CONTINUITY CONDITIONS FOR THE HILBERT TRANSFORM ON QUASI-HILBERT SPACES

A. ŠAHOVIĆ, F. VAJZOVIĆ AND S. PECO

ABSTRACT. We give necessary and sufficient conditions for the continuity of the Hilbert transform on complex quasi-Hilbert spaces, i.e. on complex, reflexive, strictly convex Banach spaces with Gâteauxdifferentiable norm and with generalized inner product.

1. INTRODUCTION

In this paper X is a complex quasi-Hilbert space, i.e. X is a complex, reflexive, strictly convex Banach space with Gâteaux-differentiable norm and with quasi-inner product (\cdot, \cdot) introduced in [3] as

$$
(x, y) := \langle x, y \rangle - i \langle x, iy \rangle. \tag{1.1}
$$

Here

$$
\langle x, y \rangle := \lim_{t \searrow 0} \frac{\|x + ty\|^2 - \|x\|^2}{2t} \text{ for } x, y \in X,
$$

 $\|\cdot\|$ is a norm on X (see [5]).

In papers [3] and [6] we observed the Hilbert transform on complex quasi-Hilbert space X and we gave a connection between the Hilbert transform H and the operator A_+ (see Definition 1.3) on some set dense in X (Theorem 1.5). In this paper we show that the operator iA_+ being the infinitesimal generator of a bounded strongly continuous group of operators in $B(X)$ is both necessary and sufficient for the continuity of Hilbert transform on complex quasi-Hilbert space X (Theorem 2.1).

First we recall some notations, basic notions and claims that we will need in this paper. Let X be a complex Banach space, and let $B(X)$ denote the complex Banach algebra of all bounded linear operators on X.

²⁰⁰⁰ Mathematics Subject Classification. 46E30, 46C50, 47G10.

Key words and phrases. Banach space, Gâteaux-differentiable norm, generalized inner product, group of operators, Hilbert transform.

Definition 1.1. If $U(t)$ is an operator function on the real axis $\mathbb R$ to the Banach algebra $B(X)$ satisfying the following conditions:

- i) $U(t_1 + t_2) = U(t_1)U(t_2), (t_1, t_2 \in \mathbb{R}),$
- ii) $U(0) = I$, $(I -$ identity operator),

then the family $U(t)$, $t \in \mathbb{R}$ is called a *one-parameter group of operators in* $B(X)$. It is *strongly continuous* if it is continuous at the origin in the strong operator topology, i.e. if

$$
\lim_{t \to 0} U(t)x = x \ (x \in X) \text{ (in the } X-\text{norm, shorter, in } X).
$$

If, in addition, there exists a constant $M (M \geq 1)$ such that

$$
||U(t)|| \le M \text{ for all } t \in \mathbb{R},
$$

then the strongly continuous group $U(t)$, $t \in \mathbb{R}$ is said to be *bounded*.

The infinitesimal generator A of the group $U(t)$, $t \in \mathbb{R}$ is defined by

$$
Ax := \lim_{t \to 0} \frac{U(t)x - x}{x}
$$

for all $x \in X$ for which the last limit in norm exists. A is a closed linear operator with dense domain $D(A)$ in X.

Definition 1.2. [1] Let $U(t)$, $t \in \mathbb{R}$ be a strongly continuous group of operators in $B(X)$, and let $H_{\epsilon,N}$ $(0 < \epsilon < N < \infty)$ be a continuous linear operator on X defined by

$$
H_{\epsilon,N}x := \frac{1}{\pi} \int_{\epsilon \leq |t| \leq N} \frac{U(t)x}{x} dt \quad (x \in X).
$$

If

$$
\lim_{\substack{\epsilon \to 0 \\ N \to \infty}} H_{\epsilon, N} x
$$

exists in X , it is denoted by Hx and called the Hilbert transform of x , i. e.

$$
Hx = \lim_{\substack{\epsilon \to 0 \\ N \to \infty}} H_{\epsilon, N} x.
$$

Definition 1.3. [3] The strong closure of the operator A_0 defined by

$$
A_0F_ax := aF_ax - F_a^2x, \ x \in X, a \ge 0
$$

is called the positive square root of $-A^2$ and it is denoted by A_+ .

