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SUBTRACTIVE EXTENSION OF IDEALS IN SEMIRINGS

J. N. CHAUDHARI, B. DAVVAZ AND K. J. INGALE

Abstract. In this paper, we (1) obtain the k-closure of ideals and a
characterization of subtractive extension of ideals in the semiring Z+

0 ;
(2) introduce the concept of closure of an ideal A of a semiring R with
respect to an ideal I of R and prove the set of all subtractive extensions
of an ideal I of a semiring R is a complete lattice; (3) show that a
subtractive extension P of a Q-ideal I in a semiring R is a semiprime
ideal if and only if P/I(Q∩P ) is a semiprime ideal in the quotient semiring
R/I(Q).

1. Introduction

The theory of semirings was first developed by H.S. Vandiver and he has
obtained important results for these objects. Semirings constitute a fairly
natural generalization of rings, with board applications in the mathematical
foundation of computer science. Also, semiring theory has many applica-
tions to other branches. For example, automata theory, optimization theory,
algebra of formal processes, combinatorial optimization, Baysian networks
and belief propagation.

A semiring is a system consisting of a set R together with two binary
operations on R called addition and multiplication (denoted in the usual
manner) such that

(1) R together with addition is a (commutative) semigroup,
(2) R together with multiplication is a semigroup,
(3) there exists 0 ∈ R such that x + 0 = x = 0 + x, x · 0 = 0 = 0 · x for

each x ∈ R
(4) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for each a, b, c ∈ R.

We suppose that all semirings in this paper are commutative.
Let B be any Boolean algebra. Then, (B,∪,∩) is a semiring. Let I be the

real interval [0, 1]. Then, (I,max,min) is a semiring.
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The concept of ideal, finitely generated ideal, principal ideal, semiprime
ideal in a commutative semiring with identity 1 can be defined as for com-
mutative rings with identity 1. Denote the sets of all non-negative, and
positive integers respectively by Z+

0 , and N. Z+
0 is a semiring under usual

addition and multiplication of non-negative integers but it is not a ring.
For a1, a2, . . . , an ∈ Z+

0 , we denote (i) 〈a1, a2, . . . , an〉 = the ideal gener-
ated by a1, a2, . . . , an in the semiring Z+

0 ; (ii) (a1, a2, . . . , an) = g.c.d. of
a1, a2, . . . , an. An ideal I of a semiring R is called a subtractive ideal (=
k-ideal) if a, a+b ∈ I, b ∈ R, then b ∈ I. An ideal I of a semiring R is called
a Q-ideal (as introduced by P. J. Allen [2]) if there exists a subset Q of R
such that

(1) R = ∪{q + I : q ∈ Q}.
(2) if q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= ∅ ⇔ q1 = q2.

Let I be a Q-ideal of a commutative semiring R with identity element.
Then, R/I(Q) = {q+I : q ∈ Q} forms a semiring under the binary operations
“⊕”and “�”defined as follows:

(q1 + I)⊕ (q2 + I) = q
′
+ I

where q
′ ∈ Q is a unique element such that q1 + q2 + I ⊆ q

′
+ I.

(q1 + I)� (q2 + I) = q
′′

+ I

where q
′′ ∈ Q is a unique element such that q1q2 + I ⊆ q

′′
+ I. This

semiring R/I(Q) is called a quotient semiring of R by I. If q0 ∈ Q is the
unique element such that q0 + I = I, then q0 + I is the zero element of
R/I(Q) [7, Proposition 8.21].

If A is an ideal of a semiring R, then A = {x ∈ R : x + y ∈ A for some y ∈
A}, is called the k-closure of A [6].

The ideal theory in the quotient of commutative semirings was studied
by Atani [1]. In [4], Chaudhari and Bonde introduced the concept of the
subtractive extension of an ideal in semirings. In Section 2, we obtain k-
closure of ideals and a characterization of subtractive extension of ideals in
the semiring (Z+

0 ,+, ·). In Section 3, we introduce the concept of closure of
an ideal A of a semiring R with respect to an ideal I of R and prove the
set of all subtractive extensions of an ideal I of a semiring R is a complete
lattice. Also we show that a subtractive extension P of a Q-ideal I in a
semiring R is a semiprime ideal if and only if P/I(Q∩P ) is a semiprime ideal
in the quotient semiring R/I(Q).

