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SUPERADDITIVITY OF FUNCTIONALS RELATED TO

GAUSS’ TYPE INEQUALITES

SANJA VAROŠANEC

Abstract. In this paper we prove superadditivity of some functionals
associated with the Gauss-Winckler and the Gauss-Pólya inequalities.

1. Introduction

In [2] C. F. Gauss mentioned the following inequality between the second
and the fourth absolute moments.

If f is a non-negative and decreasing function, then(∫ ∞
0

x2f(x) dx

)2

≤ 5

9

∫ ∞
0

f(x) dx

∫ ∞
0

x4f(x) dx. (1.1)

Until now, there are a lot of generalizations, sharpenings and improve-
ments of inequality (1.1). One of major lines of generalization is due to A.
Winckler and the other springing from a pair of results of G. Pólya.

A. Winckler, [7], gave the following result which is known as the Gauss-
Winckler inequality in the recent literature. More about it and its history
one can find in [1].

Theorem 1.1. If f is a non-negative, continuous and non-increasing func-
tion on [0,∞) such that

∫∞
0 f(x)dx = 1, then for m ≤ r(

(m+ 1)

∫ ∞
0

xmf(x) dx

) 1
m

≤
(

(r + 1)

∫ ∞
0

xrf(x) dx

) 1
r

. (1.2)

Another generalization was done by G. Pólya and today those type of
inequalities are called the Gauss-Pólya inequalites. Namely, in the book
”Problems and Theorems in Analysis ” (see [5, Vol I, p. 83, Vol II, p. 129]
one can find the following results.
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Theorem 1.2.
(i) Let f : [0,∞) → R be a non-negative and decreasing function. If a

and b are non-negative real numbers, then(∫ ∞
0

xa+bf(x)dx

)2

≤

(
1−

(
a− b

a+ b+ 1

)2
)∫ ∞

0
x2af(x)dx

∫ ∞
0

x2bf(x)dx

if all the integrals exist.
(ii) Let f : [0, 1]→ R be a non-negative and increasing function. If a and

b are non-negative real numbers, then(∫ 1

0
xa+bf(x)dx

)2

≥

(
1−

(
a− b

a+ b+ 1

)2
)∫ 1

0
x2af(x)dx

∫ 1

0
x2bf(x) dx.

J. Pečarić and S. Varošanec treated the above mentioned inequalities in
a unified way and proved the following generalizations, [4], [6].

Theorem 1.3. Let g : [a, b]→ R be a non-negative increasing differentiable
function and let f : [a, b] → R, be a non-negative function such that x 7→
f(x)
g′(x) is a non-decreasing function. Let pi (i = 1, . . . , n) be positive real num-

bers such that
∑n

i=1
1
pi

= 1. If ai (i = 1, . . . , n) are real numbers such that

ai > − 1
pi
, then∫ b

a
g(x)a1+···+anf(x) dx ≥

∏n
i=1(aipi + 1)

1
pi

1 +
∑n

i=1 ai

n∏
i=1

(∫ b

a
g(x)aipif(x) dx

) 1
pi

.

(1.3)

If g(a) = 0 and if the quotient function f
g′ is non-increasing, then the reverse

inequality in (1.3) holds.

As a consequence of the above results we conclude that if f and g satisfy
the assumptions of Theorem 1.3, then the function

Q(r) = (r + 1)

∫ b

a
gr(x)f(x) dx

is log-concave when f
g′ is a non-decreasing function and the function Q is

log-convex when g(a) = 0 and f
g′ is non-increasing.

Using that property, the following generalization of the Gauss-Winckler
inequality was proved in [6]:

Theorem 1.4. Let f and g be defined as in Theorem 1.3, f
g′ be a non-

decreasing function and p, q, r, s be real numbers from the domain of
definition of the function Q.
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If p ≤ q, r ≤ s and p > r, q > s, then(
(p+ 1)

∫ b
a g

p(x)f(x)dx

(r + 1)
∫ b
a g

r(x)f(x)dx

) 1
p−r

≥

(
(q + 1)

∫ b
a g

q(x)f(x)dx

(s+ 1)
∫ b
a g

s(x)f(x)dx

) 1
q−s

. (1.4)

If g(a) = 0 and f
g′ is non-increasing, then the reverse inequality holds.

