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ON STABILITY, BOUNDEDNESS AND INTEGRABILITY OF
SOLUTIONS OF CERTAIN SECOND ORDER

INTEGRO-DIFFERENTIAL EQUATIONS WITH DELAY

A. A. ADEYANJU, A. T. ADEMOLA AND B. S. OGUNDARE

ABSTRACT. In this paper, the problems of stability, boundedness and integrabil-
ity of solutions of a certain class of second order integro-differential equations
are considered. By using a suitable Lyapunov-Krasovskii function(al), condi-
tions to guarantee the stability of the null solution, boundedness and integrability
of solutions were established. The results of this paper compliment in one way
and generalize some of the known results existing in the literature.

1. INTRODUCTION

A differential equation is said to be an integro-differential equation (IDE) if it
contains the integrals of the unknown function. When the current state of such an
integro-differential equation now depends on the previousstates, it is known to be
a time-delay integro-differential equation.

Indeed, it is a well-known fact that stability and boundedness properties of
solutions of second order (also higher order) ordinary differential equations and
integro-differential equations with or without delay havemany applications in many
fields of science and technology such as biology, medicine, engineering, informa-
tion system, control theory and financial mathematics. Therefore, the study of
their qualitative properties has attracted the attention of many researchers, see ( [1]
- [41]) and references contained in them. Readers are referred to [3] for an exposi-
tory treatment of Volterra integral and differential equations.

In particular, Napoles [12] studied the problem of continuability and integra-
bility of the first derivative of solutions of the following second order integro-
differential equation

x′′+a(t) f (t,x,x′)x′+g(t,x′)+h(x) =
∫ t

0
C(t,s)x′(s)ds, (1.1)

wherea(t) is a positive function defined on intervalI = [0,∞). The direct method
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of Lyapunov was employed to show that, under certain conditions the solutions of
(1.1) exist and are bounded.

Graef and Tunc [9] in 2014 considered a more general integro-differential equa-
tion with multiple delays given by

x′′+a(t) f (t,x,x′)x′+g(t,x,x′)+
n

∑
i=1

hi(x(t − τi)) =

∫ t

0
C(t,ξ)x′(ξ)dξ, (1.2)

whereτi are positive constants. The duo used a Lyapunov-Krasovskiifunctional
to prove some results on the problem of global continuability and boundedness
of solutions of the time-delay IDE (1.2) under some predetermined assumptions.
In [40], Zhao and Meng gave sufficient criteria for the stability of zero solutions of
the following equations

x′′+a(t) f (t,x,x′)x′+g(t, ,x,x′)+h(x(t − τ)) = p(t,x(t))
∫ t

0
q(s,x′(s))ds (1.3)

and

x′′+a(t) f (t,x,x′)x′+g(t, ,x,x′)+h(x) = p(x(t − τ))
∫ t

0
q(s,x′(s))ds, (1.4)

whereτ is a fixed positive constant.
Very recently, Mohammed [15] employed a suitable Lyapunov-Krasovskii func-
tional to establish some new results on global existence, stability, asymptotic sta-
bility, boundedness of solutions and square integrabilityof the first derivatives of
solutions of the following second order nonlinear delayed IDE

x′′+a(t) f (t,x,x′)x′+b(t)p(x)+
n

∑
i=1

hi(x(t − τi),x
′)=

∫ t

0
k(t,ξ)h(ξ,

dx
dξ

)dξ, (1.5)

wherea(t) and b(t) are continuous positive functions andτi ,(i = 1,2, . . .n) are
fixed positive delay constants.

This work is motivated by the works of Graef and Tunc [9], Napoles [12], Mo-
hammed [15] and Zhao and Meng [40]. Our goal in this paper is togive sufficient
conditions which will ensure and guarantee stability of null solution, boundedness
and integrability of solutions of the following integro-differential equations with
multiple delays

x′′+a(t) f (t,x,x′)x′+b(t)g(t,x,x′)+c(t)h(x)=
n

∑
i=1

Pi(t,x(t−τi))

∫ t

0
K(s,x′(s))ds, (1.6)

whereτi > 0 are fixed delay constants and we allowτ∗ = max{τ1,τ2, ...,τn}; the
prime represents differentiation with respect tot, t ∈ R

