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A NOTE ON RADICALS OF PARAGRADED RINGS

EMIL ILIĆ-GEORGIJEVIĆ AND MIRJANA VUKOVIĆ

Dedicated to the memory of Professor Marc Krasner

Abstract. In this paper we prove that there exist paragraded rings
which are not graded and we discuss prime and Jacobson radicals of
paragraded rings. In particular, we prove that paragraded counterparts
of prime and Jacobson radicals are the largest paragraded ideals con-
tained in them.

1. Introduction

The homogeneous part of the direct product of graded rings needs not
to be the direct product of the homogeneous parts of those graded rings,
which was the motivation for introducing the notion of a paragraded ring
[14, 15, 16, 17]. A ring R is called paragraded if there exists a mapping π :
∆→ Sg(R,+), π(δ) = Rδ (δ ∈ ∆), of a partially ordered set (∆, <), which is
from below complete semi-lattice and from above inductively ordered, to the
set Sg(R,+) of subgroups of (R,+), called paragrading, and the following
axioms are satisfied:

r1) π(0) = R0 = {0}, where 0 = inf ∆; δ < δ′ ⇒ Rδ ⊆ Rδ′ ;

Remark 1.1. A =
⋃
δ∈∆Rδ is called the homogeneous part ofR with

respect to π, and elements of A are called homogeneous elements.

Remark 1.2. If x ∈ A, we say that δ(x) = inf{δ ∈ ∆ | x ∈ Rδ}
is the degree of x. We have δ(x) = 0 if and only if x = 0. Elements
δ(x), x ∈ A, are called principal degrees and they form a set which
is denoted by ∆p.

r2) θ ⊆ ∆⇒
⋂
δ∈θ Rδ = Rinf θ;
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r3) Homogeneous part A is a generating set of (R,+) with the set of
A-inner relations: x+ y = z;

r4) Let B ⊆ A be a subset such that for all x, y ∈ B there exists an
upper bound for δ(x), δ(y). Then there exists an upper bound for all
δ(x), x ∈ B;

r5) For all ξ, η ∈ ∆ there exists ζ ∈ ∆ such that RξRη ⊆ Rζ .
This definition gives a binary operation on ∆, namely ξη = sup{δ(x) | x ∈

RξRη}, called the minimal multiplication [16, 17], and so, RξRη ⊆ Rξη.
An ideal I of a paragraded ring R is called homogeneous [17] if I is generated
by I ∩A by A-inner relations, where A is the homogeneous part of R.

One of the aims of this note is to show that there are paragraded rings
which are not graded. We also discuss prime and Jacobson radicals of para-
graded rings and as main results we obtain that paragraded counterparts of
prime and Jacobson radicals are the largest paragraded ideals contained in
them. Note that the notion of the Jacobson radical introduced here is more
general than that from [7] where we considered the category of paragraded
rings with the same paragrading set. In the process, we will use the notions
of a quasianneid [16], paragraded module and of a quasimoduloid [16], which
we recall in the sequel. Origins of this “homogeneous” approach can be
found in [12].

If R is a paragraded ring with homogeneous part A, then we may observe
restrictions of operations from R to A. Induced addition is partial and we
write x#y if and only if x + y ∈ A. The obtained structure is called a
paraanneid [16]. If x ∈ A, let A(x) = {y ∈ A | x#y}. Paraanneid certainly
satisfies the following axioms:

a1) There exists an element 0 ∈ A such that A = A(0) and such that for
all x ∈ A we have 0 + x = x;

a2) If a ∈ A, x + y is always defined on g(a) = {x ∈ A | A(x) ⊇ A(a)}
and (g(a),+) is an Abelian group;

a3) If B ⊆ A is such that for all x, y ∈ B we have x#y, then there exists
G ⊆ A such that x+ y ∈ G for all x, y ∈ G, x ∈ G implies g(x) ⊆ G
and B ⊆ G;

a4) A2 ⊆ A;
a5) x#x′ and y#y′ imply xy#x′y′.