Remark 1.5. In [6] the authors considered the case when g(x) = x, f is
non-increasing and a = 0. In that case inequalities (1.3) and (1.4) hold with
b =∞ and then we get results for moments.

In the next section we investigate properties of mappings which arise from
Gauss-Pólya’s inequalities, while in the third section we research functional
related to the Gauss-Winckler inequality (1.4). The main tool of this inves-
tigation is the Hölder type inequality which we give in the following form,
[3]:

Proposition 1.6. Let ai, bi, pi, (i = 1, . . . , n) be non-negative real numbers
such that

∑n
i=1

1
pi

= 1. Then

a
1
p1
1 · · · a

1
pn
n + b

1
p1
1 · · · b

1
pn
n ≤

n∏
i=1

(ai + bi)
1
pi . (1.5)

It is a simple consequence of weighted AM-GM inequality

a
1
p1
1 · · · a

1
pn
n

(a1 + b1)
1
p1 · · · (an + bn)

1
pn

+
b

1
p1
1 · · · b

1
pn
n

(a1 + b1)
1
p1 · · · (an + bn)

1
pn

≤ a1

p1(a1 + b1)
+ · · ·+ an

pn(an + bn)
+

b1
p1(a1 + b1)

+ · · ·+ bn
pn(an + bn)

= 1.

2. Functionals related to the Gauss-Pólya inequalites

Throughout this section functions f, g : [a, b] → R are non-negative, g
is increasing differentiable, numbers pi (i = 1, . . . , n) are positive reals such
that

∑n
i=1

1
pi

= 1 and ai (i = 1, . . . , n) are real numbers such that ai > − 1
pi
.

Let us consider the functional G defined as

G(f) =

n∏
i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif(x) dx

) 1
pi

− (1 +

n∑
i=1

ai)

∫ b

a
g(x)a1+···+anf(x) dx.
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It is obvious that f 7→ G(f) is positive homogeneous, i.e. G(λf) = λG(f)
for any λ ≥ 0. As a consequence of Theorem 1.3, if f/g′ is a non-decreasing
function, then G(f) ≤ 0, while if f/g′ is non-increasing and g(a) = 0, then
G(f) ≥ 0.

The following theorem gives superadditivity property of the functional G.

Theorem 2.1. Let f1, f2, g : [a, b] → R be non-negative functions, g in-
creasing differentiable, numbers pi (i = 1, . . . , n) be positive reals such that∑n

i=1
1
pi

= 1 and ai (i = 1, . . . , n) be real numbers such that ai > − 1
pi
. Then

G(f1 + f2) ≥ G(f1) +G(f2),

i.e. G is a superadditive functional.
Furthermore, if f1 ≥ f2 such that f1−f2

g′ is non-increasing, g(a) = 0, then

G(f1) ≥ G(f2),

i.e. G is non-decreasing.

Proof. Let us consider a difference G(f1 + f2)−G(f1)−G(f2).

G(f1+f2)−G(f1)−G(f2)=
n∏

i=1

(aipi+1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipi(f1 + f2)(x) dx

) 1
pi

− (1 +
n∑

i=1

ai)

∫ b

a
g(x)a1+···+an(f1 + f2)(x) dx

−
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif1(x) dx

) 1
pi

+ (1 +

n∑
i=1

ai)

∫ b

a
g(x)a1+···+anf1(x) dx

−
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif2(x)dx

) 1
pi

+ (1 +
n∑

i=1

ai)

∫ b

a
g(x)a1+···+anf2(x) dx

=
n∏

i=1

(aipi + 1)
1
pi

[
n∏

i=1

(∫ b

a
g(x)aipi(f1 + f2)(x) dx

) 1
pi

−
n∏

i=1

(∫ b

a
g(x)aipif1(x) dx

) 1
pi

−
n∏

i=1

(∫ b

a
g(x)aipif2(x) dx

) 1
pi

]
.
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Setting in (1.5):

ai =

∫ b

a
g(x)aipif1(x) dx, bi =

∫ b

a
g(x)aipif2(x) dx, i = 1, 2, . . . , n

and using the Hölder inequality we have that G(f1 +f2)−G(f1)−G(f2) ≥ 0,
so G is superadditive.

