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SUPERADDITIVITY OF FUNCTIONALS RELATED TO
GAUSS’ TYPE INEQUALITES

SANJA VAROSANEC

ABSTRACT. In this paper we prove superadditivity of some functionals
associated with the Gauss-Winckler and the Gauss-Pélya inequalities.

1. INTRODUCTION

In [2] C. F. Gauss mentioned the following inequality between the second
and the fourth absolute moments.
If f is a non-negative and decreasing function, then

</Ooox2f($) dl,)ZS g/ooo o) dm/owx4f(x) . 4

Until now, there are a lot of generalizations, sharpenings and improve-
ments of inequality (1.1). One of major lines of generalization is due to A.
Winckler and the other springing from a pair of results of G. Pélya.

A. Winckler, [7], gave the following result which is known as the Gauss-
Winckler inequality in the recent literature. More about it and its history
one can find in [1].

Theorem 1.1. If f is a non-negative, continuous and non-increasing func-
tion on [0,00) such that [;* f(z)dx =1, then for m <r

<(m+1) /Ooo 2™ f(z) dx)il < <(r+1)/000 " f () dx)i. (1.2)

Another generalization was done by G. Pdlya and today those type of
inequalities are called the Gauss-Pdélya inequalites. Namely, in the book
"Problems and Theorems in Analysis ” (see [5, Vol I, p. 83, Vol II, p. 129]
one can find the following results.
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Theorem 1.2.
(i) Let f : [0,00) — R be a non-negative and decreasing function. If a
and b are non-negative real numbers, then

</OOO xa+bf(x)d:p>2 < (1 - (%)3 /O“’ 2 f(2)de /0°° o2 F(a)da

if all the integrals exist.
(ii) Let f : [0,1] — R be a non-negative and increasing function. If a and
b are non-negative real numbers, then

(/lea+bf(m)dx>2 > (1_ (ai;ilf) /01$zaf($)dx/01$2bf(x) .

J. Pecari¢ and S. VaroSanec treated the above mentioned inequalities in
a unified way and proved the following generalizations, [4], [6].

Theorem 1.3. Let g : [a,b] — R be a non-negative increasing differentiable
function and let f : [a,b] — R, be a non-negative function such that x

g,((g;)) is a non-decreasing function. Let p; (i = 1,...,n) be positive real num-
bers such that Y i, p%, = 1. Ifa; (i = 1,...,n) are real numbers such that

1
ai > =5 then

‘ =

b n . ;D b pi
[ st o> ST ([ tor s an)
(1.3)
If g(a) = 0 and if the quotient function § 18 non-increasing, then the reverse
inequality in (1.3) holds.

3

As a consequence of the above results we conclude that if f and g satisfy
the assumptions of Theorem 1.3, then the function

b
Q) = (r+1) / 7 (@) f(z) de

is log-concave when § is a non-decreasing function and the function @ is

log-convex when g(a) = 0 and § is non-increasing.
Using that property, the following generalization of the Gauss-Winckler

inequality was proved in [6]:

Theorem 1.4. Let f and g be defined as in Theorem 1.3, % be a non-
decreasing function and p, q, T, s be real numbers from the domain of
definition of the function Q.
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Ifp<q,r<sandp>r,q>s, then
1

((p+ 1 ffgp(w)f(:v)dw> an <<q Fy gq(w)f(fv)dx> -
e Lr@iwdr) "\ e s

If g(a) =0 and % s mon-increasing, then the reverse inequality holds.

(1.4)

Remark 1.5. In [6] the authors considered the case when g(x) = z, f is
non-increasing and a = 0. In that case inequalities (1.3) and (1.4) hold with
b = oo and then we get results for moments.

In the next section we investigate properties of mappings which arise from
Gauss-Pélya’s inequalities, while in the third section we research functional
related to the Gauss-Winckler inequality (1.4). The main tool of this inves-
tigation is the Holder type inequality which we give in the following form,
[3]:

Proposition 1.6. Let a;,b;,p;, (i = 1,...,n) be non-negative real numbers
such that 37, i =1. Then

1 1 1 1 n

ERY a1 1
afl cealn 4 bfl b < H (ai + bi)pi . (1'5)
i=1

It is a simple consequence of weighted AM-GM inequality

1 1 1 1
afl...aﬁn _|_ bflbﬁn
1 1 1 1
(a1+bl)P1 (an+bn)Pn (a]_+b]_)p1 ...(an—|—bn)Pn
o pl(al + bl) pn(an + bn) P1 (al + bl) pn(an + bn) .

