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SUBTRACTIVE EXTENSION OF IDEALS IN SEMIRINGS
J. N. CHAUDHARI, B. DAVVAZ AND K. J. INGALE

ABSTRACT. In this paper, we (1) obtain the k-closure of ideals and a
characterization of subtractive extension of ideals in the semiring Zg;
(2) introduce the concept of closure of an ideal A of a semiring R with
respect to an ideal I of R and prove the set of all subtractive extensions
of an ideal I of a semiring R is a complete lattice; (3) show that a
subtractive extension P of a @-ideal I in a semiring R is a semiprime
ideal if and only if P/I(gnp) is a semiprime ideal in the quotient semiring

R/Iq).

1. INTRODUCTION

The theory of semirings was first developed by H.S. Vandiver and he has
obtained important results for these objects. Semirings constitute a fairly
natural generalization of rings, with board applications in the mathematical
foundation of computer science. Also, semiring theory has many applica-
tions to other branches. For example, automata theory, optimization theory,
algebra of formal processes, combinatorial optimization, Baysian networks
and belief propagation.

A semiring is a system consisting of a set R together with two binary
operations on R called addition and multiplication (denoted in the usual
manner) such that

(1) R together with addition is a (commutative) semigroup,

(2) R together with multiplication is a semigroup,

(3) there exists 0 € Rsuch that t +0=2=0+2z,2-0=0=0-2x for

each x € R

(4) a-(b+c¢)=a-b+a-cand (a+b)-c=a-c+b-cfor each a,b,c € R.

We suppose that all semirings in this paper are commutative.
Let B be any Boolean algebra. Then, (B, U,N) is a semiring. Let I be the

real interval [0, 1]. Then, (I, max, min) is a semiring.
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The concept of ideal, finitely generated ideal, principal ideal, semiprime
ideal in a commutative semiring with identity 1 can be defined as for com-
mutative rings with identity 1. Denote the sets of all non-negative, and
positive integers respectively by Zg , and N. Zar is a semiring under usual
addition and multiplication of non-negative integers but it is not a ring.

For ai,as9,...,a, € Za“, we denote (i) (a1,aq,...,a,) = the ideal gener-
ated by aq,ao,...,a, in the semiring ZS‘; (ii) (a1,as9,...,a,) = g.c.d. of
ai,az,...,a,. An ideal I of a semiring R is called a subtractive ideal (=

k-ideal) if a, a+b € I, b € R, then b € I. An ideal I of a semiring R is called
a Q-ideal (as introduced by P. J. Allen [2]) if there exists a subset @) of R
such that

(1) R=U{g+1:q€Q}.
(2) if 1, 2 € Q, then (1 +I)N(g2+ 1) # 0= q1 = qo.
Let I be a Q-ideal of a commutative semiring R with identity element.
Then, R/I(q) = {q+1 : ¢ € Q} forms a semiring under the binary operations
“@”and “®”defined as follows:

@+D)®(@e+])=q+1
where q/ € (@ is a unique element such that ¢; + g2 + I C q’ + I.
(@ +Dolp+l)=q +1

where q” € (@ is a unique element such that ¢iqo + I C q" + I. This
semiring R/I(Q) is called a quotient semiring of R by I. If ¢o € @Q is the
unique element such that go + I = I, then gy + I is the zero element of
R/I ) [7, Proposition 8.21].

If A is an ideal of a semiring R, then A ={z € R: 2 + y € Afor somey €
A}, is called the k-closure of A [6].

The ideal theory in the quotient of commutative semirings was studied
by Atani [1]. In [4], Chaudhari and Bonde introduced the concept of the
subtractive extension of an ideal in semirings. In Section 2, we obtain k-
closure of ideals and a characterization of subtractive extension of ideals in
the semiring (Zar, +, ). In Section 3, we introduce the concept of closure of
an ideal A of a semiring R with respect to an ideal I of R and prove the
set of all subtractive extensions of an ideal I of a semiring R is a complete
lattice. Also we show that a subtractive extension P of a -ideal [ in a
semiring R is a semiprime ideal if and only if P/I(gnp) is a semiprime ideal
in the quotient semiring R/I(().

The following results will be used to prove our results.

Lemma 1.1 ([3]). Let I = (a1,as,...,a,) C Z§. If (a1, az,...,a,) = d,
then there exists a smallest r € Zar such that dk € I for all k > r.
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Theorem 1.2. ([8, Theorem 4]) Every ideal of Z is finitely generated.