+ = [0,∞); a(t),b(t),c(t) ∈
C(R+,R+) and the derivativec′(t) = d

dt c(t) exists; f ,g ∈ C(R+ ×R
2,R), R =

(−∞,∞); h ∈ C(R,R); Pi ,K ∈ C(R+ ×R,R) such that 0≤ s≤ t < ∞; h(0) =
0, f (t,x,0) = 0,g(t,x,0) = 0,Pi(t,0) = 0 andK(s,0) = 0. Also, it is assumed that
the functionsf ,g,h andPi are Lipschitz continuous inx, ẋ, x(t − τi) and the partial
derivatives ∂

∂xPi(ξ,x(ξ)) exist and are continuous.
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The remaining parts of the paper are presented as follows. The next Section
features basic definitions of stability and boundedness of solutions of integro-
differential equations, Section 3 gives the basic assumptions for this work. The
main results of this work are presented in Section 4 while in Section 5 an example
to validate our results is given.

2. PRELIMINARY DEFINITIONS

In this section, we will give some basic definitions on the stability of solution
of integro-differential equations. Consider the system offirst order non-linear and
non homogeneous Volterra integro-differential equations

X′(t) =−A(t)X(t)+
∫ t

t−τ
B(t,s,h(X(s)))g(X(s))ds+E(t,X(t)), (2.1)

wheret ∈ [0,∞), X ∈ R
n,A(t),B(t,s,h(X(s)) andE(t,X(t)) are continuous func-

tions for the respective arguments explicitly displayed against them such that 0≤
s≤ t < ∞,h(0) = 0,h(X) 6= 0, X 6= 0,B(t,s,0) = 0;h,g : Rn −→ R

n,g(0) = 0 are
continuous functions andτ > 0 is a constant delay.
Let X(t, t0,Φ), t ≥ t0 be a solution of (2.1) on[t0−τ,β),β > 0 such thatX(t)=Φ(t)
on Φ ∈ [t0− τ, t0] and||Φ(t)|| = supt∈[t0−τ,t0] ||Φ(t)||, whereΦ : [t0− τ, t0] −→ R

n

is a continuous initial function.
The following basic definitions will be given for completeness sake.

Definition 2.1. [3] The zero solution of the(2.1) is said to bestableif for each
ε > 0 and t0 ≥ 0. there exists aδ = δ(t0,ε)> 0 such that if||Φ(t)||< δ on [t0−τ, t0],
we have||X(t,Φ)||< ε,∀t ≥ t0.

Definition 2.2. [3] The zero solution of the(2.1)are said to beuniformly stableif
δ is independent of t0.

Definition 2.3. [3] The zero solution of the(2.1) is said to beasymptotically stable
if it is stable and for each t0 ≥ 0, there is aδ > 0 such that t≥ t0, ||Φ(t)|| < δ on
[0, t0] implies||X(t,Φ)|| → 0 as t→ ∞.

Definition 2.4. [3] The solutions X(t0,X0) of the(2.1) is said to beboundedif for
T>0, there existsΓ such that for t0>0, ||Φ(t)||t0 <T and for t≥t0,⇒ ||X(t)||<Γ.

3. BASIC ASSUMPTIONS

In this section, we present the basic assumptions for our results.
To begin with, the second order IDE (1.6) is transformed to its equivalent system
of first order equationse bellow:
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ẋ= y,

ẏ= −a(t) f (t,x,y)y−b(t)g(t,x,y)−c(t)h(x)+
n

∑
i=1

Pi(t,x(t))
∫ t

0
K(s,y(s))ds

−
n

∑
i=1

Pi(t,x(t))
∫ t

t−τi

∫ t

0
K(s,y(s))

∂Pi(ξ,x(ξ))
∂x

y(ξ)dsdξ. (3.1)

Assumptions:
Suppose thata0,a1,b0,b1,c0,c1,α0,α1, f0, f1,g0,g1,K0,K1,D,M,N,Mi,Ni (i = 1,2,
. . . n) are some positive constants,d0 is a negative constant and functions
a(t),b(t),Pi(t),q(t) : R+ → R

+ and in addition the following conditions hold:

(i) a0 ≤ a(t) ≤ a1, b0 ≤ b(t) ≤ b1, 0< c0 ≤ c(t) ≤ c1, c′(t)≤ d0;

h(0) = 0, α0 ≤
h(x)

x
≤ α1 for x 6= 0;