2. FUNCTIONALS RELATED TO THE GAUSS-POLYA INEQUALITES

Throughout this section functions f,g : [a,b] — R are non-negative, g
is increasing differentiable, numbers p; (i = 1,...,n) are positive reals such
that >, i =1anda; (i =1,...,n) are real numbers such that a; > —p%.

Let us consider the functional G defined as

G(f) = ﬁ(aipi 1) ﬁ </abg(x)aipif($) dw) w

i=1 i=1

n b
—(1+Zaz-)/ g(z) 1t f() da.
i=1 a
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It is obvious that f — G(f) is positive homogeneous, i.e. G(Af) = AG(f)
for any A > 0. As a consequence of Theorem 1.3, if f/¢’ is a non-decreasing
function, then G(f) < 0, while if f/¢" is non-increasing and g(a) = 0, then
G(f) > 0.

The following theorem gives superadditivity property of the functional G.

Theorem 2.1. Let fi, f2,9 : [a,b] — R be non-negative functions, g in-

creasing differentiable, numbers p; (i = 1,...,n) be positive reals such that
> i =1landa; (i=1,...,n) be real numbers such that a; > —=-. Then

G(fi+ f2) > G(f1) + G(f2),

i.e. G is a superadditive functional.
Furthermore, if f1 > fo such that h ,f2 is non-increasing, g(a) = 0, then

G(f1) = G(f2),

i.e. G is non-decreasing.

Proof. Let us consider a difference G(f1 + f2) — G(f1) — G(f2)-

G(fi+2) =G )=ITtewt7 ] (
i=1

=1

1

/ g+ ) dw) :

a

n

b
—(1+Y @) / g(@) 1+ () + f)(x) da

=1




FUNCTIONALS RELATED TO GAUSS’ TYPE INEQUALITES 41

Setting in (1.5):

b b
ai:/ g(aj)aipifl($)dl‘, bi:/ g(gj)aipif2(x)dl‘, i=1,2,...,n

and using the Holder inequality we have that G(f1+ f2) —G(f1) —G(f2) > 0,
so (G is superadditive.

If f1 > fo, flg_,f2 is non-increasing and g(a) = 0, then G(f1 — f2) > 0, so,
we have

G(fi) = G(f2+(fi—[f2)
G(f2) +G(f1 — f2) = G(f2).

Y

0

Corollary 2.2. Let f1, f2, g be non-negative functions on [a,b], g increasing
differentiable, g(a) = 0, numbers p; (i = 1,...,n) be positive reals such that
Yo 1%1- =1, a; (i = 1,...,n) be real numbers such that a; > —+ and
¢,C € R such that Cfy — f1, f1 — cfa are non-negative and %, %
are non-negative non-increasing functions. Then

C{ :l(az‘pi +1)Pi Zlf[l </abg($)aipif2(ﬂf) dx) o

7

3|

n

b
_(1 + ‘ al)/ g(x)a1+~--+anf2(x) da:}

=1 =1
n b
1Y a) / g(2)™ e (1) da
=1 a
n PR b P
> { T+ 17 [ ( / o(2)“P fy () dm)
=1 =1 a

Proof. Using previous results we have

CG(f2) =G(Cfa) =G((Cfa— f1) + f1) > G(Cfa — f1) + G(f1) > G(f1)

and

G(f1) = G((f1 — cf2) +cfa) =2 G(f1 — cfa) + G(cf2) > G(cfz) = cG(f2)
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from which the conclusion of the corollary is established. ([

The following theorem contains a result about concavity of function G o ¢
where ¢ is concave.

Theorem 2.3. Let ¢ : [0,00) — [0,00) be a concave function, fi, fa, g be

non-negative functions on [a,b] such that (¢po(afi +(1—a)fz)—|a(po fi)+

(I —a)(go f2)])/g is non-increasing for some « € [0,1], g(a) = 0. Then
Gogo(afi+(1—a)fe) >a(Gogo fi)+ (1 —a)(Godo f).

