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CONTINUITY CONDITIONS FOR THE HILBERT

TRANSFORM ON QUASI-HILBERT SPACES

A. ŠAHOVIĆ, F. VAJZOVIĆ AND S. PECO

Abstract. We give necessary and sufficient conditions for the conti-
nuity of the Hilbert transform on complex quasi-Hilbert spaces, i.e.
on complex, reflexive, strictly convex Banach spaces with Gâteaux-
differentiable norm and with generalized inner product.

1. Introduction

In this paper X is a complex quasi-Hilbert space, i.e. X is a complex,
reflexive, strictly convex Banach space with Gâteaux-differentiable norm and
with quasi-inner product (·, ·) introduced in [3] as

(x, y) := 〈x, y〉 − i 〈x, iy〉 . (1.1)

Here

〈x, y〉 := lim
t↘0

‖x+ ty‖2 − ‖x‖2

2t
for x, y ∈ X,

‖·‖ is a norm on X (see [5]).
In papers [3] and [6] we observed the Hilbert transform on complex quasi-

Hilbert space X and we gave a connection between the Hilbert transform H
and the operator A+ (see Definition 1.3) on some set dense in X (Theorem
1.5). In this paper we show that the operator iA+ being the infinitesimal
generator of a bounded strongly continuous group of operators in B(X)
is both necessary and sufficient for the continuity of Hilbert transform on
complex quasi-Hilbert space X (Theorem 2.1).

First we recall some notations, basic notions and claims that we will need
in this paper. Let X be a complex Banach space, and let B(X) denote the
complex Banach algebra of all bounded linear operators on X.

2000 Mathematics Subject Classification. 46E30, 46C50, 47G10.
Key words and phrases. Banach space, Gâteaux-differentiable norm, generalized inner

product, group of operators, Hilbert transform.
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Definition 1.1. If U(t) is an operator function on the real axis R to the
Banach algebra B(X) satisfying the following conditions:

i) U(t1 + t2) = U(t1)U(t2), (t1, t2 ∈ R),
ii) U(0) = I, (I − identity operator),

then the family U(t), t ∈ R is called a one-parameter group of operators in
B(X). It is strongly continuous if it is continuous at the origin in the strong
operator topology, i.e. if

lim
t→0

U(t)x = x (x ∈ X) (in the X − norm, shorter, in X).

If, in addition, there exists a constant M (M ≥ 1) such that

‖U(t)‖ ≤M for all t ∈ R,

then the strongly continuous group U(t), t ∈ R is said to be bounded.

The infinitesimal generator A of the group U(t), t ∈ R is defined by

Ax := lim
t→0

U(t)x− x
x

for all x ∈ X for which the last limit in norm exists. A is a closed linear
operator with dense domain D(A) in X.

Definition 1.2. [1] Let U(t), t ∈ R be a strongly continuous group of opera-
tors in B(X), and let Hε,N (0 < ε < N <∞) be a continuous linear operator
on X defined by

Hε,Nx :=
1

π

∫
ε≤|t|≤N

U(t)x

x
dt (x ∈ X).

If

lim
ε→0
N→∞

Hε,Nx

exists in X, it is denoted by Hx and called the Hilbert transform of x, i. e.

Hx = lim
ε→0
N→∞

Hε,Nx.

Definition 1.3. [3] The strong closure of the operator A0 defined by

A0Fax := aFax− F 2
ax, x ∈ X, a ≥ 0

is called the positive square root of −A2 and it is denoted by A+.

The family of operators Fa, a ≥ 0 was introduced in [6] as

Fax := lim
α↘0

Fa,αx, x ∈ X, a ≥ 0,
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where

Fa,αx :=
1

πi

∫ a

0
du

∫ α+iu

α+i0

[
λR(λ2,−A2) + λR(λ

2
,−A2

]
dλ,

where λ = α + iy, i =
√
−1. Here the resolvent of −A2 is denoted by

R(λ2,−A2), i.e.

R(λ2,−A2) = (λ2 − (−A2))−1 ∈ B(X),

−A2 is the infinitesimal generator of the bounded strongly continuous cosine
operator function C(t) defined by

C(t) :=
U(t) + U(−t)

2
, t ∈ R,

where U(t), t ∈ R is a bounded strongly continuous group of operators in
B(X) with the infinitesimal generator iA.

