ VI. If z and y are adjacent, then zy € I C v/I. Thus
either x or y belongs to v/I, a contradiction. Hence the subgraph Z;(R)\ VT
is totally disconnected.

Conversely, assume that v/T is not a prime ideal of R. Then there are
z,y € R\ VI with zy € v/I. Thus 2"y = (zy)" € I for some positive
integer n. If 2™ = y", then x?® = 2™y" € I; so € V1, a contradiction.
Hence 2", 9™ € Z7(R) \ VI, 2™ # y", and 2" and y" are adjacent. Thus the
subgraph Z;(R) \ V/T is not totally disconnected. O

Proposition 2.3. Let I be a proper ideal of a commutative ring R and
Ni(R) = {x € R| 2 € I'}. Then every vertex of the subgraph /I \ Ni(R)
of T1(R) is adjacent to a vertex of the subgraph Ny(R)* = Ny(R) \ I of
r';(R).

Proof. Let z € vT\ N7(R), n (n > 3) be the least positive integer such that
2" € I,and y = 2" L. Then y = 2" ' ¢ I, 2y = 2" ! = 2™ € I, and
yr= (212 =2?""2¢c Isince2n—2>nasn>3. Thusy € Ny (R)\I =
Ni(R)*, x # y, and z is adjacent to y in I';(R) since zy € 1. O

Thus T';(R) is the union of three, possibly empty, disjoint subgraphs,
Nr(R)* = Ni(R)\ I, T\ N;(R), and Z;(R) \ VI. Suppose that the ideal
I is not a prime ideal of R, but v/T is a prime ideal of R. Then N;(R)* is
nonempty by Proposition 2.1 (4) and Z;(R) \ VT is totally disconnected by
Theorem 2.2 (2).

3. CHAINED RINGS

In this section, we investigate the ideal-based zero-divisor graph I';(R)
with respect to a proper ideal I of a commutative ring R such that R/I is a
chained ring. In particular, these results all hold when R is a chained ring.
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Note that v/T is a prime ideal of R when R/I is a chained ring since radical
ideals in chained rings are prime ideals.

We first show, among other things, that every vertex of the subgraph
Zr(R) \ N1(R) is adjacent to a vertex of the subgraph Nj(R)* = Nj(R) \
and every two distinct vertices of Ny(R)* are adjacent (i.e., Ny(R)* is a
complete subgraph of I'7(R)).

Proposition 3.1. Let I be a proper ideal of a commutative ring R such
that R/1 is a chained ring, Z;(R) = {zx € R | xy € I for somey € R\ I},
Zi(R)* = Z{(R)\ I, Nf(R) ={z € R| 2> € I}, N(R)* = N[(R) \ I, and
z,y € R.

(1) If xy € I, then either x € Ni(R) ory € Ni(R).

(2) If x,y € Ni(R), then xy € I.

(3) If w,y € Zi(R) \ Ni(R), then xy ¢ I.

(4) If x € Z;(R)*, then xy € I for some y € Ny(R)*.

(5) If x1,...,xn € Z1(R)*, then there is ay € Ni(R)* such that x;y € I
for every integer i, 1 < i < n.

(6) Ni(R) is an ideal of R. Moreover, Ni(R) = I if and only if I is a
prime ideal of R.

(7) Ni(R) is a prime ideal of R if and only if Nj(R) = /1.

(8) Z1(R) is a prime ideal of R.

Proof. (1) Since R/I is a chained ring, we may assume that (x + I)|(y + I)
in R/I. Thus y = ax +1i for some a € R and i € I. Hence y? = (ax + i)y =
axy + iy € I since xy € I; so y € Ni(R).

(2) Since R/I is a chained ring, we may assume that (z + I)|(y + I) in
R/I. Thus y = ax + i for some a € R and i € I. Hence zy = x(ax + i) =
ax? 4+ xi € I since 22 € I.

(3) This follows from part (1) above.

(4) If z € Ny(R)*, then let y = . If z € Z;(R) \ N7(R), then there is a
y € R\ I such that xy € I. By part (3) above, we have y € N;(R)*.