The following results will be used to prove our results.

Lemma 1.1 ([3]). Let I = 〈a1, a2, . . . , an〉 ⊆ Z+
0 . If (a1, a2, . . . , an) = d,

then there exists a smallest r ∈ Z+
0 such that dk ∈ I for all k ≥ r.
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Theorem 1.2. ([8, Theorem 4]) Every ideal of Z+
0 is finitely generated.

Theorem 1.3. ([5, Proposition 2.19]) An ideal I of Z+
0 is subtractive if and

only if I is a principal ideal.

2. k-closure and subtractive extensions of ideals in the
semiring Z+

0

In this section, we obtain the k-closure of ideals and a characterization of
the subtractive extension of ideals in the semiring (Z+

0 ,+, ·).

Lemma 2.1. Let I = 〈b1, b2, . . . , bm〉 be a non-zero ideal of R = (Z+
0 ,+, ·)

and d = (b1, b2, . . . , bm). Then, I = 〈d〉.

Proof. Let x ∈ I. Then, x + i ∈ I for some i ∈ I. Since d | bj for all j, I
= 〈b1, b2, . . . , bm〉 ⊆ 〈d〉. Hence, x + i ∈ 〈d〉 where i ∈ I ⊆ 〈d〉. By Theorem
1.3, x ∈ 〈d〉. Now, I ⊆ 〈d〉. For the other inclusion, by Lemma 1.1, there
exists r ∈ Z+

0 such that dk ∈ I for all k ≥ r. Then, dr+d = d(r+ 1), dr ∈ I.

Hence, d ∈ I. So 〈d〉 ⊆ I. Therefore, I = 〈d〉. �

Let I be an ideal of a semiring R. An ideal A of R with I ⊆ A is said
to be a subtractive extension of I if x ∈ I, x + y ∈ A, y ∈ R, then y ∈ A
[4]. Clearly, every subtractive ideal A of a semiring R containing an ideal
I of R is a subtractive extension of I. Also every ideal of a semiring R is a
subtractive extension of {0}.

Example 2.2. Let I = {0}, A = 〈2, 3〉 be ideals in the semiring R =
(Z+

0 ,+, ·). Then, A is a subtractive extension of I but by Theorem 1.3. it
is not a subtractive ideal.

By Theorem 1.2, every ideal of (Z+
0 ,+, ·) is finitely generated. Now, the

following theorem gives a characterization of subtractive extensions of non-
zero ideals in the semiring (Z+

0 ,+, ·):

Theorem 2.3. Let I = 〈b1, b2, . . . , bm〉 be a non-zero ideal of R = (Z+
0 ,+, ·)

and d = (b1, b2, . . . , bm). Then, an ideal A of R is a subtractive extension of
I if and only if A = 〈a〉 where a | d.

Proof. Let A be a subtractive extension of I. Suppose that A is not a prin-
cipal ideal. Then, by Theorem 1.2, A = 〈a1, a2, . . . , an〉 where 1 < a1 <

a2 < · · · < an, ai - aj for all i < j, j = 2, 3, . . . , n, n ≥ 2. Let d
′

=
(a1, a2, . . . , an). By Lemma 1.1, there exist r1, r2 ∈ N such that dk ∈ I and

d
′
s ∈ A for all k ≥ r1, s ≥ r2. Hence, dk ∈ I and d

′
k ∈ A for all k ≥ r

where r = max{r1, r2} . . . (1). Since d, d
′
> 0, d

′
r, dr + 1 ≥ r. So by (1),

dd
′
r ∈ I and dd

′
r + d

′
= d

′
(dr + 1) ∈ A. Since A is a subtractive extension

of I, d
′ ∈ A. Hence, d

′
= a1. So a1 | a2 a contradiction. Now, A = 〈a〉 for
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some a ∈ Z+
0 . Since I ⊆ A, a | d. Conversely, suppose that A = 〈a〉 where

a | d. Clearly, I ⊆ A. By Theorem 1.3, A is a subtractive ideal of R and
hence A is a subtractive extension of I. �

The following example shows that the sum (union) of two subtractive
extensions of I need not be subtractive extension of I.