If f1 ≥ f2, f1−f2
g′ is non-increasing and g(a) = 0, then G(f1 − f2) ≥ 0, so,

we have

G(f1) = G(f2 + (f1 − f2))

≥ G(f2) +G(f1 − f2) ≥ G(f2).

�

Corollary 2.2. Let f1, f2, g be non-negative functions on [a, b], g increasing
differentiable, g(a) = 0, numbers pi (i = 1, . . . , n) be positive reals such that∑n

i=1
1
pi

= 1, ai (i = 1, . . . , n) be real numbers such that ai > − 1
pi

and

c, C ∈ R such that Cf2 − f1, f1 − cf2 are non-negative and Cf2−f1
g′ , f1−cf2

g′

are non-negative non-increasing functions. Then

C

{
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif2(x) dx

) 1
pi

−(1 +
n∑

i=1

ai)

∫ b

a
g(x)a1+···+anf2(x) dx

}

≥
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif1(x) dx

) 1
pi

−(1 +

n∑
i=1

ai)

∫ b

a
g(x)a1+···+anf1(x) dx

≥ c

{
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

(∫ b

a
g(x)aipif2(x) dx

) 1
pi

−(1 +

n∑
i=1

ai)

∫ b

a
g(x)a1+···+anf2(x) dx

}
.

Proof. Using previous results we have

CG(f2) = G(Cf2) = G((Cf2 − f1) + f1) ≥ G(Cf2 − f1) +G(f1) ≥ G(f1)

and

G(f1) = G((f1 − cf2) + cf2) ≥ G(f1 − cf2) +G(cf2) ≥ G(cf2) = cG(f2)
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from which the conclusion of the corollary is established. �

The following theorem contains a result about concavity of function G◦φ
where φ is concave.

Theorem 2.3. Let φ : [0,∞) → [0,∞) be a concave function, f1, f2, g be
non-negative functions on [a, b] such that (φ◦ (αf1 +(1−α)f2)− [α(φ◦f1)+
(1− α)(φ ◦ f2)])/g′ is non-increasing for some α ∈ [0, 1], g(a) = 0. Then

G ◦ φ ◦ (αf1 + (1− α)f2) ≥ α(G ◦ φ ◦ f1) + (1− α)(G ◦ φ ◦ f2).

Proof. For any x ∈ [a, b] we have

(φ ◦ (αf1 + (1− α)f2))(x) = φ(αf1(x) + (1− α)f2(x))

≥ αφ(f1(x)) + (1− α)φ(f2(x))

= (α(φ ◦ f1) + (1− α)(φ ◦ f2))(x),

where a concavity of function φ is used. So, we have φ ◦ (αf1 + (1−α)f2) ≥
α(φ ◦ f1) + (1 − α)(φ ◦ f2). Using properties of G and the above-proved
inequality we have

G(φ ◦ (αf1 + (1− α)f2)) ≥ G(α(φ ◦ f1) + (1− α)(φ ◦ f2))

≥ G(α(φ ◦ f1)) +G((1− α)(φ ◦ f2)) = αG(φ ◦ f1) + (1− α)G(φ ◦ f2)

and the proof is established. �

Remark 2.4. Let us consider a case when g(x) = x, a = 0, b =∞ and f is
non-increasing as it is mentioned in Remark 1.5. Let us denote by µr(f) a
moment of the order r i.e.

µr(f) =

∫ ∞
0

xrf(x) dx.

Then the functional G has a form

G(f) =
n∏

i=1

(aipi + 1)
1
pi

n∏
i=1

µ
1
pi
aipi(f)− (1 +

n∑
i=1

ai)µa1+···+an(f)

and G is superadditive. Also, if f1 ≥ f2 such that f1 − f2 is non-increasing,
then G(f1) ≥ G(f2).