(ii) f (t,x,0) = 0, f0 ≤
f (t,x,y)

y2 ≤ f1 for y 6= 0;

g(t,x,0) = 0, g0 ≤
g(t,x,y)

y
≤ g1, for y 6= 0;

(iii) K(t,y(t))≤ q(t)|y(t)|, K0 ≤ q(t)≤ K1 for all t;

(iv) |Pi(t,x(t))| ≤ |Pi(t)| ≤ Mi, |
∂Pi(t,x(t))

∂x
| ≤ Ni;

(v) 3Nτ∗
∫ ∞

0 q(s)ds≤ 4a(t) f0; and

(vi) M
∫ ∞

0 q(s)ds+ 1
2K1

(

2+Dτ∗
)∫ ∞

0 |Pi(η,x(η))|dη ≤ 2b(t)g0,

where
M =

n

∑
i=1

Mi, N =
n

∑
i=1

Ni andD =
n

∑
i=1

Ni

Mi
.

4. MAIN RESULTS

Theorem 4.1. If the conditions stated under the basic assumptions above are sat-
isfied, then all the solutions of the system(3.1)are continuable and bounded.

Proof. The proof of the this theorem rest on the following differentiable scalar
functionV ≡V(t,x(t),y(t)) defined as

V =
1
2

y2+c(t)
∫ x

0
h(u)du+

n

∑
i=1

µi

∫ t

0

∫ ∞

t
|Pi(η,x(η))|q(s)y2(s)dsdη

+
n

∑
i=1

λi

∫ 0

−τi

∫ t

t+s
y4(θ)dθds,

(4.1)

whereµi andλi are positive constants whose values are to be determined later. The
functionV defined by equation (4.1) clearly vanishes forx= y= 0 and can easily
be shown to be positive definite forx 6= 0,y 6= 0 following the stated assumptions
of Theorem 4.1 in the following way:
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V =
1
2

y2+c(t)
∫ x

0

h(u)
u

udu+
n

∑
i=1

µi

∫ t

0

∫ ∞

t
|Pi(η,x(η))|q(s)y2(s)dsdη

+
n

∑
i=1

λi

∫ 0

−τi

ds
∫ t

t+s
y4(θ)dθ,

≥1
2

y2+
1
2

α0c0x2+
n

∑
i=1

µi

∫ t

0

∫ ∞

t
|Pi(η,x(η))|q(s)y2(s)dsdη

+
n

∑
i=1

λi

∫ 0

−τi

ds
∫ t

t+s
y4(θ)dθ,

=
1
2

y2+
1
2

α0c0x2
,

there exists a positive constantd1 such that

V(t)≥ d1(x
2+y2), (4.2)

for all x,y whered1 =
1
2 min{1,α0c0}> 0. Thus, the functionV is positive definite

at all points(x,y) and zero only at pointx= y= 0. In additionV(t) = 0 if and only
if x2(t)+y2(t) = 0 andV(t)> 0 if and only ifx2(t)+y2(t) 6= 0, it follows that

V(t)→+∞ asx2(t)+y2(t)→ ∞. (4.3)

Furthermore, there exist positive constantsd2,d3 andd4 such that

V(t)≤ d2(x
2+y2)+d3

∫ t

0

∫ ∞

0
y2(s)dsdη+d4

∫ 0

−τ∗

∫ t

t+s
y4(θ)dθds, (4.4)

for all x,y whered2 := 1
2 max{1,c1α1}, d3 := ∑n

i=1 MiK1µi andd4 := ∑n
i=1λi .

Next, we proceed to show that the derivative of the functionV is negative semi-
definite.

d
dt

V(t) =V ′(t) = yy′+c′(t)
∫ x

0
h(u)udu+c(t)h(x)y

+y2(t)q(t)
n

∑
i=1

µi

∫ ∞

t
|Pi(η,x(η))|dη+

n

∑
i=1

(λiτi)y
4(t)

−
n

∑
i=1

µi |Pi(t,x(t))|
∫ t

0
q(s)y2(s)ds−

n

∑
i=1

λi

∫ t

t−τi

y4(u)du,

=−a(t) f (t,x,y)y2(t)−b(t)g(t,x,y)y(t)+
n

∑
i=1

(λiτi)y
4(t)

