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DENSITY OF BACKWARD PATHS ON THE JULIA SET

OF A SEMIGROUP

GERARDO R. CHACÓN, RENATO COLUCCI AND DANIELE D’ANGELI

Abstract. A well-known result from the theory of dynamics of semi-
groups of rational functions is that the backward orbit of almost every
complex number accumulates on the Julia set of the semigroup. In this
article we significantly improve that result by giving a tree structure to
the backward orbit and showing that almost every path of the tree is
dense in the Julia set of the semigroup.

1. Introduction

We study the dynamical behavior of a semigroup of rational functions
in the complex plane. This is a natural generalization of the study of the
dynamics of a given rational function. The main idea in the classical case
is to study the iteration of a fixed function, in the semigroup case we have
a finite set of functions and in each iterative step we have several functions
to compose with.

In [4] it is shown that if a complex number z belongs to the Julia set J(G)
of a semigroup G of rational functions, then its backward orbit is dense in
J(G). This result allows us to make algorithms that approximate the graph
of the Julia set.

In this article, we identify the backward orbit of a point z with a rooted k-
ary tree T (where k corresponds to the sum of the degrees of the generators
of the semigroup) and define the uniform measure on the boundary ∂T of
the tree. Our main result states that the set of (infinite) paths in T , which
correspond to a set in the complex plane which is dense in the Julia set
of G, has full measure. That is, the full backward orbit is not needed for
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knowing the topology of the Julia set of G and almost every single (infinite)
path of the backward tree is dense in J(G). The study of the Julia set of a
semigroup has also been considered under the context of time-series analysis
in [2].

The article is organized as follows: In Section 2 we give the rigorous defi-
nitions and preliminary results. Section 3 is devoted to an example in which
an approximate graph of the Julia set is constructed by the implementation
of an algorithm that chooses just one path in the backward tree, this in-
spired the authors theoretical result. Finally, in Section 4 the main theorem
is proven by using a combinatorial argument.

2. Preliminaries

Given a finite set {g1, . . . , gn} of non-constant rational functions defined

on the Riemann sphere Ĉ, we consider the semigroup G := 〈g1, . . . , gn〉
generated by the family of non-constant rational functions endowed with
the composition. In other words G is the set of all the possible compositions
of the function g1, . . . , gn. The composition of two functions f and f ′ is
denoted by ff ′.

The study of dynamics of semigroups was initiated by Hinkkanen and
Martin in a series of papers [4, 5, 6]. The main goal of these first works was
to extend the classical theory of dynamics to the context of semigroups. The
first step is then to generalize the notions of Fatou and Julia sets. Recall
that a family of functions F is normal in a region U ⊂ Ĉ if every sequence
of elements of F contains a subsequence that converges uniformly on every
compact subset of U .

Definition 1. Let G := 〈g1, . . . , gn〉 be a semigroup of rational functions.
The Fatou set F (G) of G, is the set of points in which G is normal.

The Julia set J(G) of G is the complement of F (G) in Ĉ,

J(G) = Ĉ \ F (G).

Hence, the Fatou set is the set in which the dynamics of the semigroup
is regular and the Julia set is the set in which the dynamics is irregular.
Notice that in the case in which the semigroup is generated by a single map,
G = 〈g〉, then F (G) = F (g) and J(G) = J(g) recovering the definitions of
the classical case.

In [4] some fundamental properties of the Julia sets are shown. For exam-
ple, it is shown that the Julia set is backward invariant, that is, g−1(J(G)) ⊂
J(G) for every element g ∈ G. It is also shown that

J(G) =
⋃

g∈G

J(g), (1)
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and consequently, the topology of the Julia set is given by the topology of
the Julia sets of the elements of the semigroup. A natural question is to
study what information about the topology of the Julia set can be obtained
from the knowledge of the topology of the Julia sets of the generators of the
semigroup.

One way of obtaining an approximative picture of the Julia set of a single
function is by calculating the backward orbit O−

g (z) of an element of J(g).