Proof. For any x € [a, b] we have

(¢o(afi + (1 —a)f2))(x) = dlafi(x) + (1 — @) f2(x))
> ad(fi(z)) + (1 = @)o(f2(2))
= ((¢o fi) + (1 —a)(¢o fo))(),

where a concavity of function ¢ is used. So, we have ¢o (af; + (1 — ) fa) >
alpo fi1) + (1 — a)(¢ o f2). Using properties of G and the above-proved
inequality we have

G(go(afi+(1—a)f2)) 2 Gla(do fi) + (1 —a)(¢o f2))
Gla(go f1)) + G((1—a)(¢o f2)) = aG(go f1) + (1 — a)G(¢ o fa)
and the proof is established. ([l
Remark 2.4. Let us consider a case when ¢g(z) =2z, a =0, b= 00 and f is

non-increasing as it is mentioned in Remark 1.5. Let us denote by u,(f) a
moment of the order r i.e.

Then the functional G has a form

G(f) = H aip; +1)7 H Mazpl -1+ Z i) Hay+-+ap (f)

i=1 =1
and G is superadditive. Also, 1f f1 > fy such that f; — fo is non-increasing,
then G(f1) > G(f2).
3. FUNCTIONALS RELATED TO THE GAUSS-WINCKLER INEQUALITY

Putting in (1.4) r = s = 0 we get the Gauss-Winckler inequality for f/g’
non-decreasing function:

(<p+ 1) [ () () dw>; N <<q +1) 2 g1(2) (@) dw>3
f;f(:n) dx - f;f(:n) dx
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where 0 < p < ¢. If /¢’ is non-increasing and g(a) = 0, then the reversed
inequality holds.
Let us consider a functional W defined as

win=(  fa) dw)l_z (@ [ ' 1) (2 iz

b
) / (@) f(z) d.

The following theorem gives superadditivity and monotonicity of the func-
tional W.

Q3

Theorem 3.1. Let fi, f2,9 : [a,b] — R be non-negative functions, g in-
creasing differentiable, numbers p,q be positive real such that p < q. Then

W(f1+ f2) > W(f1) + W(fa).
Additionally, if f1 > fo such that % is non-increasing, g(a) = 0, then

W(f1) = W(f2)-
Proof. Let us transform W (f1 + fo) — W(f1) — W(f2).
Wi+ f2) = W(H) = W(f2)

-(/ "t ) da:)

p b
(<q w1 [ @+ R d:c>
b a
—(p+1) / P+ fo)() da

-(/ i) d:c)l_z (00 " 1) ) dx)g
+o+1) | " () fr () ( / ' fa(a) daz)l_5<<q [ " i) fz(x)d:c>

b
) / P (@) fola) de

-(/ "+ ) da:)l_
-(/ i) dx)l (v f " 1) ) ia)
() |

r
q

r
q

SIS]

r
q

(¢+1) bgq(:v)(fl + f2)(z) dw
(e ] )

Qs
Qs

1—

SIS
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where in the last inequality we use the Hoélder inequality with

1 1 b b
n=2, —:1—B>0, —:£>0, a1:/ fi(x) dzx, blz/ fo(z) dz,
b1 q b2 q a a
b

b
ar = (g +1) / (@) fi(x) dz, by = (g +1) / g4(2) fo(x) d.

a

So, superadditivity of the functional W is established.
If flg_i,fQ is non-increasing, g(a) = 0, then from Theorem 1.4 we obtain
W(fi — f2) > 0 and
W(f1) =W(fa+ (fr = f2)) 2 W(f2) + W(f1 — f2) 2 W(f2).
O
Remark 3.2. Let us consider a case when g(x) =z, a =0, b = co and f
is non-increasing as it is mentioned in Remark 1.5. Now the functional W

has the form

P
p P
-2 a

W(f) = (g+ 1) (uo(f)' "7 nd (f) = (0 + Disp(f)

and W is superadditive. Also, if fi > fo such that f; — fo is non-increasing,
then W(f1) > W(f2).

The following result is an interesting inequality for the Beta function.

Corollary 3.3. Let 0 < p <gq, y1,y2 > —1. Then

p

1 1 -3 2
<y1+1+y2+1> [ﬁ(q+1,y1+1)+6(q+1,y2+1)}q
1-2 1-P
> (— "Bi(g+ Ly + 1)+ "Bi(g+ 1y + 1)
N 3/1+1 Y1 y2_|_1 » Y2

where 3 is the Beta function defined as B(x + 1,y +1) = fol (1 — t)¥dt.

Proof. Tt is a consequence of the previous theorem with [a,b] = [0, 1], fi(t) =
(1—-t)¥,i=1,2, g(z) = =x. O
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