The family of operators $F_a, a \geq 0$ was introduced in [6] as

$$
F_a x := \lim_{\alpha \searrow 0} F_{a,\alpha} x, \ \ x \in X, a \ge 0,
$$

where

$$
F_{a,\alpha}x := \frac{1}{\pi i} \int_0^a du \int_{\alpha + i0}^{\alpha + iu} \left[\lambda R(\lambda^2, -A^2) + \overline{\lambda}R(\overline{\lambda}^2, -A^2) \right] d\lambda,
$$

where $\lambda = \alpha + iy, \quad i =$ $\sqrt{-1}$. Here the resolvent of $-A^2$ is denoted by $R(\lambda^2, -A^2)$, i.e.

$$
R(\lambda^2, -A^2) = (\lambda^2 - (-A^2))^{-1} \in B(X),
$$

 $-A²$ is the infinitesimal generator of the bounded strongly continuous cosine operator function $C(t)$ defined by

$$
C(t) := \frac{U(t) + U(-t)}{2}, \ \ t \in \mathbb{R},
$$

where $U(t)$, $t \in \mathbb{R}$ is a bounded strongly continuous group of operators in $B(X)$ with the infinitesimal generator *iA*.

Note that a family of bounded linear operators $F_a, a \geq 0$ exists for every bounded strongly continuous cosine operator function on X. The following holds (proved in [2] and [3]):

- 1) The limit in the definition of operators F_a , $a \geq 0$ exists for all $x \in X$ and $a \geq 0$,
- 2) $F_a x = \frac{2}{\pi}$ $rac{2}{\pi} \int_0^\infty \left(\frac{\sin at}{t} \right)$ $\left(\frac{at}{t}\right)^2 C(2t)x dt = \frac{2a}{\pi}$ $rac{2a}{\pi}$ \int_0^∞ $\left(\frac{\sin at}{t}\right)$ $\left(\frac{1}{t}a t\right)^2 C \left(\frac{2t}{a}\right)$ $\frac{2t}{a}$) x dt, 3) $||F_a|| \leq a$ for all $a \geq 0$,
- 4) function $a \to F_a$ is strongly continuous on $[0, +\infty)$,
- 5) $\lim_{a \to +\infty} \frac{F_a x}{a} = x, \quad x \in X,$
- 6) $F_aF_bx = F_bF_ax = 2\int_0^a F_u x du + (b-a)F_ax, \quad x \in X, \ 0 \le a \le b,$ 7)

$$
F_a x \in D(A^{2k}), \ k = 1, 2, 3, \dots, \ a \ge 0, \ x \in X,\tag{1.2}
$$

8) $A^2 F_a x = F_a A^2 x$ for all $x \in D(A^2)$, $a \ge 0$, 9)

the set
$$
\bigcup_{a \geq 0} \overline{F_a(X)}
$$
 is dense in X. (1.3)

10) $\langle x, A_{+}x \rangle > 0$ for all $x \in D(A_{+}),$ 11) $A_+^2 x = A^2 x$ for all $x \in D(A^2)$ (1.4)

More about operators F_a , $a \geq 0$ and A_+ and their properties can be seen in [2], [3], [4] and [7]. We will need the following theorems (proved in [3] and [7]):

Theorem 1.4. Let X be a (complex) quasi-Hilbert space, and let $C(t)$, $t \in \mathbb{R}$ be a bounded strongly continuous cosine operator function with the infinitesimal generator A. If the number 0 belongs to the point spectrum of the generator A, and if the set of all $x \in X$ for which $Ax = 0$ is denoted by L, then there exists the subspace M of the space X such that X is a direct and orthogonal sum of subspaces L and M (i.e. every $x \in X$ can be written in a unique way in the form

$$
x = l \stackrel{*}{+} y, \ \ l \in L, m \in M,
$$

and $(l, m) = 0$. The subspaces L and M have the following properties:

- a) $C(t)x = x$ for all $x \in L$ and $t \in \mathbb{R}$
- b) M is invariant relative to all operators $C(t)$, $t \in \mathbb{R}$,
- c) 0 does not belong to the point spectrum of the restriction of the operator A on the subspace M.