Note that a family of bounded linear operators Fa, a ≥ 0 exists for every
bounded strongly continuous cosine operator function on X.
The following holds (proved in [2] and [3]):

1) The limit in the definition of operators Fa, a ≥ 0 exists for all x ∈ X
and a ≥ 0,

2) Fax = 2
π

∫∞
0

(
sin at
t

)2
C(2t)x dt = 2a

π

∫∞
0

(
sin at
t

)2
C
(

2t
a

)
x dt,

3) ‖Fa‖ ≤ a for all a ≥ 0,
4) function a→ Fa is strongly continuous on [0,+∞),
5) lima→+∞

Fax
a = x, x ∈ X,

6) FaFbx = FbFax = 2
∫ a

0 Fuxdu+ (b− a)Fax, x ∈ X, 0 ≤ a ≤ b,
7)

Fax ∈ D(A2k), k = 1, 2, 3, . . . , a ≥ 0, x ∈ X, (1.2)

8) A2Fax = FaA
2x for all x ∈ D(A2), a ≥ 0,

9)

the set
⋃
a≥0

Fa(X) is dense in X. (1.3)

10) 〈x,A+x〉 ≥ 0 for all x ∈ D(A+),
11)

A+
2x = A2x for all x ∈ D(A2). (1.4)

More about operators Fa, a ≥ 0 and A+ and their properties can be seen
in [2], [3], [4] and [7]. We will need the following theorems (proved in [3]
and [7]):

Theorem 1.4. Let X be a (complex) quasi-Hilbert space, and let C(t), t ∈ R
be a bounded strongly continuous cosine operator function with the infinite-
simal generator A. If the number 0 belongs to the point spectrum of the
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generator A, and if the set of all x ∈ X for which Ax = 0 is denoted by L,
then there exists the subspace M of the space X such that X is a direct and
orthogonal sum of subspaces L and M (i.e. every x ∈ X can be written in
a unique way in the form

x = l
∗
+ y, l ∈ L,m ∈M,

and (l,m) = 0). The subspaces L and M have the following properties:

a) C(t)x = x for all x ∈ L and t ∈ R
b) M is invariant relative to all operators C(t), t ∈ R,
c) 0 does not belong to the point spectrum of the restriction of the ope-

rator A on the subspace M .

Theorem 1.5. Let X be a (complex) quasi-Hilbert space. If U(t), t ∈ R
is a strongly continuous group of isometries in B(X) with the infinitesimal
generator iA, and if A+ is the positive square root from −A2, then the Hilbert
transform H is defined on some set dense in X, and

HAx = iA+x for all x ∈ D(A2),

HA+x = iAx for all x ∈ D(A2).

Theorem 1.6. Let X be a (complex) quasi-Hilbert space. If A is the infini-
tesimal generator of a bounded strongly continuous cosine operator function,
then 0 does not belong to the residual spectrum of the operator A.

Theorem 1.7. Let X be a (complex) quasi-Hilbert space, and let U(t), t ∈ R
be a strongly continuous group of isometries in B(X) with the infinitesimal
generator iA. If 0 does not belong to the point spectrum of the operator A2,
then

H2x = −x for all x ∈ D(A2),

where H is the Hilbert transform.

Observe that the set D(A2) is dense in X.

Remark 1.8. Let X be a complex Banach space with quasi-inner product
(·, ·) defined by (1.1), and let X∗ be the dual space of space X. The following
theorem holds (see [3] and [5]):

Given δ ∈ X∗ there exists a unique xδ ∈ X such that

‖xδ‖ = ‖δ‖ and (xδ, y) = δ(y) for all x ∈ X,
and the mapping ϕ : δ → xδ is continuous from the norm topology on X∗ to
the weak topology on X if and only if X is a quasi-Hilbert space.

Set

x
∗
+ y := ϕ

(
ϕ−1(x) + ϕ−1(y)

)
, x, y ∈ X.

We have shown (see [3]):
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a) the space X under the operation
∗
+ is isometrically isomorphic to X∗,

which we denote by

(X,
∗
+) = (X∗,+)

b) if X is a quasi-Hilbert space, then X∗ is also a quasi-Hilbert space.
c) if U is an isometry in B(X), then

(x, Uy) = (U−1x, y), x, y ∈ X,

and U is a linear operator in space (X,+) and in space (X,
∗
+).

2. Continuity conditions for the Hilbert transform on
quasi-Hilbert spaces

Theorem 2.1. Let X be a complex quasi-Hilbert space with the quasi-inner
product (·, ·) defined by (1.1). Let U(t), t ∈ R be a group of isometries in
B(X) with the infinitesimal generator iA, and let A+ be the positive square
root from −A2. The Hilbert transform H is a continuous linear operator on
X into itself if and only if the operator iA+ is the infinitesimal generator of
a bounded strongly continuous group of operators in B(X).

Proof. Suppose iA+ is the infinitesimal generator of the bounded strongly
continuous group U+(t), t ∈ R in B(X). Set

‖x‖1 := sup
s∈R
‖U+(s)x‖ , x ∈ X.