Structure (A,+, ·) which satisfies axioms a1)−a5) is called a quasianneid
[16]. Quasianneid does not have to be a paraanneid; it is under a few more
assumptions (see [16]), in which case A can be linearized [16] to a paragraded
ring, denoted by A, whose homogeneous part it is.

If R is a paragraded ring with paragrading π : ∆ 3 δ 7→ Rδ, and M a right
R-module, then M is called a paragraded R-module [16, 17] if (M,+) satisfies
axioms r1) − r4) for π′ instead of π, D instead of ∆, M instead of R and
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N =
⋃
d∈DMd instead of A, and if moreover, for all d ∈ D and δ ∈ ∆, there

exists t ∈ D such that π′(d)Rδ ⊆ π′(t). If we observe restrictions of addition
from M to N and of external multiplication M × R → M to N × A → N,
we obtain a structure called a paramoduloid [16]. A paramoduloid N over a
paraanneid A certainly satisfies the following axioms:

m1) x(ab) = (xa)b (a, b ∈ A, x ∈ N);
m2) If a, a′ ∈ A and x, x′ ∈ N are such that a#a′ and x#x′, then

xa#x′a′;
m3) If a#a′ (a, a′ ∈ A) and x ∈ N, then x(a+ a′) = xa+ xa′;
m4) If x#x′ (x, x′ ∈ N) and a ∈ A, then (x+ x′)a = xa+ x′a.

A quasimoduloid N over a quasianneid A is a structure which satisfies
axioms m1) − m4). It does not have to be a paramoduloid. It will be a
paramoduloid under a few more assumptions (see [16, 17]), in which case
N can be linearized to a paragraded module, which we denote by N, whose
homogeneous part it is.

If N is an A-quasimoduloid, then K ⊆ N is called a subquasimoduloid
[17] if: a) x ∈ K ⇒ −x ∈ K; b) x, y ∈ K ∧ x#y ⇒ x + y ∈ K; c)
a ∈ A∧x ∈ K ⇒ xa ∈ K. A subquasimoduloid of a quasianneid A, observed
as an A-quasimoduloid, is called a right ideal of a quasianneid A [17]. Factor
structures are defined as usual (for more details, one may consult [17]; see
also [20]).

2. Examples of paragraded rings

It is known from [17] that there is a large class of paragraded rings which
are graded, but here we provide a class of examples of paragraded rings
which are not graded. By a graded ring [1, 5, 13, 17, 9, 10, 11] R we mean
R =

⊕
δ∈∆Rδ if for all ξ, η ∈ ∆ there exists ζ ∈ ∆ such that RξRη ⊆ Rζ ,

where Rδ are additive subgroups of R, and ∆ is a nonempty set.

Theorem 2.1. A paragraded ring which is not graded exists.

Proof. Let R be a ring and M2(R) the set of all 2 × 2 matrices over R. As
we know, M2(R) is a ring under the usual matrix addition and multiplica-
tion. Let binary sequences a1

1a
2
1a

1
2a

2
2 of length four correspond to the set of

matrices over R which have as (i, j)-entry an arbitrary element from R if

aji = 1, and a zero (i, j)-entry if aji = 0. Also, for convenience, let us denote
that set by Ra11a21a12a22 . For instance, 1101 corresponds to R1101 =

(
R R
0 R

)
.

Obviously, R1111 = M2(R) and R0000 = O, where O denotes the zero-

matrix. Denote by ∆ the set of sequences a1
1a

2
1a

1
2a

2
2, a

j
i ∈ {0, 1}, i, j =

{1, 2}, and let us define a1
1a

2
1a

1
2a

2
2 ≤ b11b

2
1b

1
2b

2
2 if and only if Ra11a21a12a22 ⊆

Rb11b21b12b22 , a
1
1a

2
1a

1
2a

2
2, b

1
1b

2
1b

1
2b

2
2 ∈ ∆. For every a1

1a
2
1a

1
2a

2
2, b

1
1b

2
1b

1
2b

2
2 ∈ ∆, we have
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Ra11a21a12a22 ∩ Rb11b21b12b22 = Rc11c21c12c22 , for some c1
1c