It is well known (see [3]) that O−
g (z) is dense in J(g) for z ∈ J(g) and

hence a simple algorithm can be used to represent numerically a picture
approximating J(g).

For the case of a general semigroup G of rational functions, it is shown in
[4] that if z ∈ J(G), then

J(G) = O−(z), (2)

where

O−(z) = {w ∈ Ĉ : there exists g ∈ G such that g(w) = z}.
For any point z ∈ J(G), we can give the set O−(z) a tree structure by

setting z at the root. For each point w ∈ O−(z) we define Aj(w) be the
set of all inverse images of w by the generator gj with a chosen fixed order,
then each element of Aj is a vertex of the tree having an edge connecting it
to the vertex corresponding to w.
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Figure 1: The backward tree for two quadratic generators

For example, consider a semigroup G generated by two quadratic poly-
nomials f and g, then for z ∈ J(G) there are four different inverse images,
then each of this four inverse images has respectively four inverse images
and so on. We describe this construction in Figure 1.

Note that we can identify the set of all infinite paths of a k-ary tree with
the interval [0, 1] by representing each real number in [0, 1] by its infinite
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k-ary expansion. This way, we can introduce a measure on the set of infinite
paths of the tree by using the Lebesgue measure on [0, 1].

3. An example

We consider two simple quadratic functions

f(z) = z2 − 1, g(z) = z2,

whose Julia sets are known. These are described in Figure 2. By the fol-
lowing numerical experiment (implemented in Matlabr and Mapler), it is
possible to recover the whole Julia set of the semigroup in the following way.

We consider the backward orbits of any compositions of the inverses of f
and g. Each function has two inverse images:

h0(z) :=
√
1 + z, h1(z) := −

√
1 + z, h2(z) :=

√
z, h3(z) := −√

z,

where h0, h1 are the inverse images of f and h2, h3 of g.

Figure 2: The Julia sets of f and g

We consider sequences of length 218 of elements of H = {h0, h1, h2, h3}
generated at each step by two random choices, the choice between the func-
tions f and g and between their two pre-images.

After several experiments, the picture obtained (see Figure 3) is very sim-
ilar to the one obtained by considering the whole backward orbit. Moreover
it is clear that not every infinite path in the tree gives rise to an approxi-
mation of the Julia set of the semigroup. Thus, this allows us to conjecture
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that almost every infinite path of the backward tree is dense in the Julia
set.

Figure 3: Approximation of the Julia set of the semigroup 〈f, g〉

4. Main theorem

We consider the definition of the backward tree as before and we refor-
mulate the problem in the setting of graph theory.

Let G = 〈g1, . . . , gn〉 be a semigroup of non-constant rational functions.
Suppose the degree of each gi is ki. For any given z ∈ J(G) there is a natural
graphical representation of the set

O−(z) = {w ∈ Ĉ : there exists g ∈ G such that g(w) = z},
by using a k−ary regular rooted tree T = T (G) as represented in Figure 1,
where k =

∑n
i=1 ki is the sum of the degrees of the generators of G. This is

a graph without loops with one vertex of degree k (the root of T ) and any
other vertex of degree k + 1 (see Figure 1 for an example with k = 4).

We define H = {h1, · · · , hk} as the ordered set of all inverse functions of
the generators of G, more precisely if we define k0 = 0, then the set of the
inverse functions of gj is given by

{
h
1+

∑j−1

i=0
ki
, . . . , h∑j

i=1
ki
.
}
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For example, if G = 〈g1, g2〉, deg(g1) = 3 and deg(g2) = 2, then the set

of inverses of g1 is
{
h1+

∑
1−1

i=0
ki
, . . . , h∑1

i=1
ki
.
}
= {h1, h2, h3} and the set of

inverses of g2 is
{
h1+

∑
2−1

i=0
ki
, . . . , h∑2

i=1
ki
.
}

= {h4, h5}, consequently H =

{h1, h2, h3, h4, h5}.
The set of finite sequences of length l of elements in H is denoted by

H l = {ξ1 · · · ξl : ξi ∈ H}. It can be identified with the l−th level of the
tree. The set H∗ = ∪l≥0H

l represents all the vertices in the tree. In order
to simplify the notation, sometimes we will identify a vertex of T with its
corresponding complex number in O−(z) and we will denote them with the
same symbol.