Theorem 1.5. Let X be a (complex) quasi-Hilbert space. If $U(t)$, $t \in \mathbb{R}$ is a strongly continuous group of isometries in $B(X)$ with the infinitesimal generator iA, and if A_+ is the positive square root from $-A^2$, then the Hilbert transform H is defined on some set dense in X, and

$$
HAx = iA_{+}x \text{ for all } x \in D(A^{2}),
$$

$$
HA_{+}x = iAx \text{ for all } x \in D(A^{2}).
$$

Theorem 1.6. Let X be a (complex) quasi-Hilbert space. If A is the infinitesimal generator of a bounded strongly continuous cosine operator function, then 0 does not belong to the residual spectrum of the operator A.

Theorem 1.7. Let X be a (complex) quasi-Hilbert space, and let $U(t)$, $t \in \mathbb{R}$ be a strongly continuous group of isometries in $B(X)$ with the infinitesimal generator iA. If 0 does not belong to the point spectrum of the operator A^2 , then

$$
H^2x = -x \text{ for all } x \in D(A^2),
$$

where H is the Hilbert transform.

Observe that the set $D(A^2)$ is dense in X.

Remark 1.8. Let X be a complex Banach space with quasi-inner product (\cdot, \cdot) defined by (1.1), and let X^* be the dual space of space X. The following theorem holds (see [3] and [5]):

Given $\delta \in X^*$ there exists a unique $x_{\delta} \in X$ such that

 $\|x_\delta\| = \|\delta\|$ and $(x_\delta, y) = \delta(y)$ for all $x \in X$,

and the mapping $\varphi : \delta \to x_{\delta}$ is continuous from the norm topology on X^* to the weak topology on X if and only if X is a quasi-Hilbert space.

Set

$$
x \stackrel{*}{+} y := \varphi\left(\varphi^{-1}(x) + \varphi^{-1}(y)\right), \ \ x, y \in X.
$$

We have shown (see [3]):

a) the space X under the operation $\stackrel{*}{+}$ is isometrically isomorphic to X^* , which we denote by

$$
(X, \stackrel{*}{+}) = (X^*, +)
$$

- b) if X is a quasi-Hilbert space, then X^* is also a quasi-Hilbert space.
- c) if U is an isometry in $B(X)$, then

$$
(x, Uy) = (U^{-1}x, y), x, y \in X,
$$

and U is a linear operator in space $(X,+)$ and in space $(X, +)$.

2. Continuity conditions for the Hilbert transform on quasi-Hilbert spaces

Theorem 2.1. Let X be a complex quasi-Hilbert space with the quasi-inner product (\cdot, \cdot) defined by (1.1). Let $U(t)$, $t \in \mathbb{R}$ be a group of isometries in $B(X)$ with the infinitesimal generator iA, and let A_+ be the positive square root from $-A^2$. The Hilbert transform H is a continuous linear operator on X into itself if and only if the operator iA_+ is the infinitesimal generator of a bounded strongly continuous group of operators in $B(X)$.

Proof. Suppose iA_+ is the infinitesimal generator of the bounded strongly continuous group $U_+(t), t \in \mathbb{R}$ in $B(X)$. Set

$$
||x||_1 := \sup_{s \in \mathbb{R}} ||U_+(s)x|| \, , \, x \in X.
$$

Note that $\|\cdot\|_1$ is a new norm on X, and that the norm $\|\cdot\|_1$ is equivalent to the norm $\lVert \cdot \rVert$. Using Remark 1.8, it is easy to prove that the space X under the norm $\lVert \cdot \rVert_1$ denoted by $(X, \lVert \cdot \rVert_1)$ is a quasi-Hilbert space. Also it is easy to see that groups $U(t)$, $t \in \mathbb{R}$ and $U_+(t)$, $t \in \mathbb{R}$ are continuous groups of isometries in $B(X)$, where $X = (X, \|\cdot\|_1)$.