+y
n

∑
i=1

Pi(t,x(t))
∫ t

0
K(s,y(s))ds+c′(t)

∫ x

0
h(u)du−

n

∑
i=1

λi

∫ t

t−τi

y4(u)du

−y
n

∑
i=1

Pi(t,x(t))
∫ t

t−τi

∫ t

0
K(s,y(s))

∂Pi(ξ,x(ξ))
∂x

y(ξ)dsdξ
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+q(t)y2(t)
n

∑
i=1

µi

∫ ∞

t
|Pi(η,x(η))|dη−

n

∑
i=1

µi |Pi(t,x(t))|
∫ t

0
q(s)y2(s)ds.

By the assumption (iii) of the theorem, we have the following,

y
n

∑
i=0

Pi(t,x(t))
∫ t

0
K(s,y(s))ds≤ |y|

n

∑
i=1

|Pi(t,x(t))|
∫ t

0
|K(s,y(s))|ds

≤
n

∑
i=0

|Pi(t,x(t))|
∫ t

0
|y(t)|(|q(s)||y(s)|)|ds.

On using the inequality 2|ab| ≤ (a2+b2), we obtain,
n

∑
i=0

|Pi(t,x(t))|
∫ t

0
|y(t)|(|q(s)||y(s)|)|ds≤ 1

2

n

∑
i=0

|Pi(t,x(t))|
∫ t

0
q(s)(y2(t)+y2(s))ds

≤ 1
2

n

∑
i=0

|Pi(t,x(t))|
∫ t

0
q(s)y2(s)ds+

1
2

y2(t))
n

∑
i=0

|Pi(t,x(t))|
∫ t

0
q(s)ds.

Also, by the assumption (iv) and inequality 2|ab| ≤ (a2 + b2), we equally obtain
that

|y|
n

∑
i=1

∫ t

t−τi

∫ t

0
|K(s,y(s))||∂Pi(ξ,x(ξ))

∂x
y(ξ)|dsdξ

≤ 1
2

n

∑
i=1

∫ t

t−τi

∫ t

0
Niq(s)|y(s)|(y2(t)+y2(ξ))dsdξ,

≤ 1
4

n

∑
i=1

(Niτi)

∫ t

0
q(s)(y2(s)+y4(t))ds+

1
4

n

∑
i=1

Ni

∫ t

t−τi

∫ t

0
q(s)(y2(s)+y4(ξ))dsdξ

≤ 1
4

n

∑
i=1

(Niτi)

∫ t

0
q(s)y2(s)ds+

1
2

y4(t)
n

∑
i=1

(Niτi)

∫ t

0
q(s)ds

+
1
4

n

∑
i=1

Ni

∫ t

t−τi

∫ t

0
q(s)y4(ξ)dsdξ.

Therefore,

V ′(t)≤−a(t) f (t,x,y)y−2(t)y4(t)−b(t)g(t,x,y)y−1(t)y2(t)+
n

∑
i=1

(λiτi)y
4(t)

+
1
2

n

∑
i=0

|Pi(t,x(t))|
∫ t

0
q(s)y2(s)ds+

1
2

y2(t))
n

∑
i=0

|Pi(t,x(t))|
∫ t

0
q(s)ds

−
n

∑
i=1

λi

∫ t

t−τi

y4(u)du+
1
4

n

∑
i=1

(Niτi)

∫ t

0
q(s)y2(s)ds

+
1
4

n

∑
i=1

Ni

∫ t

t−τi

∫ t

0
q(s)y4(ξ)dsdξ+q(t)y2(t)

n

∑
i=1

µi

∫ ∞

t
|Pi(η,x(η))|dη

−
n

∑
i=1

µi |Pi(t,x(t))|
∫ t

0
q(s)y2(s)ds+

1
2

y4(t)
n

∑
i=1

(Niτi)
∫ t

0
q(s)ds.
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Applying the assumption (ii) of the theorem on the above inequality yields,

V ′(t)≤− 1
2

[

2a(t) f0−2
n

∑
i=1

(λiτi)−
n

∑
i=1

(Niτi)

∫ ∞

0
q(s)ds

]

y4(t)

−1
2

[

2b(t)g0−
n

∑
i=1

Mi

∫ ∞

0
q(s)ds−2K1

n

∑
i=1

µi

∫ ∞

0
|Pi(η,x(η))|dη

]

y2(t)

+
1
4

n

∑
i=1

[

2Mi(1−2µi)+Niτi

]

∫ t

0
q(s)y2(s)ds

+
1
4

n

∑
i=1

[

Ni

∫ ∞

0
q(s)ds−4λi

]

∫ t

t−τi

y4(u)du.