Example 2.4. Let I = 〈12, 18〉, A = 〈2〉 and B = 〈3〉 be ideals in the
semiring Z+

0 . By Theorem 2.3, A, B are subtractive extensions of I, but A
+ B = {0, 2, 3, 4, 5, 6, . . . } = 〈2, 3〉, is not a subtractive extension of I. An
inspection will show that A ∪ B is not an ideal of Z+

0 and hence A ∪ B is
not a subtractive extension of I.

Denote Z+
0 × Z+

0 = (Z+
0 ,+, ·) × (Z+

0 ,+, ·), the semiring with pointwise
addition and pointwise multiplication. By [4, Lemma 2.1], I is an ideal in
Z+
0 × Z+

0 if and only if I = I1 × I2 where I1, I2 are ideals in Z+
0 .

Theorem 2.5. Let I = I1 × I2 ⊆ A = A1 × A2 be ideals in the semiring
Z+
0 × Z+

0 . Then, A is a subtractive extension of I if and only if Ai is a
subtractive extension of Ii in Z+

0 where i = 1, 2.

Proof. Let A be a subtractive extension of I and x ∈ I1, x+y ∈ A1, y ∈ Z+
0 .

Then, (x, 0) ∈ I and (x, 0) + (y, 0) = (x + y, 0) ∈ A1 × A2 = A. Since
A is a subtractive extension of I, (y, 0) ∈ A and hence y ∈ A1. Now, A1

is a subtractive extension of I1. Similarly, A2 is a subtractive extension of
I2. Conversely, suppose that Ai is a subtractive extension of Ii (i = 1, 2).
Clearly, A is a subtractive extension of I. �

Lemma 2.6. Let I = I1 × I2 be an ideal of the semiring Z+
0 ×Z+

0 where Ii
(i = 1, 2) are ideals in the semiring Z+

0 . Then, I = I1 × I2.

Theorem 2.7. Let I = 〈a1, a2, . . . , an〉 × 〈b1, b2, . . . , bm〉 be an ideal of the
semiring Z+

0 ×Z+
0 where ai 6= 0, bj 6= 0 for some i, j. If d = (a1, a2, . . . , an)

and d
′

= (b1, b2, . . . , bm), then I = 〈d〉 × 〈d′〉.

Proof. Follows from Lemma 2.1 and Lemma 2.6. �

3. Subtractive extension of ideals in semirings

In this section, we introduce the concept of closure of an ideal A of a
semiring R with respect to an ideal I of R and prove the set of all subtractive
extensions of an ideal I of a semiring R is a complete lattice. Also we show
that a subtractive extension P of a Q-ideal I in a semiring R is a semiprime
ideal if and only if P/I(Q∩P ) is a semiprime ideal in the quotient semiring
R/I(Q).
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Let I ⊆ A be ideals of a semiring R. Then, we denote AI = {x ∈ R :
x + i ∈ A for some i ∈ I}, and will be called the closure of A with respect
to I.

We can easily show that (i) I ⊆ I ⊆ AI ⊆ A; (ii) AA =A where I ⊆ A
are ideals of R.

Example 3.1. Let I = {0} × 〈4, 6〉, A = 〈2, 3〉 × 〈4, 6〉 be ideals in the

semiring R = Z+
0 ×Z+

0 . Clearly, {0} = {0}. By Lemma 2.1, 〈4, 6〉 = 〈2〉 and

〈2, 3〉 = 〈1〉 = Z+
0 . Hence, by Lemma 2.6, I = {0} × 〈2〉 and A = Z+

0 × 〈2〉.
An inspection will show that AI = 〈2, 3〉 × 〈2〉. Now, I ( I ( AI ( A.

Theorem 3.2. Let I ⊆ A be ideals of a semiring R. Then, AI is the smallest
subtractive extension of I containing A.

Proof.