Note that ‖·‖1 is a new norm on X, and that the norm ‖·‖1 is equivalent to
the norm ‖·‖. Using Remark 1.8, it is easy to prove that the space X under
the norm ‖·‖1 denoted by (X, ‖·‖1) is a quasi-Hilbert space. Also it is easy
to see that groups U(t), t ∈ R and U+(t), t ∈ R are continuous groups of
isometries in B(X), where X = (X, ‖·‖1).

From here till the end of this part of the proof, let X = (X, ‖·‖1), and
suppose that 0 does not belong to the point spectrum σp(A

2) of A2. Set

L
′

: = {x ∈ X|U(t)x = U+(t)x, t ∈ R} ,

L
′′

: = {x ∈ X|U(t)x = U+(−t)x, t ∈ R} .

It is easy to see that both L
′

and L
′′

are (closed) subspaces of X.

Furthermore, if x0 ∈ L
′ ∩ L′′

, then

U(t)x0 = U(−t)x0,

so
U(t)x0 − x0

t
=
U(−t)x0 − x0

t
, t 6= 0.
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Thus,

iA

(
1

t

∫ t

0
U(s)x0ds−

1

t

∫ t

0
U(−s)x0ds

)
= 0, t 6= 0.

Since
1

t

∫ t

0
U(s)x0ds−

1

t

∫ t

0
U(−s)x0ds→ 2x0 as t→ 0,

and since iA is a closed operator,

x0 ∈ D(iA) and iAx0 = 0,

so,
−A2x0 = 0.

Since 0 /∈ σp(A2),

L
′ ∩ L′′

= {0} .
Using the properties of isometries in B(X) and the definition of subspaces

L
′

i L
′′
, we get

(x, U(t)y) = (U(−t)x, y) = (U+(t)x, y) = (x, U+(−t)y) = (x, U(−t)y)

for all t ∈ R, x ∈ L′′
, y ∈ L′

. Hence,

(x, U(t)y) = (x, U(−t)y), t ∈ R, x ∈ L′′
, y ∈ L′

.

Since L
′

and L
′′

are invariant relative to all operators U(t), and U(−t), t ∈
R, from the last equation, by replacing y with U(t)y, we obtain

(x, U(2t)y) = (x, y), t ∈ R, x ∈ L′′
, y ∈ L′

.

Hence, (
x,
U(2t)y − y

2t

)
= 0, t ∈ R, x ∈ L′′

, y ∈ L′
.

Thus,
(x, iAy) = 0

for all x ∈ L′′
, y ∈ L′

, y ∈ D(A).

By Theorem 1.6, and since 0 /∈ σp(A2), the set
{
iAy|y ∈ L′

, y ∈ D(A)
}

is dense in L
′
. Hence,

(x, y) = 0 for all x ∈ L′′
, y ∈ L′

.

Now, in the usual way, we get that every l ∈ L,L := L′ ·+ L′′ , can be
written in a unique way in the form

l = x+ y, x ∈ L′′
, y ∈ L′

.

Let us prove that L = X.
First we shall prove that at least one of the spaces L

′
and L

′′
is not equal

to {0} .
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For any x ∈ K, K := ∪a≥0, b≥0FaFb(X), x 6= 0 there exist A+Ax and
AA+x, and

A+Ax = AA+x.

By (1.2) and by (1.4),

(A+A+)(A−A+)x = A2x−A2
+x = 0, x ∈ K.

If Ax−A+x = 0, then

V1(t)x := U(t)U+(−t)x

is strongly differentiable with respect to t on R and

dV1(t)x

dt
=
dU(t)

dt
U+(−t)x+U(t)

dU+(−t)x
dt

= iU(t)U+(−t)(Ax−A+x) = 0.

Thus,

V1(t)x = V1(0)x for all t ∈ R,
i.e. x ∈ L′

. So,

L′ 6= {0} .
If Ax−A+x 6= 0, then

y := Ax−A+x 6= 0 and Ay +A+y = 0.

The function

V2(t)y := U(t)U+(t)y, t ∈ R
is strongly differentiable with respect to t on R and

dV2(t)y

dt
= 0.

Thus, in a similar way, y ∈ L′′
. So,

L′′ 6= {0} .

Now, let us prove that L = X.
If L ⊂ X,L 6= X, and if the set of all x ∈ X for which (x, y) =

0 (for all y ∈ L) is denoted by X1, then X1 6= {0}, and X1 ∩ L = {0} .
Moreover

X1 ∩
(
L

′
+ L

′′
)

= {0} . (2.1)

By Remark 1.8, (X1,
∗
+) is a quasi-Hilbert space. X1 is invariant relative

to operators U(t) and U+(t), t ∈ R. U(t), t ∈ R and U+(t), t ∈ R are
strongly continuous groups of isometries in B(X1). Hence, the claim we
have already proved for space X holds for X1. That means that there exists
x1 ∈ X1, x1 6= 0 such that x1 ∈ L′ or x1 ∈ L′′. This is in contradiction
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with (2.1), proving that L = X.