(5) Since R/I is a chained ring, there is an integer j, 1 < j < n, such that
(xj 4+ I)|(x; + I) for every integer 4, 1 < i < n. Thus x; = a;x; + b; for some
a; € R and b; € I for every integer i, 1 <1i < n. By part (4) above, there is
ay € Nr(R)* such that z;y € I. Hence z;y = (a;z; + b))y = a;xjy + by € 1
for every integer i, 1 < i < n.

(6) Let x,y € N;(R) and r € R. Then (rx)? = 222 € I since 22 € I; so
rz € Ny(R). Thus we need only show that x +y € Ny(R). By assumption,
22,92 € I, and zy € I by part (2) above; so (z + y)? = 22 + 22y + ¢? €
I. Hence Nj(R) is an ideal of R. The “moreover” statement follows from
Proposition 2.1 (4) since I is a prime ideal of R if and only if [ is a radical
ideal of R as R/I is a chained ring.
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(7) Suppose that N7(R) is a prime ideal of R. Then N7(R) = /T since
I C N;(R) C V/I. Conversely, assume that Ni(R) = V/I. Then VT is a prime
ideal of R since R/I is a chained ring.

(8) Since Z;(R) is closed under multiplication and by Proposition 2.1 (3),
we need only show that Z;(R) is closed under addition. Let z,y € Z;(R).
Since R/I is a chained ring, we may assume that (z+1)|(y+1) in R/I, and
thus y = ax + i for some a € R and i € I. Let z € R\ [ such that zz € I.
Then (x +y)z = (r+ax+i)z=(14+a)zz+izel;sox+ye Z;(R). O

Remark 3.2. If R/I is not a chained ring, then N;(R) need not be an ideal
of R. For example, let R = Z[X,Y] and I = (X?,Y?). Then X,Y € N;(R),
but X +Y ¢ N;(R). However, N;(R) is an ideal of R when char(R) = 2.
Let R = Zy[X,Y] and I = (X*,Y*). Then R/I is not a chained ring,
N;(R) is an ideal of R since char(R) = 2, and I € (X%,Y?) = N;(R) C

The next result improves Theorem 2.2 (2) when R/I is a chained ring.

Theorem 3.3. Let I be a proper ideal ideal of a commutative ring R such
that R/I is a chained ring, Zr(R) = {x € R | xy € I for somey € R\ I},
Ni(R) = {x € R | 22 € I}, and N;(R)* = N;(R)\ I. Then Ni(R)* is
a complete subgraph of T'1(R) and the subgraph Zr(R) \ Ni(R) of T'1(R) is
totally disconnected. Moreover, Ni(R)* is nonempty if and only if T1(R) is
nonempty.

Proof. The first statement follows from parts (2) and (3) of Proposition 3.1,
respectively. The “moreover” statement follows since Ny(R)* = 0 (i.e.,
Ni(R) = I) if and only if /T = I by Proposition 2.1 (4), if and only if I is
a prime ideal of R (since R/I is a chained ring), if and only if Z;(R)* = ()
(i.e., T'7(R) is the empty graph). O

Corollary 3.4. Let I be a proper ideal ideal of a commutative ring R such
that R/I is a chained ring. Then I'1(R) is a complete graph if and only if
Zr(R) = Ni(R). Moreover, if I't(R) is a complete graph, then Z(R/I) =
nil(R/I).

Proof. We first show that I';(R) is complete if and only if Z;(R) = N;(R).
If Z;(R) = Ni(R), then I';(R) is complete by Theorem 3.3. Conversely,
suppose that N;(R) € Z;(R). Let x € Z;(R)\ N1(R). Then zy € I for some
y € Ni(R)* = Ni(R) \ I by Proposition 3.1 (4), and thus z +y € Z;(R) by
Proposition 3.1 (8). Moreover, z +y ¢ Ny(R) since y € Ny(R), ¢ Ni(R),
and Ny(R) is an ideal of R by Proposition 3.1 (6). Hence x and = + y are
distinct, nonadjacent vertices since Zr(R)\ Ny(R) is totally disconnected by
Theorem 3.3. Hence I';(R) is not complete.
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For the “moreover” statement, suppose that I';(R) is a complete graph.
Then Z;(R) = N;(R) by above, and thus Z;(R) = /I by Proposition 2.1
(2). Hence nil (R/I) =VI/I = Z;(R)/I = Z(R/I). O
Remark 3.5. (1) Corollary 3.4 also follows from [4, Theorem 4.6] and [6,
Theorem 4.7]. Note that the converse of the “moreover” statement in Corol-
lary 3.4 need not hold. For example, let R = Zy x Zg and I = Zg x {0}.
Then R/I = Zg is a finite local ring; so nil(R/I) = Z(R/I). However, I'1(R)
is not complete (cf. Example 3.10). Also, Corollary 3.4 may fail if R/I is
not a chained ring. For example, let R = Zgy X Zs and I = {(0,0)}. Then
I';(R) = T'(R) is the complete graph on two vertices, but Ny(R) = I C
R\{(1,1)} = Z(R).

