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ON STABILITY, BOUNDEDNESS AND INTEGRABILITY OF
SOLUTIONS OF CERTAIN SECOND ORDER
INTEGRO-DIFFERENTIAL EQUATIONS WITH DELAY

A. A. ADEYANJU, A. T. ADEMOLA AND B. S. OGUNDARE

ABSTRACT. Inthis paper, the problems of stability, boundedness ategjiabil-
ity of solutions of a certain class of second order integffeintial equations
are considered. By using a suitable Lyapunov-Krasovskiction(al), condi-
tions to guarantee the stability of the null solution, boemiitess and integrability
of solutions were established. The results of this papempdomnt in one way
and generalize some of the known results existing in thealitee.

1. INTRODUCTION

A differential equation is said to be an integro-differahtequation (IDE) if it
contains the integrals of the unknown function. When theenirstate of such an
integro-differential equation now depends on the previates, it is known to be
a time-delay integro-differential equation.

Indeed, it is a well-known fact that stability and boundesingroperties of
solutions of second order (also higher order) ordinaryedstial equations and
integro-differential equations with or without delay hawany applications in many
fields of science and technology such as biology, medicingineering, informa-
tion system, control theory and financial mathematics. dfoee, the study of
their qualitative properties has attracted the attentianany researchers, see ([1]
- [41]) and references contained in them. Readers are eeféor[3] for an exposi-
tory treatment of Volterra integral and differential eqaas.

In particular, Napoles [12] studied the problem of continilisy and integra-
bility of the first derivative of solutions of the followingesond order integro-
differential equation

t
X+ at) f(t, % X)X +g(t,x) +h(x) = / C(t,s)X (s)ds (1.1)
0
wherea(t) is a positive function defined on intervial= [0, ). The direct method
2010Mathematics Subject ClassificatioB4D20; 34C11; 34K20.

Key words and phrasesSecond order; Stability; Boundedness; Square integtgb@iontinua-
bility; Lyapunov-Krasovskii functional.



62 A. A. ADEYANJU, A. T. ADEMOLA AND B. S. OGUNDARE

of Lyapunov was employed to show that, under certain camitthe solutions of
(1.1) exist and are bounded.

Graef and Tunc [9] in 2014 considered a more general intdidferential equa-
tion with multiple delays given by

x’/+a(t)f(t,x,x’)x’+g(t,x,x’)+_ihi(x(t—ri)):/OtC(t,E)x’(E)dE, (1.2)

wherert; are positive constants. The duo used a Lyapunov-Krasofigkational
to prove some results on the problem of global continugbdind boundedness
of solutions of the time-delay IDE (1.2) under some predeieed assumptions.
In [40], Zhao and Meng gave sufficient criteria for the st&pibf zero solutions of
the following equations

X' +a(t) f(t,x, X)X +g(t,,x,X) +h(x(t —1)) = p(t,x(t))/otq(s,%(s))ds (1.3)
and

X" +a(t) f(t,x, X)X +g(t,,xX) +h(x) X(t—1)) /qsx’ ds (1.4

wheret is a fixed positive constant.

Very recently, Mohammed [15] employed a suitable LyapuKoasovskii func-
tional to establish some new results on global existenedjligy, asymptotic sta-
bility, boundedness of solutions and square integrahilftthe first derivatives of
solutions of the following second order nonlinear delaye# |

X+ a(t) f (t,x, X)X + b(t) +Zlh /otk(t,E)h(E E)ola (1.5)

wherea(t) andb(t) are continuous positive functions and(i = 1,2,...n) are
fixed positive delay constants.

This work is motivated by the works of Graef and Tunc [9], Niagd12], Mo-
hammed [15] and Zhao and Meng [40]. Our goal in this paper gve sufficient
conditions which will ensure and guarantee stability of salution, boundedness
and integrability of solutions of the following integrofidirential equations with
multiple delays

X"+a(t) f (t,x, X )X+b(t)g(t,x, X )+c(t) le (t,x(t—Tj) /K (s,X(s))ds (1.6)

wheret; > 0 are fixed delay constants and we alloiv= max{11,Ty,...,Tn}; the
prime represents differentiation with respect,tbe R* = [0, ); a(t),b(t), c(t) €
C(R*,R*) and the derivativee'(t) = Sc(t) exists; f,g € C(RT x RZR), R =
(—o,); h e C(R,R); R,K € C(RT x R,R) such that 0< s <t < o; h(0) =
0, f(t,x,0) = 0,g(t,x,0) = 0,R,(t,0) = 0 andK(s,0) = 0. Also, it is assumed that
the functionsf,g,h andPR, are Lipschitz continuous ir X, x(t — Tj) and the partial
derivatives%P.(E,x(E)) exist and are continuous.
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The remaining parts of the paper are presented as followse rExt Section
features basic definitions of stability and boundednessobftisns of integro-
differential equations, Section 3 gives the basic assumgtfor this work. The
main results of this work are presented in Section 4 whiledati®n 5 an example
to validate our results is given.