From the definition of subspaces L
′

and L
′′

of X we easily obtain

Ay = A+y for y ∈ D(A) ∩ L′
, and

Ax = −A+x for x ∈ D(A) ∩ L′′
.

From this and from the Theorem 1.5, it follows that H is a continuous
linear operator on some set dense in L = X. Consequently, H has a unique
continuous linear extension on X into itself, which completes this part of
the proof.

Observe that in the above proof, we have used the assumption that 0 /∈
σp(A

2). In case 0 ∈ σp(A2), the claim easily follows from the Theorem 1.4
together with the above proof.

Now, suppose that the Hilbert transform H is a continuous linear operator
on X into itself. Then, by Theorem 1.7, H2 = −I. From this it follows that
the operator

H
′

:= iH

is also a continuous linear operator and(
H

′
)2

= I.

Lets prove that the group U+(t), t ∈ R is bounded, where U+(t), t ∈ R
is a strongly continuous group of operators in B(X) with the infinitesimal
generator iA+. Set

P :=
1

2
(I +H

′
), Q :=

1

2
(I −H ′

).

Operators P and Q are bounded, because the operator H
′

is bounded, and
holds:

P 2 = P, Q2 = Q, PQ = QP = 0, P +Q = I.

Thus, every x ∈ X can be written in a unique way in the form

x = x
′
+ x

′′
, x

′
= Px, x

′′
= Qx.

From this immediately follows∥∥∥x′
∥∥∥ ≤ ‖P‖ · ‖x‖ and

∥∥∥x′′
∥∥∥ ≤ ‖Q‖ · ‖x‖ . (2.2)

Let x = Faz, z ∈ X, a ≥ 0 be arbitrary, but fixed. Then

x = x
′
+ x

′′
, x

′
= Px, x

′′
= Qx,

and

x
′

=
1

2
(x

′
+H

′
x

′
), x

′ ∈ D(A), x
′ ∈ D(A+),

AH
′
x′ = H

′
Ax

′
, A+Hx

′ = HA+x
′
.
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By Theorem 1.5. we have,

iAx
′

=
1

2
(iAx

′
+ iH

′
Ax

′
) =

1

2
(iAx

′ −HAx′
) =

1

2
(iAx

′ − iA+x
′
),

and

iA+x
′

=
1

2
(iA+x

′ −HA+x
′
) =

1

2
(iA+x

′ − iAx′
).

Hence,

iAx
′

= −iA+x
′
. (2.3)

In a similar way it can be proved that

iAx
′′

= iA+x
′′
. (2.4)

The function
W (s)x

′′
:= U(t− s)U+(s)x

′′

is strongly differentiable with respect to s in 0 < s < t for each fixed t > 0
and

dW (s)

ds
x

′′
= −dU(t− s)

d(t− s)
· U+(s)x

′′
+ U(t− s) · dU+(s)

ds
x

′′
=

= −U(t− s)U+(s)iAx
′′

+ U(t− s) · U+(s)iA+x
′′
.

From this and from (2.4) we obtain

dW (s)

ds
x

′′
= U(t− s)U+(s) · (iA+x

′′ − iAx′′
) = 0.

Thus,

W (s)x
′′

= W (t)x
′′

= W (0)x
′′
,

which shows that

U(t)x
′′

= U+(t)x
′′

for all t ≥ 0.

In a similar way it can be proved that

U(t)x
′′

= U+(t)x
′′

for all t < 0.

Hence,

U(t)x
′′

= U+(t)x
′′

for all t ∈ R.
Similarly, by (2.3) we get

U(t)x
′

= U+(−t)x′
for all t ∈ R.

Thus,

U+(t)x = U+(t)x
′
+ U+(t)x

′′
=

= U(−t)x′
+ U(t)x

′′

for all x ∈
⋃
a≥0

Fa(X), x = x
′
+ x

′′
, x

′
= Px, x

′′
= Qx and for all t ∈ R.
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From this and from (2.2) it follows

‖U+(t)x‖ ≤
∥∥∥U(−t)x′

∥∥∥+
∥∥∥U(t)x

′′
∥∥∥ =

∥∥∥x′
∥∥∥+

∥∥∥x′′
∥∥∥ ≤

≤ ‖P‖ · ‖x‖+ ‖Q‖ · ‖x‖ = (‖P‖+ ‖Q‖) · ‖x‖

for all x ∈
⋃
a≥0

Fa(X) and for all t ∈ R. Since the set
⋃
a≥0

Fa(X) is dense in X

(by (1.3)),
‖U+(t)x‖ ≤ (‖P‖+ ‖Q‖) · ‖x‖

for all x ∈ X and for all t ∈ R. By Definition 1.1, the group U+(t), t ∈ R is
bounded. The theorem is proved. �
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