By taking µi =
2Mi+Niτi

4Mi
, λi =

Ni
∫ ∞

0 q(s)ds
4 and using the assumptions (v) and (vi)

of the Theorem 4.1, we obtain

V ′(t)≤− 1
2

[

2b(t)g0−
n

∑
i=i

Mi

∫ ∞

0
q(s)ds

−2K1

n

∑
i=1

(2Mi +Niτi

4Mi

)

∫ ∞

0
|Pi(η,x(η))|dη

]

y2(t)

− 1
2

[

2a(t) f0−
3
2

n

∑
i=1

(Niτi)
∫ ∞

0
q(s)ds

]

y4(t),

≤− 1
2

[

2b(t)g0−M
∫ ∞

0
q(s)ds− 1

2
K1

(

2+Dτ∗
)

∫ ∞

0
|Pi(η,x(η))|dη

]

y2(t)

− 1
2

[

2a(t) f0−
3
2

Nτ∗
∫ ∞

0
q(s)ds

]

y4(t),

≤− 1
2

[

2b(t)g0−M
∫ ∞

0
q(s)ds− 1

2
K1

(

2+Dτ∗
)

∫ ∞

0
|Pi(η,x(η))|dη

]

y2(t),

there exists a positiveδ such that

V ′(t)≤−δy2(t)≤ 0, (4.5)

for all y.
Now, the solutions(x(t),y(t)) of the system (3.1) will only fail to be defined

after some timeT if the condition

lim
t→T−

(x2(t)+y2(t)) = +∞, (4.6)

is met. By taking(x(t),y(t)) to be a solution of the system (3.1) with initial condi-
tion (x0,y0), it is clear that the Lyapunov function defined in (4.1) is positive semi
definite, meaning that,V =V(t,x(t),y(t)) ≥ 0 and its derivativeV ′(t,x(t),y(t)) ≤
0, for all point(x(t),y(t)). Thus, the functionV(t) is bounded on the interval[0,T].
But, it has already been shown earlier that

d1(x
2+y2)≤V(t), (4.7)
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and
V̇(t)≤ 0. (4.8)

Therefore, on integrating inequality(4.8) fromt0 to T we obtain

V(T)≤V(t0). (4.9)

From inequalities (4.7) to (4.9), we can easily deduce that

d1(x
2+y2)≤V(t)≤V(T)≤V(t0), ∀t ≥ T. (4.10)

It is now clear from the inequality (4.10) that,

(x2+y2)≤ d−1
1 V(t0) = N, (4.11)

whereV(t0) = β > 0 andN = d−1
1 β. It then follows from the inequality (4.11) that,

|x(t)| ≤ N∗
, |y(t)| ≤ N∗

, N∗ =
√

N, ∀t ≥ T > t0 ≥ 0.

We can easily conclude from the above that the condition stated in inequality (4.6)
is not possible. Therefore, all the solutions of the system (3.1) and consequently
equation (1.6) are bounded. Hence, the proof of the theorem is complete. �

Theorem 4.2. Under the assumptions of Theorem 4.1, the trivial solution of the
system(3.1) is asymptotically stable.

Proof. It has been shown from the proof of Theorem 4.1 that

V(t,x(t),y(t)) ≥ d1(y
2+x2)≥ 0,

and
V ′(t)≤−δy2(t).

From these two inequalities, we established the stability of the trivial solution
of equation (1.6). To prove the asymptotic stability of the trivial solution, we em-
ployed LaSalle’s invariant principle.

Let us define

W ≡=W(t,x,y) = {(t,x(t),y(t)) : V ′(t,x(t),y(t)) = 0}.
Already, we have that

V ′(t)≤−δy2(t), δ > 0.

Going by the definition ofW, it must then mean that,y= 0 andy= 0 also implies

that
dx
dt

= y= 0. Integrating
dx
dt

= y= 0, we getx= η,η ∈ R,η 6= 0. By putting

y = 0 into the system (3.1) and following the assumptions of Theorem 2.1, we
obtain

c(t)h(x) = 0.