From here till the end of this part of the proof, let $X = (X, \|\cdot\|_1)$, and suppose that 0 does not belong to the point spectrum $\sigma_p(A^2)$ of A^2 . Set

$$
L^{'} := \{ x \in X | U(t)x = U_{+}(t)x, \ t \in \mathbb{R} \},
$$

$$
L^{''} := \{ x \in X | U(t)x = U_{+}(-t)x, \ t \in \mathbb{R} \}.
$$

It is easy to see that both L' and L'' are (closed) subspaces of X.

Furthermore, if $x_0 \in L' \cap L''$, then

$$
U(t)x_0 = U(-t)x_0,
$$

so

$$
\frac{U(t)x_0 - x_0}{t} = \frac{U(-t)x_0 - x_0}{t}, \ \ t \neq 0.
$$

Thus,

$$
iA\left(\frac{1}{t}\int_0^t U(s)x_0ds - \frac{1}{t}\int_0^t U(-s)x_0ds\right) = 0, \ \ t \neq 0.
$$

Since

$$
\frac{1}{t} \int_0^t U(s)x_0 ds - \frac{1}{t} \int_0^t U(-s)x_0 ds \to 2x_0 \text{ as } t \to 0,
$$

and since iA is a closed operator,

$$
x_0 \in D(iA) \text{ and } iAx_0 = 0,
$$

so,

$$
-A^2x_0=0.
$$

Since $0 \notin \sigma_p(A^2)$,

$$
L^{'}\cap L^{''}=\left\{ 0\right\} .
$$

Using the properties of isometries in $B(X)$ and the definition of subspaces L' i L'' , we get

$$
(x, U(t)y) = (U(-t)x, y) = (U_+(t)x, y) = (x, U_+(-t)y) = (x, U(-t)y)
$$

for all $t \in \mathbb{R}, x \in L'', y \in L'$. Hence,

$$
(x, U(t)y) = (x, U(-t)y), \ t \in \mathbb{R}, \ x \in L'', \ y \in L'.
$$

Since L' and L'' are invariant relative to all operators $U(t)$, and $U(-t)$, $t \in$ R, from the last equation, by replacing y with $U(t)y$, we obtain

$$
(x, U(2t)y) = (x, y), \ t \in \mathbb{R}, \ x \in L'', \ y \in L'.
$$

Hence,

$$
\left(x, \frac{U(2t)y - y}{2t}\right) = 0, t \in \mathbb{R}, x \in L'', y \in L'.
$$

Thus,

for all
$$
x \in L''
$$
, $y \in L'$, $y \in D(A)$.

By Theorem 1.6, and since $0 \notin \sigma_p(A^2)$, the set $\{iAy|y \in L', y \in D(A)\}\$ is dense in L' . Hence,

$$
(x,y) = 0 \text{ for all } x \in L'', \ y \in L'.
$$

Now, in the usual way, we get that every $l \in L, L := \overline{L' + L''},$ can be written in a unique way in the form

$$
l = x + y, \ \ x \in L'', \ y \in L'.
$$

Let us prove that $L = X$.

First we shall prove that at least one of the spaces L' and L'' is not equal to $\{0\}$.

For any $x \in K$, $K := \bigcup_{a \geq 0, b \geq 0} F_a F_b(X)$, $x \neq 0$ there exist A_+Ax and $AA_{+}x$, and

$$
A_+Ax = AA_+x.
$$

By (1.2) and by (1.4) ,

$$
(A + A_{+})(A - A_{+})x = A^{2}x - A_{+}^{2}x = 0, \quad x \in K.
$$

If $Ax - A_+x = 0$, then

$$
V_1(t)x := U(t)U_+(-t)x
$$

is strongly differentiable with respect to t on $\mathbb R$ and

$$
\frac{dV_1(t)x}{dt} = \frac{dU(t)}{dt}U_+(-t)x + U(t)\frac{dU_+(-t)x}{dt} = iU(t)U_+(-t)(Ax - A_+x) = 0.
$$

Thus,

$$
V_1(t)x = V_1(0)x \text{ for all } t \in \mathbb{R},
$$

i.e. $x \in L'$. So,

$$
L' \neq \{0\}.
$$

If $Ax - A_+x \neq 0$, then

 $y := Ax - A_+x \neq 0$ and $Ay + A_+y = 0$.