Theorem 1.3. ([5, Proposition 2.19]) An ideal I of Z is subtractive if and
only if I is a principal ideal.

2. k-CLOSURE AND SUBTRACTIVE EXTENSIONS OF IDEALS IN THE
SEMIRING Zg

In this section, we obtain the k-closure of ideals and a characterization of
the subtractive extension of ideals in the semiring (ZbF ).

Lemma 2.1. Let I = (by,bs,...,by) be a non-zero ideal of R = (Z{,+,")
and d = (by,ba,...,by). Then, I = (d).

Proof. Let x € I. Then, x + i € I for some i € I. Since d | b; for all j, I
= (b1, b2,...,by) C (d). Hence, z + i € (d) where i € I C (d). By Theorem
1.3, x € (d). Now, I C (d). For the other inclusion, by Lemma 1.1, there
exists r € Zg such that dk € I for all k > 7. Then, dr +d = d(r+1),dr € I.
Hence, d € I. So (d) C I. Therefore, I = (d). O

Let I be an ideal of a semiring R. An ideal A of R with I C A is said
to be a subtractive extension of [ if x € I, x+y € A, y € R, theny € A
[4]. Clearly, every subtractive ideal A of a semiring R containing an ideal
I of R is a subtractive extension of I. Also every ideal of a semiring R is a
subtractive extension of {0}.

Example 2.2. Let I = {0}, A = (2,3) be ideals in the semiring R =
(Z§,+,-). Then, A is a subtractive extension of I but by Theorem 1.3. it
is not a subtractive ideal.

By Theorem 1.2, every ideal of (Zg, +, -) is finitely generated. Now, the
following theorem gives a characterization of subtractive extensions of non-
zero ideals in the semiring (Z§, +, -):

Theorem 2.3. Let I = (b1, ba,...,by) be a non-zero ideal of R = (Z7,+,")
and d = (b1,ba,...,by). Then, an ideal A of R is a subtractive extension of
I if and only if A = (a) where a | d.

Proof. Let A be a subtractive extension of I. Suppose that A is not a prin-
cipal ideal. Then, by Theorem 1.2, A = (a1, as9,...,a,) where 1 < a1 <
ag < -+ < ap, a; { aj for all i < j, j =2, 3, ...,n,n>2 Letd =
(a1,a2,...,a,). By Lemma 1.1, there exist 71,72 € N such that dk € I and
ds e A for all k > r1, s > ro. Hence, dk € I and dk e A for all k >
where r = max{ry,r} ...(1). Since d,d > 0, dr,dr +1 > r. So by (1),
ddr eI andddr+d =d (dr+1) € A. Since A is a subtractive extension
of I, d € A. Hence, d = ay. So a; | ay a contradiction. Now, A = (a) for
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some a € Zg . Since I C A, a | d. Conversely, suppose that A = (a) where
a | d. Clearly, I C A. By Theorem 1.3, A is a subtractive ideal of R and
hence A is a subtractive extension of 1. O

The following example shows that the sum (union) of two subtractive
extensions of I need not be subtractive extension of I.

Example 2.4. Let I = (12,18), A = (2) and B = (3) be ideals in the
semiring Zar . By Theorem 2.3, A, B are subtractive extensions of I, but A
+ B =1{0,2,3,4,5,6,...} = (2,3), is not a subtractive extension of I. An
inspection will show that A U B is not an ideal of Z(T and hence AU B is
not a subtractive extension of I.

Denote Z¢ x Z¢ = (Z$,+,) x (Z§,+,), the semiring with pointwise
addition and pointwise multiplication. By [4, Lemma 2.1], I is an ideal in
Z¢ x Zd if and only if I = I x I where Iy, I3 are ideals in Z .

Theorem 2.5. Let [ = 11 x Is C A = Ay x Ay be ideals in the semiring
Z; X Zg. Then, A is a subtractive extension of I if and only if A; is a
subtractive extension of I; in Z(T where i = 1, 2.

Proof. Let A be a subtractive extension of I and x € I, z4+y € Ay, y € ZS’.
Then, (z,0) € I and (z,0) 4+ (y,0) = (z +y,0) € A; x Ay = A. Since
A is a subtractive extension of I, (y,0) € A and hence y € A;. Now, A;
is a subtractive extension of I;. Similarly, A, is a subtractive extension of
I5. Conversely, suppose that A; is a subtractive extension of I; (i = 1, 2).
Clearly, A is a subtractive extension of I. O

Lemma 2.6. Let I = 11 x Iy be an ideal of the semiring Zar X Z(T where I;
(i = 1, 2) are ideals in the semiring Zg . Then, I = Ij x I.