But sincec(t) > 0, then we must haveh(x) = 0. However,h(x) = 0 only when
x = 0. Therefore,η = x = 0. Hence,x = y = 0. Therefore, the largest invariant
set contained inW(t,x,y) is (t,0,0). Thus, the zero solution of the system (3.1) is
asymptotically stable and the proof of the theorem is established. �
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Theorem 4.3. Under the assumptions of Theorem 4.1, if(x(t),y(t)) is any solu-
tion of the system(3.1) with given initial condition(x0,y0), then y(t) ∈ L2[0,∞),
meaning that the first derivative of the system(3.1) is square integrable.

Proof. If (x(t),y(t)) is any solution of the system (3.1) with initial conditions
(x0,y0) then, from the proof of Theorem 4.1, we have

V ′(t,x(t),y(t)) ≤−δy2(t). (4.12)

Integrating (4.12) from 0 tot we have

0≤V(t,x(t),y(t)) ≤V(0,x(0),y(0))−δ
∫ t

0
y2(u)du.

This implies that ∫ ∞

0
y2(u)du< ∞.

Thus, we conclude thaty2(t) ∈ L2[0,∞) and the proof of Theorem (4.3) is now
complete. �

Theorem 4.4. If the assumptions of Section 3 hold, then the trivial solution of the
system(3.1) is uniformly asymptotically stable.

Proof. Let (xt ,yt) be any solution of the system (3.1), from inequalities (4.2), (4.4)
and (4.5) the trivial solution of the system (3.1) is uniformly asymptotically stable.

�

Corollary 4.1. In addition to assumptions (i) and (ii) of Section 3, if
∣

∣

∣

n

∑
i=1

Pi(t,x(t − τi))
∣

∣

∣
≤ κ, 0 < κ < ∞, then the solutions of the system(3.1) are

bounded, uniformly bounded and uniformly ultimately bounded.

Proof. Let (xt ,yt) be any solution of the system (3.1), from inequality (4.2), esti-
mate (4.3), inequalities (4.4) and (4.5) the solutions of the system (3.1) are bounded,
uniformly bounded and uniformly ultimately bounded. �

5. EXAMPLE

In this section, we shall consider a special case of equation(1.6) to establish the
correctness of the results discussed in Section 4.

Example 5.1. Consider the following second order integro-differentialequation
with delay

x′′(t)+

(

7+2t2

3+t2

)(

x′2

2
+

x′2

1+|t|+|x|+|x′|

)

x′(t)+(2+sin3t)

(

x′

3
+

x′

1+t2+x2+x′2

)

+e−2t
(

3x+2x3

1+x2

)

=
n

∑
i=1

(

1
5+t2 −

1
3+x2(t−τi)

)∫ t

0

(

1+
1

2+s2

)

|x′(s)|ds. (5.1)
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Equation(5.1)as a system of first order differential equations is

x′(t) = y(t),

y′(t) =−
(

7+2t2

3+t2

)(

y2

2
+

y2

1+|t|+|x|+|y|

)

y(t)−(2+sin3t)

(

y
3
+

y
1+t2+x2+y2

)

−e−2t
(

3x+2x3

1+x2

)

+

(

1
5+t2−

1
3+x2

)∫ t

0

(

1+
1

2+s2

)

|y(s)|ds

−
n

∑
i=1

(

1
5+t2−

1
3+x2

)∫ t

t−τi

∫ t

0

(

1+
1

2+s2

)

|y(s)|
(

2x(ξ)
(3+x2(ξ))2

)

y(ξ)dsdξ. (5.2)

Comparing equations(3.1)and (5.2)we have the following relations:

(i) the function
a(t) :=

7+2t2

3+ t2 = 2+
1

3+ t2 .

Since0<
1

3+ t
≤ 1

3
for all t ≥ 0, it follows that

2= a0 ≤ a(t)≤ a1 = 2.33,

(see Figure1.) Also the function

b(t) := 2+sin3t.

Noting that−1≤ sin3t ≤ 1 for all t ∈ [−2π,2π] and onR ⊃ [−2π,2π], we
conclude that

1= b0 ≤ b(t)≤ b1 = 3,

for all t ∈ R. The function b(t) and its bounds are shown in Figure2.
Next the function

c(t) := e−2t
> 0,

for all t and
c′(t) =−2e−2t

< 0,

for all t . Moreover, the function

h(x) :=
3x+2x3

1+x2 = 2x+
x

1+x2 .