The function

$$
V_2(t)y := U(t)U_+(t)y, \ \ t \in \mathbb{R}
$$

is strongly differentiable with respect to t on $\mathbb R$ and

$$
\frac{dV_2(t)y}{dt} = 0.
$$

Thus, in a similar way, $y \in L''$. So,

$$
L'' \neq \{0\}.
$$

Now, let us prove that $L = X$.

If $L \subset X, L \neq X$, and if the set of all $x \in X$ for which $(x, y) =$ 0 (for all $y \in L$) is denoted by X_1 , then $X_1 \neq \{0\}$, and $X_1 \cap L = \{0\}$. Moreover

$$
X_1 \cap (L' + L'') = \{0\}.
$$
 (2.1)

By Remark 1.8, $(X_1, \overset{*}{+})$ is a quasi-Hilbert space. X_1 is invariant relative to operators $U(t)$ and $U_+(t), t \in \mathbb{R}$. $U(t), t \in \mathbb{R}$ and $U_+(t), t \in \mathbb{R}$ are strongly continuous groups of isometries in $B(X_1)$. Hence, the claim we have already proved for space X holds for X_1 . That means that there exists $x_1 \in X_1$, $x_1 \neq 0$ such that $x_1 \in L'$ or $x_1 \in L''$. This is in contradiction

with (2.1) , proving that $L = X$.

From the definition of subspaces L' and L'' of X we easily obtain

$$
Ay = A_{+}y \text{ for } y \in D(A) \cap L', \text{ and}
$$

$$
Ax = -A_{+}x \text{ for } x \in D(A) \cap L''.
$$

From this and from the Theorem 1.5, it follows that H is a continuous linear operator on some set dense in $L = X$. Consequently, H has a unique continuous linear extension on X into itself, which completes this part of the proof.

Observe that in the above proof, we have used the assumption that $0 \notin$ $\sigma_p(A^2)$. In case $0 \in \sigma_p(A^2)$, the claim easily follows from the Theorem 1.4 together with the above proof.

Now, suppose that the Hilbert transform H is a continuous linear operator on X into itself. Then, by Theorem 1.7, $H^2 = -I$. From this it follows that the operator

$$
H^{'}:=iH
$$

is also a continuous linear operator and

$$
\left(H^{'}\right)^{2}=I.
$$

Lets prove that the group $U_+(t), t \in \mathbb{R}$ is bounded, where $U_+(t), t \in \mathbb{R}$ is a strongly continuous group of operators in $B(X)$ with the infinitesimal generator iA_{+} . Set

$$
P := \frac{1}{2}(I + H^{'}), \ \ Q := \frac{1}{2}(I - H^{'}).
$$

Operators P and Q are bounded, because the operator H' is bounded, and holds:

 $P^2 = P$, $Q^2 = Q$, $PQ = QP = 0$, $P + Q = I$.

Thus, every $x \in X$ can be written in a unique way in the form

$$
x = x' + x'', \quad x' = Px, \quad x'' = Qx.
$$

From this immediately follows

$$
\|x'\| \le \|P\| \cdot \|x\| \text{ and } \|x''\| \le \|Q\| \cdot \|x\|.
$$
\n
$$
\text{Let } x = F_a z, z \in X, a \ge 0 \text{ be arbitrary, but fixed. Then}
$$
\n
$$
\tag{2.2}
$$

$$
x = x' + x'', \ x' = Px, \ x'' = Qx,
$$

and

$$
x' = \frac{1}{2}(x' + H'x'), x' \in D(A), x' \in D(A_+),
$$

$$
AH'x' = H'Ax', A_+Hx' = HA_+x'.
$$

By Theorem 1.5. we have,

$$
iAx' = \frac{1}{2}(iAx' + iH'Ax') = \frac{1}{2}(iAx' - HAx') = \frac{1}{2}(iAx' - iA + x'),
$$

and

$$
iA_{+}x' = \frac{1}{2}(iA_{+}x' - HA_{+}x') = \frac{1}{2}(iA_{+}x' - iAx').
$$

Hence,

$$
iAx' = -iA_+x'.\tag{2.3}
$$

In a similar way it can be proved that

$$
iAx'' = iA_{+}x''. \tag{2.4}
$$

The function

$$
W(s)x^{''}:=U(t-s)U_{+}(s)x^{''}
$$

is strongly differentiable with respect to s in $0 < s < t$ for each fixed $t > 0$ and

$$
\frac{dW(s)}{ds}x'' = -\frac{dU(t-s)}{d(t-s)} \cdot U_+(s)x'' + U(t-s) \cdot \frac{dU_+(s)}{ds}x'' =
$$

= -U(t-s)U_+(s)iAx'' + U(t-s) \cdot U_+(s)iA_+x''.