2. PRELIMINARY DEFINITIONS

In this section, we will give some basic definitions on thésits of solution
of integro-differential equations. Consider the systerfirst order non-linear and
non homogeneous Volterra integro-differential equations

X'(t) = —A(t)X(t) —F/ttT B(t,s,h(X(s)))g(X(s))ds+ E(t, X(t)), (2.1)

wheret € [0,0), X € R" A(t),B(t,s,h(X(s)) andE(t, X(t)) are continuous func-
tions for the respective arguments explicitly displayediast them such that €
s<t < o,h(0) =0,h(X)#0, X+#0,B(t,s,0) =0;h,g: R" — R",g(0) =0 are
continuous functions anmd> 0 is a constant delay.
LetX(t,tp,®),t > to be a solution of (2.1) ofig—T,B), > 0 such thaX(t) = P(t)
on® € [to —T,to] and |[®(t)|| = SURcy_1 ) [|P(L)]|, Whered : [to —T,to] — R"
is a continuous initial function.

The following basic definitions will be given for completessesake.

Definition 2.1. [3] The zero solution of th€.1) is said to bestableif for each
€>0andp > 0. there exists & = 3(tg, €) > O such that iff |®(t)|| < don|to—T,to],
we have | X(t, ®)|| < &,Vt > to.

Definition 2.2. [3] The zero solution of th@.1) are said to beuniformly stableif
dis independent opt

Definition 2.3. [3] The zero solution of th@.1)is said to beasymptotically stable
if it is stable and for eachgt> 0O, there is ad > 0 such that t> to, ||P(t)|| < don
[0,to] implies||X(t,®)|| — 0 as t— co.

Definition 2.4. [3] The solutions X, Xo) of the(2.1)is said to beboundedf for
T >0, there exist$™ such that for§>0, ||P(t)||;, <T and for t>to, = || X(t)||<T.

3. BAsIC ASSUMPTIONS

In this section, we present the basic assumptions for oultses
To begin with, the second order IDE (1.6) is transformed geequivalent system
of first order equationse bellow:
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X=Y,
y= —a(t)f(t,x,y)y—b(t)g(t,x,y) — X) + ZP (t, x(t / K(sy(s
_ZP (t,x(t /Hl/ K(sy(s (E)) y(&)dscE. (3.1)
Assumptions:

Suppose thady, ay, bo, b1, Co, C1, 0o, A1, fo, f1,0,91, Ko, K1,D,M,N, M, N; (i=1,2,
. n) are some positive constantk, is a negative constant and functions
a(t),b(t),R(t),q(t) : R" — R" and in addition the following conditions hold:

(i) ap<a(t) <a, by <b(t) <by,0<co<c(t) <cq, c(t) <do;
h(0) =0, aogygalforx;&o;

(i) f(t,x,0) =0, mg%g f1 fory £ 0;
g(t,x,0) =0, go < g(t’;’y)ggl,fory;éo;

@) K(y(0) < AOMD), Ko< g0 <Kyforallt

) PRtxo) < RO <m, PO oy

|
(v) 3NT* [5°q(s)ds < 4a(t) fo; and
(Vi) M 5" a(s)ds+ 3Ka(2+ Dt ) [5" IR (n,x(n) dn < 2b(t)o,

where
M = ZM"N ZlN.andD

4. MAIN RESULTS

nNI

Theorem 4.1. If the conditions stated under the basic assumptions abm/ea-
isfied, then all the solutions of the systésril) are continuable and bounded.