(2) Let I be a proper ideal of a commutative ring R such that R/I is a
chained ring. Note that if /I € Z;(R), then R/I is infinite. This follows
since if R/I is finite, then VI /I is a prime, hence maximal, ideal of R/I
contained in the prime ideal Z;(R)/I; so VI = Z;(R). Moreover, if I'7(R)
is an infinite graph (i.e., I is not a prime ideal of R and either I is infinite or
R/I is infinite), then the subgraph Z;(R)\ N;(R) is infinite if it is nonempty.
This is clear if N;(R) is finite. If N;(R) is infinite, it follows since = +
N[(R) C Z[(R) \N](R) for x € Z[(R) \N[(R)

(3) Let I be a proper ideal of a commutative ring R such that R/I is a
chained ring. Then there are eight possibilities for equals or strict inclusion
in the chain of ideals I € N;(R) C VI C Z;(R) (i.e., for the subgraphs
Nr(R)\I, VI\ N;(R), and Z;(R)\ VT of T';(R) being empty or nonempty).
If N;(R) = I, then I is a prime ideal of R by Proposition 3.1 (6); so in
this case, all four ideals are equal and I';(R) is the empty graph. Easy
examples show that the other four cases are all possible. For example, let
R = Z5+XQ[[X]] and I = (X?). Then R is a valuation domain; so R/I is a
chained ring. Note that I C (X) = N;(R) € XQ[[X]] = VI < (2) = Z/(R).

When R/I is a chained ring, the graph I';(R) is easy to describe. It is the
union of two disjoint subgraphs, N;(R)* = Ny(R)\I (nonempty when I';(R)
is nonempty) and Z;(R)\ Ny (R) (possibly empty), where Ny(R)* is complete
and Z;(R)\ N7(R) is totally disconnected by Theorem 3.3, and every vertex
of Zr(R)\ N1(R) is adjacent to some vertex of Ny(R) by Proposition 3.1(4).

Recall that diam(I';(R)) € {0,1,2,3} and gr(I';(R)) € {3,4, 00} for ev-
ery proper ideal I of a commutative ring R. Stronger results hold for the
diameter and girth of I';(R) when R/I is a chained ring.

Theorem 3.6. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring. Then diam(I'r(R)) € {0,1,2}.

Proof. Let Z;(R)* = Z(R)\I = V(I';(R)) and N;(R) ={x € R| 2> € I}.
If | Z;(R)*| < 1, then diam(I';(R)) = 0. So we may assume that |Z7(R)*| > 2.
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Let x,y € Z;(R)* with ¢ # y. If z,y € Ny(R), then zy € I by Proposi-
tion 3.1 (2), and thus d(x,y) = 1. If x € Ny(R) and y ¢ N;(R), then
yz € I for some z € Ny(R)* C Z;(R)* by Proposition 3.1 (4) and zz € I
by Proposition 3.1 (2). If z = z, then d(z,y) = 1. Otherwise, © — z — y
is a path of length 2 from z to y, and hence d(z,y) < 2. Finally, let
x,y ¢ N7(R). Then zz,yz € I for some z € N;(R)* C Z;(R)* by Proposi-
tion 3.1 (5). Thus z — z — y is a path of length 2 from z to y, and hence
d(z,y) <2 (actually, d(z,y) = 2 since xy ¢ I by Proposition 3.1(3)). Thus
diam(I';(R)) € {0,1,2}. O

Remark 3.7. diam(I';(R)) = 0 (i.e., |[Z1(R)*| < 1) if and only if either
I'7(R) is the empty graph (i.e., I is a prime ideal of R) or I = {0} (i.e.,
I'/(R) =T(R)) and R = Z4 or Z3[X]/(X?), both of which are chained rings.