Theorem 2.7. Let I = (aj,a2,...,an) X (b1,b2,...,by) be an ideal of the
semiring Z§ x Z§ where a; # 0, b; # 0 for some i, j. If d = (a1, az,...,a,)

/

and d = (by, by, ... ,by), then T = (d) x (d).

Proof. Follows from Lemma 2.1 and Lemma 2.6. U

3. SUBTRACTIVE EXTENSION OF IDEALS IN SEMIRINGS

In this section, we introduce the concept of closure of an ideal A of a
semiring R with respect to an ideal I of R and prove the set of all subtractive
extensions of an ideal I of a semiring R is a complete lattice. Also we show
that a subtractive extension P of a @)-ideal [ in a semiring R is a semiprime
ideal if and only if P/I(gnp) is a semiprime ideal in the quotient semiring

R/I(Q).
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Let I C A be ideals of a semiring R. Then, we denote A; = {z € R :
x+1 € A for some i € I}, and will be called the closure of A with respect
to 1.

We can easily show that (i) I C T C A; C A; (ii) Ay =A where I C A

are ideals of R.

Example 3.1. Let I = {0} x (4,6), A = (2,3) x (4,6) be ideals in the
semiring R = Z§ x ZJ. Clearly, {0} = {0}. By Lemma 2.1, (4,6) = (2) and
(2,3) = (1) = ZJ . Hence, by Lemma 2.6, T = {0} x (2) and A = Z§ x (2).
An inspection will show that A; = (2,3) x (2). Now, [ ST C A; C A

Theorem 3.2. Let I C A be ideals of a semiring R. Then, A; is the smallest
subtractive extension of I containing A.

Proof.

(1) Let a1, as € A; and r € R. Then, there exist i1,i2 € I such that
ay+iy, ap+ig € A. Hence, (a1 +ag)+ (i1 +i2) = a1 +i1+ag+iz € A
where i1 + iy € I. So a1 + ag € Aj. Similarly, ra; € A;. Hence, A; is
an ideal of R.

(2) Clearly, A C Aj.

(3) Let i € I, a+i € A7, a € S. Then, there exists i € I such that
a+i+i € A Now, i +i € I implies a € A;. Hence, A is a
subtractive extension of I.

(4) Let J be a subtractive extension of I containing A and let x € Aj.
Then, there exists ¢ € I such that x +7 € A C J. Since J is a
subtractive extension of I, € J. Hence, A C J. O

Corollary 3.3. Let I C A be ideals of a semiring R. Then,
A =n{J : J is a subtractive extension of I in R containing A}.

Now, we have the following theorem:

Theorem 3.4. Let I, A, B be ideals of a semiring R such that I C A, B.
Then,

1) A is a subtractive extension of I < A; = A.

(1)

(2) (Ar

(3) ACB = A; C By.
(4)

(5)

\_/

~
I
N

~

4 (AQB)[ —A[ﬁB[

5) If A, B are subtractive extensions of I, then AN B is a subtractive

extension of I.
(6) If J is an ideal of R such that I C.J C A, then A; C Aj.
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Proof.

(1) Follows from Theorem 3.2.

(2) Follows from Theorem 3.2 and (1).

(3) Let A C B and let z € A;. Then, there exists i € I such that
z+1i€ AC B. Hence, x € Br. Now, A; C By.

(4) Since ANB C A, (AN B); C A;. Similarly, (AN B); C By. Now,
(AN B); C A;N By. For the other inclusion, let x € A; N B;. Then,
there exist 41,99 € I such that x + 47 € A and = + i9 C B. Since
io € I C A and A is an ideal of R, x + i1 + i € A. Similarly,
x+1i1 +i2 € B. Now, x + i1 +i2 € AN B. So x € (AN B);. Hence,
E N E - (A N B)[.

(5) By (4), (ANB); = A;N By = AN B, since A, B are subtractive
extensions of I. So by (1), AN B is a subtractive extension of I.