Proof. The proof of the this theorem rest on the following diffeiabte scalar
functionV =V (t,x(t),y(t)) defined as

V= 2p e [ Xh(U)du+iM / t P xn) a2 (sdsh
n 0 t
S

wherep; andA; are positive constants whose values are to be determiresd Tdite
functionV defined by equation (4.1) clearly vanishes et y = 0 and can easily
be shown to be positive definite fars£ 0,y #~ 0 following the stated assumptions
of Theorem 4.1 in the following way:

(4.1)
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1 Xh(u) Dot
V=py ot [T Fudut 3w [ [ R0 a9 (dsch
o u = 0 Jt

+_im /_ ii ds t;y“(e)de

2%y2+ %C(OCOX2+iiM /Ot /tw IP(n,x(n))|a(s)y?(s)dsch

n 0 t
+3N / ds/ y*®)de
i= —Tj t+s
=%y2 + %aocoxz,
there exists a positive constahtsuch that
V(t) > di (G +y2), (4.2)

for all x,y whered; = %min{l,aoco} > 0. Thus, the functiolV is positive definite
at all points(x,y) and zero only at point=y = 0. In additionV (t) = 0 if and only
if X2(t) +y2(t) = 0 andV (t) > 0 if and only ifx?(t) +y(t) # 0, it follows that

V(t) — 400 asx?(t) + y2(t) — oo. (4.3)

Furthermore, there exist positive constamitsds andd, such that
t oo 0 t
VO <c0@+y))+da [ [(odsh+di [ [ yHededs (4.
—1* Jt+s
for all x,y whered, := %max{l, c101}, dg:= YL MiKip andds := S Ai.

Next, we proceed to show that the derivative of the functias negative semi-
definite.

:tV( —yy +C(1) /h Judu+ c(t)h(x)y

() ZM/ [R(n,x(n) \clrwr_zl Ny ()
_le,\p (t,x(t y/ s)ds— i)\i ttrly“(u)du

= —a(t) f(t,x, y)y*(t) — b(t)g(t,x,y)y +21M

+yip.<t,x<t>> [y Ksyspsew [ huu-3 t;‘y““‘)d”

_yZlP (t, x(t /tt,/ K(s,y(s aP EX(E)) y(&)dscE,
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31 [ RO - 5 wRGx0)] [ a(sysis

By the assumption (iii) of the theorem, we have the following

S Rt) [ Kisys ds<ry\zlrptx DI [ K(syts)ds
<3 ROXO) [ WOl lysids
iZO | 0

On using the inequality|ab| < (a® + b?), we obtain,

i_ilﬂ(t,x(t))l/; y®)|(la(s)[ly(s)])|ds < %iilﬂ(t,x(t)ﬂ/th(s)(yz(t)-|—y2(s))ds
= %.i|'°'(t»><(t))l /Ot A(s)y*(s)ds-+ %yz(t))_ilP.(t,x(t))l /Ot q(s)ds

Also, by the assumption (iv) and inequalitya®| < (a® + b?), we equally obtain
that

|y|§1/;/t|r<s I E et

zZ /t ) / V2())dscE,

L [ dsuzwl/tr,/
<2 ZlN, / s)ds+ y4 I; T.)/Oq(s)ds

zi;N‘ /t/o S (®)dsck.

Therefore,

n

V(1) < —a(b) f(tx )y 2Oy*(1) — bg(t.x y)y (YA () + 2 (NT)y*(D)
#33 Rx0)] [ aoy(dss %ﬂt))iim(t,xa_»r JECLE
—i)\i/ttriy“(u)dUJr%_i(NiTi /t (92
+%12Ni/ttri/0tq(s)y“ )dscE +q(t) Ziua/ IR (n,x(n))ldn
- 3 MR [ a(ey(Ss+ 3740 3 (V) [ a(sis
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Applying the assumption (ii) of the theorem on the above uadity yields,

V(t)<—§[2a fo—ZZl)\r > (N /q 5ds]y*

5[z~ 3w [a(sios- zmzlu/ R(n.x(n |dn}y2<>
421[2M (1-24) + N /q
+Z-Zi [Ni/o q(s)ds— 4\ /”iy“(u)du

By taking |y = ZM'+N'T' =N fomf(s)ds and using the assumptions (v) and (vi)

of the Theorem 4. 1 we obtain

Vi s-3 [zba)go -5 [ s

ZMJAIN'T' [ I xplan] o

|
N
=z
RIVE
/—\

T Ty SO
g—% go—M/ (9)ds— 5k (2+01") [ IR x()lan] ()
- 5[z fo- e [“agasy'),

< 5[0 —M [ a9ds— Sku(2+0r) [T IR0xM)dn]y20),

there exists a positive@ such that
(t) < —&*(t) <0, (4.5)

for all y.
Now, the solutiongx(t),y(t)) of the system (3.1) will only fail to be defined
after some timéd if the condition

im ( (t) +y3(t) (4.6)

is met. By taking(x(t), y(t )) to be a solution of the system (3.1) with initial condi-
tion (Xo,Yo), it is clear that the Lyapunov function defined in (4.1) isipes semi
definite, meaning tha¥/ =V (t,x(t),y(t)) > 0 and its derivativeé/’(t,x(t),y(t)) <