The boundary ∂T is the set of right-infinite sequences ξ = ξ1ξ2 · · · , such
that ξi ∈ H.

In some cases it will be useful to associate to each vertex of T a word in
a fixed alphabet X = {0, 1, . . . , k − 1} in such a way that {0, 1, . . . , k − 1}l
corresponds to the l−th level of T and ∅ denotes the root of the tree. Using
this identification, each element in ∂T has a unique representation as an
infinite sequence of elements of {0, 1, . . . , k − 1} and consequently it can be
associated to a real number in the interval [0, 1]. Therefore, this gives rise
to a bijection Ψ : ∂T → [0, 1] and consequently we can define a measure m
on ∂T as m(E) := µ(Ψ(E)) where µ denotes the Lebesgue measure on [0, 1]
and E is any subset of ∂T such that Ψ(E) is Lebesgue-measurable.

We denote by |v| the length of the word v in the alphabet X and by
vH∗ the set of words with v as prefix. Notice that vH∗ is the subtree of
H∗ rooted at v. We will also need to define an order relation ≺ in H∗ as
follows:

u ≺ w ⇔ ∃ v ∈ H∗, |v| > 0 : w = uv.

That is, u ≺ w if u is an initial sub-word of w.
If we fix a point z ∈ J(G), then to any path ξ = ξ1ξ2 · · · ∈ ∂T we can

associate the backward orbit of z as the following set

B−
ξ (z) := {z} ∪

⋃

j≥1

{ξj · · · ξ2ξ1(z)} = {z} ∪
⋃

j≥1

{ξj(· · · (ξ2(ξ1(z))) · · · )}

The following result is the first generalization of equation (2). It affirms
that there exists at least one infinite path ξ ∈ ∂T , such that the set B−

ξ (z)

is dense J(G). Although the result will be improved later, the argument
might help to understand the idea of the proof for the general result.

Theorem 1. Let G = 〈g1, . . . , gm〉 be a finitely generated semigroup of non-

constant rational functions, and let J(G) be the corresponding Julia set.
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Then for any z ∈ J(G) there exists ξ ∈ ∂T such that

B−
ξ (z) = J(G).

Proof. Let {Un}n≥1 be a countable basis for C covering J(G). The idea of the
proof consists of constructing the infinite path ξ that satisfies the conditions
of the theorem. Let z ∈ J(G), then since O−(z) = J(G) there exist f1 ∈ G
and r1 ∈ U1∩J(G) such that f1(r1) = z. Observe that since r1 ∈ J(G) then
we may use the same argument again to conclude that there exist f2 ∈ G
and r2 ∈ U2∩J(G) such that f2(r2) = r1. We can iterate this method to get
fn ∈ G and rn ∈ Un∩J(G) such that fn(rn) = rn−1 for every n. We remark
that each one of the functions fi is a finite composition of functions in the set
{g1, . . . , gn}. Hence an inverse of the composition f1f2 · · · can be identified

with an element ξ ∈ ∂T . Moreover the set {z} ∪ {rn : n ≥ 1} ⊆ B−
ξ (z) is

dense in J(G) by construction and therefore the assertion follows. �

Now we state and prove the main result of the article. It improves the
previous theorem since it establishes that if z ∈ J(G), then almost every
path in the backward its tree is associated to a dense set J(G).

We will need a result proved by Zhou [9] which is an extension of the so-
called expansion property to the case of a semigroup, it sharpens a theorem
previously proved by Boyd [1]. We define the set E(G) as the set of elements
z ∈ C such that O−(z) contains at most two elements. It can be shown that
there are at most two elements in E(G) (See [4]).