From this and from (2.4) we obtain

$$
\frac{dW(s)}{ds}x'' = U(t-s)U_{+}(s) \cdot (iA_{+}x'' - iAx'') = 0.
$$

Thus,

$$
W(s)x^{''} = W(t)x^{''} = W(0)x^{''},
$$

which shows that

$$
U(t)x^{''} = U_{+}(t)x^{''} \text{ for all } t \ge 0.
$$

In a similar way it can be proved that

$$
U(t)x'' = U_{+}(t)x''
$$
 for all $t < 0$.

Hence,

$$
U(t)x^{''} = U_{+}(t)x^{''} \text{ for all } t \in \mathbb{R}.
$$

Similarly, by (2.3) we get

$$
U(t)x^{'} = U_{+}(-t)x^{'} \text{ for all } t \in \mathbb{R}.
$$

Thus,

$$
U_{+}(t)x = U_{+}(t)x' + U_{+}(t)x'' =
$$

= U(-t)x' + U(t)x''

for all $x \in \bigcup$ $a \geq 0$ $\overline{F_a(X)}$, $x = x' + x''$, $x' = Px$, $x'' = Qx$ and for all $t \in \mathbb{R}$.

From this and from (2.2) it follows

$$
||U_{+}(t)x|| \le ||U(-t)x^{'}|| + ||U(t)x^{''}|| = ||x^{'}|| + ||x^{''}|| \le
$$

$$
\le ||P|| \cdot ||x|| + ||Q|| \cdot ||x|| = (||P|| + ||Q||) \cdot ||x||
$$

for all $x \in \bigcup$ $a \geq 0$ $\overline{F_a(X)}$ and for all $t \in \mathbb{R}$. Since the set \bigcup $a \geq 0$ $F_a(X)$ is dense in X (by (1.3)),

$$
||U_+(t)x|| \le (||P|| + ||Q||) \cdot ||x||
$$

for all $x \in X$ and for all $t \in \mathbb{R}$. By Definition 1.1, the group $U_+(t)$, $t \in \mathbb{R}$ is bounded. The theorem is proved. \Box

REFERENCES

- [1] S. Ishikawa, Hilbert transforms on one-parameter groups of operators, Tokyo, J. Math., 9 (1986), 383–393.
- $[2]$ M. Radić and F. Vajzović, On the bounded cosine operator function in Banach space, Mat. Vesnik, 39 (1987), 187–204.
- [3] A. Šahović and F. Vajzović, *Cosine operator functions and Hilbert transforms*, NSJOM, 35 (2) (2005), 41–55.
- $[4]$ A. Sahović and F. Vajzović, A spectrality condition for infinitesimal generators of cosine operator functions, Mat. Vesnik, 60 (2008), 193–206.
- [5] R.A. Tapia, A characterization of inner product spaces, Proc. Amer. Math. Soc., 41 (1973), 569–574.
- [6] F. Vajzović, On the cosine operator function, Glasnik Mat., 22 (42) (1987), 381-406.
- [7] F. Vajzović and A. Šahović, *Cosine operator functions and Hilbert transforms II*, Proc. III Congress of Mathemataticians of Macedonia, Struga, Macedonia (2005), 347–356.

 $(Received: April 19, 2013)$ $A. Šahović and S. Peco$

(Revised: July 19, 2013) University "Džemal Bijedić" USRC "M. Hujdur-Hujka" 88000 Mostar Bosnia and Herzegovina amina.sahovic@unmo.ba sead.peco@unmo.ba

> F. Vajzović Academy of Sciences and Arts of Bosnia and Herzegovina (ANUBiH) Bistrik 7, 71000 Sarajevo Bosnia and Herzegovina