(1) Let a1, a2 ∈ AI and r ∈ R. Then, there exist i1, i2 ∈ I such that
a1+ i1, a2+ i2 ∈ A. Hence, (a1+a2)+(i1+ i2) = a1+ i1+a2+ i2 ∈ A
where i1 + i2 ∈ I. So a1 + a2 ∈ AI . Similarly, ra1 ∈ AI . Hence, AI is
an ideal of R.

(2) Clearly, A ⊆ AI .

(3) Let i ∈ I, a + i ∈ AI , a ∈ S. Then, there exists i
′ ∈ I such that

a + i + i
′ ∈ A. Now, i + i

′ ∈ I implies a ∈ AI . Hence, AI is a
subtractive extension of I.

(4) Let J be a subtractive extension of I containing A and let x ∈ AI .
Then, there exists i ∈ I such that x + i ∈ A ⊆ J. Since J is a
subtractive extension of I, x ∈ J. Hence, AI ⊆ J. �

Corollary 3.3. Let I ⊆ A be ideals of a semiring R. Then,

AI = ∩{J : J is a subtractive extension of I in R containing A}.

Now, we have the following theorem:

Theorem 3.4. Let I, A, B be ideals of a semiring R such that I ⊆ A,B.
Then,

(1) A is a subtractive extension of I ⇔ AI = A.

(2) (AI)I = AI .

(3) A ⊆ B ⇒ AI ⊆ BI .

(4) (A ∩B)I = AI ∩BI .

(5) If A, B are subtractive extensions of I, then A ∩ B is a subtractive
extension of I.

(6) If J is an ideal of R such that I ⊆ J ⊆ A, then AI ⊆ AJ .
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Proof.

(1) Follows from Theorem 3.2.
(2) Follows from Theorem 3.2 and (1).
(3) Let A ⊆ B and let x ∈ AI . Then, there exists i ∈ I such that

x + i ∈ A ⊆ B. Hence, x ∈ BI . Now, AI ⊆ BI .
(4) Since A ∩ B ⊆ A, (A ∩B)I ⊆ AI . Similarly, (A ∩B)I ⊆ BI . Now,

(A ∩B)I ⊆ AI ∩BI . For the other inclusion, let x ∈ AI ∩BI . Then,
there exist i1, i2 ∈ I such that x + i1 ∈ A and x + i2 ⊆ B. Since
i2 ∈ I ⊆ A and A is an ideal of R, x + i1 + i2 ∈ A. Similarly,
x + i1 + i2 ∈ B. Now, x + i1 + i2 ∈ A ∩B. So x ∈ (A ∩B)I . Hence,

AI ∩BI ⊆ (A ∩B)I .

(5) By (4), (A ∩B)I = AI ∩ BI = A ∩ B, since A, B are subtractive
extensions of I. So by (1), A ∩B is a subtractive extension of I.

(6) Suppose that J is an ideal of R such that I ⊆ J ⊆ A. Let x ∈ AI .
Then, x + i ∈ A for some i ∈ I ⊆ J. Hence, x ∈ AJ . Now, we have
AI ⊆ AJ . �

Now, by Theorem 3.4, we have

(i) A is a subtractive ideal of R if and only if A = A.

(ii) A = A.
(iii) A ⊆ B implies A ⊆ B.

Corollary 3.5. Let A, B be ideals of a semiring R. Then, A ∩B ⊆ A∩B.

Proof. By using Theorem 3.4 (3) and Theorem 3.4 (6), we have,

A ∩B = (A ∩B)(A∩B)

⊆ A(A∩B)

⊆ AA

= A.

Similarly, A ∩B ⊆ B. Now, A ∩B ⊆ A ∩B. �

The following example shows that the equality in Corollary 3.5 may not
hold.

Example 3.6. Let R = {0, a, b}. Then, R forms a semiring under the fol-
lowing addition and multiplication:

+ 0 a b
0 0 a b
a a a b
b b b b

and

· 0 a b
0 0 0 0
a 0 0 0
b 0 0 b
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Here A = {0, a}, B = {0, b} are ideals of R. Clearly, A ∩B = {0}. An
inspection will show that A = A and B = R. Hence, A ∩ B = A. Now,
A ∩B ( A ∩B.