Lemma 2. Let G = 〈g1, . . . , gm〉 be a finitely generated semigroup of non-

constant rational functions, and let J(G) be the corresponding Julia set. If U
is open and intersects J(G), and if K is a compact subset of the complement

of E(G), then there exists f ∈ G such that K ⊂ g(f(U)) for all g ∈ G.

Theorem 3. Let G = 〈g1, . . . , gm〉 be a finitely generated semigroup of non-

constant rational functions, and let J(G) the corresponding Julia set. Then

for every z ∈ J(G) the set of elements ξ ∈ ∂T for which B−
ξ (z) 6= J(G) has

zero measure.

Proof. Given z ∈ J(G), we have that by the backward invariance of J(G),

it follows that O−(z) ⊂ J(G). Take K := O−(z) and let {Un}n≥1 be a
countable basis for C covering J(G). Then by Lemma 2 we have that for
each non-negative integer j there exists a function fj ∈ G (say of length Nj)

such that O−(z) ⊂ fj(Uj).
Now, by making the identification of O−(z) with the tree T , we have that

for every vertex v of T there exists an inverse of fj such that f−1
j (v) ∈ Uj.

Note that the set of inverses of fj can be identified with a subset of vertices
of the level HNj .



84 GERARDO R. CHACÓN, RENATO COLUCCI AND DANIELE D’ANGELI

The previous reasoning determines the existence of a function sj : H
∗ →

HNj with the property that for every v ∈ H∗ we have that the vertex vsj(v)
is associated to a point in J(G) that belongs to Uj .

Define the set

Csj := {x = x1x2 · · · ∈ ∂T : x1 · · · xmsj(x1 · · · xm) ⊀ x ∀m}.
Note that if an infinite path ξ ∈ ∂T is such that for every j ξ 6∈ Csj , then

for every j there exists a vertex vj in ξ such that vjsj(vj) is identified with
an element of Uj . Consequently, ξ is identified with a dense set of J(G).
Therefore, we need to show that each set Csj has zero measure.

From now on we suppress the index j and rephrase the problem in a
combinatorial setting.

Let us identify the backward orbit with a rooted tree T as described above.
To compute the measure of Cs we can compute m(∂T \ Cs) = 1 − m(Cs),
given by the sum of the measure of the subtrees rooted at ws(w), w ∈ H∗.

First, we reduce the problem to the case in which N = 1. If N > 1 and
|X| = k, we can define a new alphabet of kN symbols and a new rooted tree

T̃ of degree kN . Associate each of the vertices of a l−th level of T̃ with the
vertices in the lN−th level of T in a one-to-one manner. This so defined
injective function will be denoted as Υ.

Now define a function s̃ on the set of the vertices of T̃ as s̃ := s◦Υ. Then
it is clear that for every vertex v of T̃ we have that |s̃(v)| = 1 and that

m(∂T̃ \ Cs̃) ≤ m(∂T \ Cs).
Consequently, in what follows we will assume that for every v ∈ H∗,

|s(v)| = 1. Note that to calculate m(∂T \ Cs), we remove from T a tree
of measure 1/k rooted at s(∅) = x0. Then we remove (k − 1) subtrees of
measure 1/k2 rooted at x 6= x0. From each one of the subtree rooted at
x 6= x0 we remove only (k−1)2 subtrees of measure 1/k3 rooted at xx1 with
x1 6= s(x). Continuing this process we get

m(∂T \ Cs) =
1

k

∞∑

i=0

(
k − 1

k

)i

= 1.

This concludes the proof. �

Final remark

The present paper shows the utility of the use of combinatorial methods
in complex dynamics. We observe that much more could be done by using
this algebraic approach. In fact recently, Nekrashevych (see [7, 8]) found
a relationship between complex dynamics and self similar groups, making
available for the study of the dynamics of one complex function, many tools
and techniques from group theory. A natural question to be addressed is
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how this techniques generalize to the study of the dynamics of semigroups
of rational functions.
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