Next, we explicitly determine when the diameter of I';(R) is either 0, 1,
or 2.

Theorem 3.8. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring, Z;1(R) = {x € R | vy € I for somey € R\ I},
Z1(R)* = Zi(R)\ I, and N{(R) = {x € R | 2> € I}. Then exactly one of
the following three cases must occur.

(1) |Zr(R)*| < 1. In this case, diam(T';(R)) = 0.

(2) |Z1(R)*| > 2 and N;(R) = Z;(R). In this case, diam(T';(R)) = 1.

(3) |Zr(R)*| > 2 and N (R) C Z;(R). In this case, diam(T';(R)) = 2.

Proof. This follows directly from Proposition 3.1 and the proof of Theo-
rem 3.6. (]

We next show that gr(I';(R)) € {3,00} when R/I is a chained ring.

Theorem 3.9. Let I be a proper ideal of a commutative ring R such that
R/I is a chained ring, Z;(R) = {x € R | zy € I for somey € R\ 1},
Ni(R) ={z € R|2?> €I}, and Ni(R)* = N;(R)\ I. Then exactly one of
the following four cases must occur.

(1) |N7(R)*| < 1. In this case, gr(FI(R))

(2) [N1(R)*| =2 and N;(R) = Z1(R). L thzs case, gr(T';(R)) = oo.
(3) IN7(R)*| =2 and N;(R) € Z;(R). In this case, gr(I'1(R)) = 3.
(4) |N7(R)*| > 3. In this case, gr(T';(R)) = 3.

Proof. (1) We may assume that N7(R)* # 0 by the “moreover” statement in
Theorem 3.3. Let Ny(R)* = {z}. If N;(R)* = Z;(R)*, then gr(I';(R)) = cc.
If Ni(R)* C Zi(R)*, then I';(R) is a star graph with center = by parts (3)
and (4) of Proposition 3.1. Thus gr(I';(R)) = occ.

(2) By hypothesis, |Zr(R)*| = 2; hence gr(I'7(R)) = oc.
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(3) Let N;(R)* = {x,y}. Then xy € I by Proposition 3.1 (2) and z+y €
Ni(R) by Proposition 3.1 (6). If z +y € Ny(R) \ I = N;(R)*, then either
r+4+y =xor x+y = y. Thus either y = 0 or z = 0, a contradiction.
Hence z +y € I. Let z € Z;(R) \ N;(R)*. Then either zz € [ or yz € I
by Proposition 3.1 (4). However, in either case, xz,yz € I since x +y € I.
Thus z —y — z — x is a triangle in I';(R); so gr(I'7(R)) = 3.

(4) If [N7(R)*| > 3, then gr(I';/(R)) = 3 by Proposition 3.1 (2). O

The final example illustrates the above results. In particular, it shows that
all possible values may be realized for diam(I';(R)) and gr(I';(R)) when R/I
is a chained ring and [ is a nonzero ideal of R. For the diam(I';(R)) = 0
case, see Remark 3.7.

Example 3.10. Note that Z,, is a chained ring if and only if n is a prime
power. Let p be a prime number, and for every positive integer n, let
R, = Zy X Zyn and I, = Zy x {0}. Then R, /I,, = Zy» is a chained ring.
It is easily verified (cf. Theorem 3.9) that I';, (R;) is the empty graph,
gr(l'n(R2)) = oo if p = 2, gr(I'p,(R2)) = 3 if p # 2, and gr(I'r, (Rn)) = 3
for n > 3 since (0,p) — (1,p" 1) — (0,p""1) — (0,p) is a triangle. It is also
easily verified that diam(T'7,(R2)) = 1 and diam(I';, (R,,)) = 2 for n > 3 (cf.
Theorem 3.8).
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