3. Functionals related to the Gauss-Winckler inequality

Putting in (1.4) r = s = 0 we get the Gauss-Winckler inequality for f/g′

non-decreasing function:(
(p+ 1)

∫ b
a g

p(x)f(x) dx∫ b
a f(x) dx

) 1
p

≥

(
(q + 1)

∫ b
a g

q(x)f(x) dx∫ b
a f(x) dx

) 1
q
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where 0 < p ≤ q. If f/g′ is non-increasing and g(a) = 0, then the reversed
inequality holds.

Let us consider a functional W defined as

W (f) =

(∫ b

a
f(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)f(x) dx

) p
q

− (p+ 1)

∫ b

a
gp(x)f(x) dx.

The following theorem gives superadditivity and monotonicity of the func-
tional W .

Theorem 3.1. Let f1, f2, g : [a, b] → R be non-negative functions, g in-
creasing differentiable, numbers p, q be positive real such that p ≤ q. Then

W (f1 + f2) ≥W (f1) +W (f2).

Additionally, if f1 ≥ f2 such that f1−f2
g′ is non-increasing, g(a) = 0, then

W (f1) ≥W (f2).

Proof. Let us transform W (f1 + f2)−W (f1)−W (f2).

W (f1 + f2)−W (f1)−W (f2)

=

(∫ b

a
(f1 + f2)(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)(f1 + f2)(x) dx

) p
q

− (p+ 1)

∫ b

a
gp(x)(f1 + f2)(x) dx

−
(∫ b

a
f1(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)f1(x) dx

) p
q

+ (p+ 1)

∫ b

a
gp(x)f1(x)dx−

(∫ b

a
f2(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)f2(x)dx

) p
q

+ (p+ 1)

∫ b

a
gp(x)f2(x) dx

=

(∫ b

a
(f1 + f2)(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)(f1 + f2)(x) dx

) p
q

−
(∫ b

a
f1(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)f1(x) dx

) p
q

−
(∫ b

a
f2(x) dx

)1− p
q
(

(q + 1)

∫ b

a
gq(x)f2(x) dx

) p
q

≥ 0
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where in the last inequality we use the Hölder inequality with

n = 2,
1

p1
= 1− p

q
> 0,

1

p2
=
p

q
> 0, a1 =

∫ b

a
f1(x) dx, b1 =

∫ b

a
f2(x) dx,

a2 = (q + 1)

∫ b

a
gq(x)f1(x) dx, b2 = (q + 1)

∫ b

a
gq(x)f2(x) dx.

So, superadditivity of the functional W is established.
If f1−f2

g′ is non-increasing, g(a) = 0, then from Theorem 1.4 we obtain

W (f1 − f2) ≥ 0 and

W (f1) = W (f2 + (f1 − f2)) ≥W (f2) +W (f1 − f2) ≥W (f2).

�

Remark 3.2. Let us consider a case when g(x) = x, a = 0, b = ∞ and f
is non-increasing as it is mentioned in Remark 1.5. Now the functional W
has the form

W (f) = (q + 1)
p
q (µ0(f))

1− p
q µ

p
q
q (f)− (p+ 1)µp(f)

and W is superadditive. Also, if f1 ≥ f2 such that f1− f2 is non-increasing,
then W (f1) ≥W (f2).

The following result is an interesting inequality for the Beta function.

Corollary 3.3. Let 0 < p ≤ q, y1, y2 > −1. Then(
1

y1 + 1
+

1

y2 + 1

)1− p
q [
β(q + 1, y1 + 1) + β(q + 1, y2 + 1)

] p
q

≥
(

1

y1 + 1

)1− p
q

β
p
q (q + 1, y1 + 1) +

(
1

y2 + 1

)1− p
q

β
p
q (q + 1, y2 + 1)

where β is the Beta function defined as β(x+ 1, y + 1) =
∫ 1

0 t
x(1− t)ydt.

Proof. It is a consequence of the previous theorem with [a, b] = [0, 1], fi(t) =
(1− t)yi , i = 1, 2, g(x) = x. �
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Sitzungsber. Akad. Wiss. Wien, Math.-Natur. Kl. Zweite Abt., 53 (1866), 6–41.

(Received: May 22, 2013) Department of Mathematics
(Revised: July 19, 2013) University of Zagreb

10000 Zagreb, Bijenička c. 30
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