(6) Suppose that J is an ideal of R such that I C J C A. Let x € Aj.
Then, z +1i € A for some i € I C J. Hence, x € A;. Now, we have
A C Ay O

Now, by Theorem 3.4, we have
(i) Ais a subtractive ideal of R if and only if A = A.
(i) A=7. -
(iii) A C B implies A C B.
Corollary 3.5. Let A, B be ideals of a semiring R. Then, ANB C AN B.
Proof. By using Theorem 3.4 (3) and Theorem 3.4 (6), we have,

ANB = (AN B)unp)

= A.
Similarly, AN B C B. Now, ANB C AN B. ([

The following example shows that the equality in Corollary 3.5 may not
hold.

Example 3.6. Let R = {0,a,b}. Then, R forms a semiring under the fol-
lowing addition and multiplication:

and
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Here A = {0,a}, B = {0,b} are ideals of R. Clearly, AN B = {0}. An
inspection will show that A = A and B = R. Hence, AN B = A. Now,
ANBC ANB.

Theorem 3.7. Let I be an ideal of a semiring R. If A(I) denotes the set
of all subtractive extensions of I in R, then A(I) is a complete lattice.

Proof. Clearly, (A(I),C) is a partially ordered set. Let A, B € A(I). Then,
by Theorem 3.4 (5), AN B € A(I) and by using Theorem 3.2, (A+ B); €
A(I). Define ANB = ANBand AV B = (A+ B);. Let C € A(I) such

that A,B C C. Then, A+ B C C and hence (A+ B); C C; = C since

by Theorem 3.4 (1). Now, (A+ B)s is a Lu.b. of A, B. Hence, A(I) is a
complete lattice. ([l

Corollary 3.8. Let I be an ideal of a semiring R. If K(I) denotes the set
of all subtractive ideals of R containing I, then K(I) is a complete lattice.

Let I C A be ideals of a semiring R. If I is a Q)-ideal of R, then A=
{z € R: there exists ¢+1 € R/I () such that = € ¢+1I and (¢+1)NA # 0},
is called the closure of A with respect to I(¢) [4].

In the next lemma we give the relation between A; and A.

Lemma 3.9. Let I be a Q-ideal of a semiring R and A be an ideal of R
with I C A. Then, A; = A.

Proof. Let x € A;. Then, there exists i; € I such that z +i; € A...(1). By
[2, Lemma 7], there exists ¢ € @ such that z € ¢ + I. Then, x = q + i for
some iy € [. So x +1i; = q+iy+ i1 € ¢+ I. Thus, (¢+ 1) N A # (. Hence,
z € A Now, A; C A. For the other inclusion, let z € A. Then, there exists
q+1 € R/Iq)ysuchthat z € ¢g+1and (¢g+1)NA#D. So z = q+i for some
iel.Lety=q+i € (¢ +I) N A where i" €. Sincei € I C Aand A is
anideal of R, z+i =q+i +i € A. Hence, z € A7. Now, AcC Aj. O

By Lemma 3.9 and Theorem 3.2, we have the following:

Theorem 3.10 ([4]). Let I be a Q-ideal of a semiring R and A be an

ideal of R with I C A. Then, A is the smallest subtractive extension of I
containing A.

Theorem 3.11. Let I be a Q-ideal of a semiring R and P a subtractive
extension of 1. Then, P is a semiprime ideal of R if and only if P/I(Qmp)
is a semiprime ideal of R/Iq).

Proof. Let P be a semiprime ideal of R. Suppose that ¢ + I € R/[) and
(q+D)o(g+I)=¢ +1I € P/Ignp) where ¢ € QNP is a unique element such
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that ¢2+1 C ¢ +1. S0 ¢2 = ¢ +i for some i € I. Now, ¢* € P implies ¢ € P.
Hence, ¢+ 1 € P/1 (@np)- Conversely, suppose that P/ (Qnp) 1s a semiprime
ideal of R/I (). Let a® € P where a € R. Since I is a Q-ideal of R, there exist
unique ¢,¢ € Q such that a € g+ and a® € (¢+1)®(q+1) = ¢ +1, where
@?+1Cq + 1. Thus, a® =¢ +1i for some i € I. Since P is a subtractive
extension of I, ¢ € P. Hence, (¢+1)© (q+1)=q¢ +1 € P/Ionp)- Since
P/Ignp) is a semiprime ideal, ¢+1 € P/lgnp). Now, a € ¢+1 = a = q+i"
for somei € I=acPasqeQNPCP. O
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