Clearly, h(0) = 0, since1+x2 ≥ 1, for all x it follows that

0<
1

1+x2 ≤ 1

for all x and

lim
x→∞

1
1+x2 = 0,

we conclude that

2= α0 ≤
h(x)

x
≤ α1 = 3,
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for all x 6= 0.

FIGURE 1. The function a(t) for t ∈ [−50,50].

FIGURE 2. The function b(t) for t ∈ [−2π,2π].
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(ii) The function

f (t,x,y) :=
1
2

y2+
y2

1+ |t|+ |x|+ |y| ,

it can be seen that f(t,x,0) = 0 and that

0<
1

1+ |t|+ |x|+ |y| < 1,

for all t ,x and y. Therefore,

1
2
= f0 ≤

f (t,x,y)
y2 ≤ f1 =

3
2

for all t ,x,y 6= 0. In a similar manner the function

g(t,x,y) :=
1
3

y+
y

1+ t2+x2+y2 ,

satisfies g(t,x,0) = 0 and

1
3
= g0 ≤

g(t,x,y)
y

≤ g1 =
4
3
,

for all t ,x,y 6= 0.

(iii) The function

K(t,y(t)) :=

(

1+
1

2+ t2

)

|y|.

Now, from inequalities in assumption (iii), we have

q(t) := 1+
1

2+ t2 .

It is not difficult to show that

1= K0 ≤ q(t) ≤ K1 =
3
2

for all t . Therefore, the function

K(t,y(t)) =

(

1+
1

2+ t2

)

|y| ≤ K1|y(t)|,

satisfies assumption (iii) with K1 = 3
2. The shape and path of K(t,y) and q(t)

are shown in Figures3. and4. respectively.
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FIGURE 3. The function K(t,y) for t,y∈ [−4,4].

FIGURE 4. The function q(t) for t ∈ [−10,10].

(iv) The function
n

∑
i=1

Pi(t,x(t)) :=
1

5+ t2 −
1

3+x2 .

Since
1

3+x2 > 0 for all x and lim
x→∞

1
3+x2 = 0 it follows that

n

∑
i=1

Pi(t,x(t)) =
1

5+ t2 −
1

3+x2 ≤ 1
5+ t2
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and
n

∑
i=1

|Pi(t,x(t))| ≤
n

∑
i=1

|Pi(t)|=
∣

∣

∣

∣

1
5+ t2

∣

∣

∣

∣

.

Considering the fact that5+ t2 > 5 for all t , it follows that
n

∑
i=1

|Pi(t,x(t))| ≤
n

∑
i=1

|Pi(t)| ≤
n

∑
i=1

Mi =
1
5

for all t . In addition

∂
∂x

P(t,x(t)) =
2x

(3+x2)2 ,

and
∣

∣

∣

∣

∂
∂x

P(t,x(t))

∣

∣

∣

∣

=

∣

∣

∣

∣

2x
(3+x2)2

∣

∣

∣

∣

≤ N = 0.125

for all x ∈ [−10,10] see Figure5., the inequality holds for all x∈ R.

FIGURE 5. The
∣

∣

∂
∂xP(t,x(t))

∣

∣ for x∈ [−10,10].

(v) From assumption (v) we have

3Nτ∗K0 ≤ 3Nτ∗
∫ ∞

0
q(s)ds≤ 4a(t) f0 ≤ 4a1 f0,

so thatτ∗ ≤ 12.44.

(vi) Finally, the inequality in assumption (vi) is

M
∫ ∞

0
q(s)ds+

1
2

K1

(

2+Dτ∗
)

∫ ∞

0
|Pi(η,x(η))|dη ≤ 2b(t)g0.

After substituting the estimates we find that1.607< 2.

The estimates in items (i) to (vi) fulfill all the assumptionsof Theorems 4.1, 4.2,
4.3, 4.4 and Corollary 4.1, hence the conclusions follow immediately.
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[29] Tunç, C. and Tunç, O.New qualitative criteria for solutions of Volterra integro-differential
equations.Arab J. Basic Appl Sci. 2018;25(3):158 - 165.
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