Theorem 3.7. Let I be an ideal of a semiring R. If A(I) denotes the set
of all subtractive extensions of I in R, then A(I) is a complete lattice.

Proof. Clearly, (A(I),⊆) is a partially ordered set. Let A,B ∈ A(I). Then,

by Theorem 3.4 (5), A ∩ B ∈ A(I) and by using Theorem 3.2, (A + B)I ∈
A(I). Define A ∧ B = A ∩ B and A ∨ B = (A + B)I . Let C ∈ A(I) such

that A,B ⊆ C. Then, A + B ⊆ C and hence (A + B)I ⊆ CI = C since

by Theorem 3.4 (1). Now, (A + B)I is a l.u.b. of A, B. Hence, A(I) is a
complete lattice. �

Corollary 3.8. Let I be an ideal of a semiring R. If K(I) denotes the set
of all subtractive ideals of R containing I, then K(I) is a complete lattice.

Let I ⊆ A be ideals of a semiring R. If I is a Q-ideal of R, then Ã =
{x ∈ R : there exists q+I ∈ R/I(Q) such that x ∈ q+I and (q+I)∩A 6= ∅},
is called the closure of A with respect to I(Q) [4].

In the next lemma we give the relation between AI and Ã.

Lemma 3.9. Let I be a Q-ideal of a semiring R and A be an ideal of R

with I ⊆ A. Then, AI = Ã.

Proof. Let x ∈ AI . Then, there exists i1 ∈ I such that x+ i1 ∈ A. . . (1). By
[2, Lemma 7], there exists q ∈ Q such that x ∈ q + I. Then, x = q + i2 for
some i2 ∈ I. So x + ii = q + i2 + i1 ∈ q + I. Thus, (q + I) ∩ A 6= ∅. Hence,

x ∈ Ã. Now, AI ⊆ Ã. For the other inclusion, let z ∈ Ã. Then, there exists
q+I ∈ R/I(Q) such that z ∈ q+I and (q+I)∩A 6= ∅. So z = q+ i

′
for some

i
′ ∈ I. Let y = q + i

′′ ∈ (q + I) ∩A where i
′′ ∈ I. Since i

′ ∈ I ⊆ A and A is

an ideal of R, z + i
′′

= q + i
′′

+ i
′ ∈ A. Hence, z ∈ AI . Now, Ã ⊆ AI . �

By Lemma 3.9 and Theorem 3.2, we have the following:

Theorem 3.10 ([4]). Let I be a Q-ideal of a semiring R and A be an

ideal of R with I ⊆ A. Then, Ã is the smallest subtractive extension of I
containing A.

Theorem 3.11. Let I be a Q-ideal of a semiring R and P a subtractive
extension of I. Then, P is a semiprime ideal of R if and only if P/I(Q∩P )

is a semiprime ideal of R/I(Q).

Proof. Let P be a semiprime ideal of R. Suppose that q + I ∈ R/I(Q) and

(q+I)�(q+I) = q
′
+I ∈ P/I(Q∩P ) where q

′ ∈ Q∩P is a unique element such
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that q2+I ⊆ q
′
+I. So q2 = q

′
+i for some i ∈ I. Now, q2 ∈ P implies q ∈ P.

Hence, q + I ∈ P/I(Q∩P ). Conversely, suppose that P/I(Q∩P ) is a semiprime

ideal of R/I(Q). Let a2 ∈ P where a ∈ R. Since I is a Q-ideal of R, there exist

unique q, q
′ ∈ Q such that a ∈ q+I and a2 ∈ (q+I)�(q+I) = q

′
+I, where

q2 + I ⊆ q
′
+ I. Thus, a2 = q

′
+ i

′
for some i

′ ∈ I. Since P is a subtractive
extension of I, q

′ ∈ P. Hence, (q + I)� (q + I) = q
′
+ I ∈ P/I(Q∩P ). Since

P/I(Q∩P ) is a semiprime ideal, q+I ∈ P/I(Q∩P ). Now, a ∈ q+I ⇒ a = q+i
′′

for some i
′′ ∈ I ⇒ a ∈ P as q ∈ Q ∩ P ⊆ P . �
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