0, for all point (x(t),y(t)). Thus, the functioV (t) is bounded on the intervéd, T].
But, it has already been shown earlier that

X +y7) SV (1), @.7)
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and _
V(t) <O0. (4.8)
Therefore, on integrating inequality(4.8) frdgto T we obtain
V(T) <V(to). (4.9)
From inequalities (4.7) to (4.9), we can easily deduce that
A (¥ +y?) <V(1) <V(T) <V(to), vt >T. (4.10)
It is now clear from the inequality (4.10) that,
(C+y?) <d;WV(to) =N, (4.11)

whereV (tp) = >0 andN = d{lB. It then follows from the inequality (4.11) that,
X(t)] <N, [y(t)] <N, N* =N, vt >T >1t5 > 0.

We can easily conclude from the above that the conditioedtatinequality (4.6)
is not possible. Therefore, all the solutions of the systdrh)(and consequently
equation (1.6) are bounded. Hence, the proof of the thessammmplete. O

Theorem 4.2. Under the assumptions of Theorem 4.1, the trivial solutibthe
system(3.1)is asymptotically stable.

Proof. It has been shown from the proof of Theorem 4.1 that
V(t,x(1),y(t) > da(y?+x%) >0,

V/(t) < —8yA(t).

From these two inequalities, we established the stabifitthe trivial solution
of equation (1.6). To prove the asymptotic stability of theial solution, we em-
ployed LaSalle’s invariant principle.

Let us define

W ==W(t,x,y) = {(t,x(t),y(t)) : V'(t,x(t),y(t)) = O}.
Already, we have that
V/(t) < —8y2(t), 5> 0.

Going by the definition ofV, it must then mean thay,= 0 andy = 0 also implies

and

that % =y=0. Integrating% =y=0, we getx=n,n € R,n # 0. By putting
y = 0 into the system (3.1) and following the assumptions of Téeo2.1, we
obtain

c(t)h(x) = 0.
But sincec(t) > 0, then we must havk(x) = 0. However,h(x) = 0 only when
x = 0. Thereforen = x= 0. Hence,x =y = 0. Therefore, the largest invariant
set contained iWV(t,x,y) is (t,0,0). Thus, the zero solution of the system (3.1) is
asymptotically stable and the proof of the theorem is eistadadi. O
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Theorem 4.3. Under the assumptions of Theorem 4.1(xift),y(t)) is any solu-
tion of the systeng3.1) with given initial condition(xo,Yo), then yt) € L2[0, ),
meaning that the first derivative of the syst8rl)is square integrable.

Proof. If (x(t),y(t)) is any solution of the system (3.1) with initial conditions
(X0,Yo0) then, from the proof of Theorem 4.1, we have

V/(t,X(1),y(t) < —8y?(t) (4.12)

Integrating (4.12) from 0 tb we have
0 <V(t,x(1),y(t) <V(0,X(0 6/ Y(u)
This implies that o
/ y2(u)du < oo.
0

Thus, we conclude thaf(t) € L?[0,) and the proof of Theorem (4.3) is now
complete. O

Theorem 4.4. If the assumptions of Section 3 hold, then the trivial solutf the
system(3.1)is uniformly asymptotically stable.

Proof. Let (x,Y:) be any solution of the system (3.1), from inequalities (4A2%)
and (4.5) the trivial solution of the system (3.1) is uniféyrasymptotically stable.

O
Corollary 4.1. In addition to assumptions (i) and (ii) of Section 3, if

ZlP (t,x(t —1))| < K, 0 < K < o, then the solutions of the systg@i11) are
bounded, uniformly bounded and uniformly ultimately bachd

Proof. Let (x,Y:) be any solution of the system (3.1), from inequality (4.3}j-e
mate (4.3), inequalities (4.4) and (4.5) the solutions efdystem (3.1) are bounded,
uniformly bounded and uniformly ultimately bounded. O

5. EXAMPLE

In this section, we shall consider a special case of equéti@) to establish the
correctness of the results discussed in Section 4.

Example 5.1. Consider the following second order integro-differentijuation
with delay

s (T2 (X X2 X i X
<0+(3) (2 ) O @) (3 e

a2 L/ 1 1 t
e ( 142 )‘%(5“2‘ 3—|—X2(t—Ti)>/o (l 2+52> X(slds  (5-1)
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Equation(5.1) as a system of first order differential equations is
X (t) = y(b),

0 =~(57%) (5 + 0 - 2050 (3 st
- <Bfi§>+<s+ltz—3+lxz> [} (1451 ) wsds
Z1<5+t2 3+x2>/n,/< 2+52> )‘<%>V(E)d3d§- (5.2)

Comparing equation§3.1) and (5.2) we have the following relations:
(i) the function

7+ 2t2 1

alt) = =2 .
® 3412 +3+t2

Since0 < i <= for all't > 0, it follows that
3+t — 3

2=a<a(t) <a; =233
(see Figurel.) Also the function
b(t) :=2+sin3.
Noting that—1 < sin3 < 1 for all t € [-21, 21 and onR D [—2r, 217, we
conclude that
1=bo <b(t) <by =3,
for all t € R. The function t) and its bounds are shown in Figuge
Next the function
c(t):=e >0,
for all t and
d(t)=—-2e2 <0,
for all t. Moreover, the function
3x+2x3 X
h(x) := % = 2X+ .
1+x 1+x
Clearly, h(0) = 0, sincel+x? > 1, for all x it follows that

for all x and

we conclude that
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for all x # 0.
23
a(1) =2+ ——
a,=2.33 3+1¢
2.2
ll0=
24
—4‘10 -éO 0 Zb 4b

t

FIGURE 1. The function &) fort € [-50,50].

~

b(t) =2 +sin3¢

T
-27 _3n -m T 0 T 3n 2m
2 2

T
_r r
2

FIGURE 2. The function ) fort € [—2rt 2.

71
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(i) The function
1 y?
f(t,xy) =2 _
(t,%) 2y2+1+yty+yx\+\y!’
it can be seen that(f,x,0) = 0 and that

1
0< —————F——= <1,
T+ [t + X+ 1yl

for all t,x and y Therefore,

1 f(t,xy) 3
— = < < — —
p=fos—p—sh=3
for all t,x,y # 0. In a similar manner the function
1 y
9t xy) = 3y + T2y
satisfies ¢t,x,0) = 0and
1 g(t, x,y) 4
_ = < < — _
3 Jo = y = 01 3

forallt,x,y = 0.

(i) The function

1
K(Ly(0) = (1455 ) o
Now, from inequalities in assumption (iii), we have

1

q(t) :=1+ PERvE

It is not difficult to show that

1=Ko<q(t) <Ki=
for all t. Therefore, the function
= <
K(Ly(0) = (14 5 W < Kby,

satisfies assumption (iii) with{K= % The shape and path of(Ky) and qt)
are shown in Figure8. and4. respectively.
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K(t,y)

S\ am=1e

2+ ¢

-10 -5 0 5

FIGURE 4. The function ¢) fort € [—10,10].
(iv) The function

n 1 1
Z R(t,x(t) = —5 — —.
Z I( >X( )) 5—|—t2 3—|—X2
Since > O for all x and lim = 0 it follows that
3+x2 x—00 3+ X2

d 1 1 1
R(tx(1) = - <
i; 5+t2 3+x2 7~ 5+¢2
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and
n n 1
Bt x())| < Rit)=|—=
3 REXO)I < 5 RO~ |51

Considering the fact thai+t? > 5for all t, it follows that

3 RXO) < 5 IRDI< 3 M- ¢

for all t. In addition

] 2X
a—)(P(t,X(t)) = B
and 3 ox
‘&P(Lx(t))‘ _ ‘m <N=0125

for all x € [-10,10] see Figures., the inequality holds for all x R.

FIGURE5. The|ZP(t,x(t))| for x € [~10,10].

(v) From assumption (v) we have

3NT'Kg < 3NT*/ g(s)ds< 4a(t) fp < 4a; fo,
0

so thatt* < 1244
(vi) Finally, the inequality in assumption (vi) is

M [“aeids+ 5k (2+07°) [7IR(Mx)ldn < 2b(t)go.

After substituting the estimates we find tha&07 < 2.

The estimates in items (i) to (vi) fulfill all the assumptia@isTheorems 4.1, 4.2,
4.3, 4.4 and Corollary 4.1, hence the conclusions follow ediately.
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