2
1c

1
2c

2
2 ∈ ∆, and R0000 is con-

tained in Ra11a21a12a22 , for every a1
1a

2
1a

1
2a

2
2 ∈ ∆. Also, if {Ra11a21a12a22} is a chain

of subgroups with respect to the set inclusion, their union is their upper
bound. Hence, ∆ is from below a complete semi-lattice and from above
inductively ordered with respect to ≤, with 0000 as the least element. Also,
the mapping π : ∆ → Sg(M2(R),+), defined by π(a1

1a
2
1a

1
2a

2
2) = Ra11a21a12a22 ,

where Sg(M2(R),+) denotes the set of subgroups of (M2(R),+), is para-
grading, since, as it can be easily verified, it satisfies all axioms r1)-r5).
Hence, M2(R) is a paragraded ring. Notice also that M2(R) is not graded
with respect to π, since, for instance, R1000 ∩R1001 = R1000 6= O. �

Reasoning from the proof of the previous theorem can be generalized into
the following theorem.

Theorem 2.2. If R is a ring, then every matrix ring Mn(R), where n is a
natural number, can be regarded as a paragraded ring.

Example 2.3. Let A be a ring and observe the ring of upper triangular
matrices R =

(
A A
0 A

)
. Also, let Rδ1 =

(
A 0
0 0

)
, Rδ2 =

(
0 A
0 0

)
, Rδ3 =

(
0 0
0 A

)
, and

Rδ4 =
(
A A
0 0

)
. If R0 = ( 0 0

0 0 ) , denote by ∆ the set {0}∪{δi | i = 1, 2, 3, 4}. For
convenience, let δ0 = 0. Set ∆ is a partially ordered set, which is from below
complete semi-lattice and from above inductively ordered, with respect to
δi < δj ⇔ Rδi ⊆ Rδj , i, j = 0, 1, 2, 3, 4. It is easy to see that R is a paragraded
ring with respect to π : δi 7→ Rδi , δi ∈ ∆. Note that R is not graded with
respect to π since for instance, Rδ1 ∩ Rδ4 = Rδ1 6= R0. It is interesting to
notice that every element δ ∈ ∆ is either an idempotent or nilpotent of
degree of nilpotency 2 with respect to the minimal multiplication “·”. The
following table shows this property.

· 0 δ1 δ2 δ3 δ4

0 0 0 0 0 0
δ1 0 δ1 δ2 0 δ4

δ2 0 0 0 δ2 0
δ3 0 0 0 δ3 0
δ4 0 δ1 δ2 δ2 δ4

Example 2.4. Let us observe a subring
(
A A
0 0

)
of the paragraded ring

(
A A
0 A

)
from the previous example. It is also paragraded with respect to paragrading
Rδ1 =

(
0 A
0 0

)
, Rδ2 =

(
A A
0 0

)
. It is also worth to notice that this paragrad-

ing induces the minimal multiplication which makes the paragrading set a
cancellative partial groupoid.
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3. On prime and Jacobson radicals

The prime spectrum of a paragraded ring is introduced in [6]. Here we
reformulate it for quasianneids.

Let A be a quasianneid. A proper ideal P of A is said to be prime if for
all ideals I, J of A, IJ ⊆ P implies I ⊆ P or J ⊆ P. As in the case of
rings, one may prove that an ideal P of A is prime if and only if xAy ⊆ P
implies x ∈ P or y ∈ P, where x, y ∈ A. The set of all prime ideals of A is
denoted by Spec(A) and it is called the prime spectrum of a quasianneid A.
The prime or the Baer radical of a quasianneid A is defined to be the set⋂

(P | P ∈ Spec(A)) and is denoted by β(A).

Proposition 3.1. Let A be a paraaneid, that is, let A be linearizable to a
paragraded ring A.

a) If P ∈ Spec(A), then P ∩ A ∈ Spec(A), where Spec(A) denotes the
spectrum of A regarded as a ring.

b) If Q ∈ Spec(A), then there exists P ∈ Spec(A) such that Q = P ∩A.
c) Prime radical of A coincides with β(A)∩A, where β(A) denotes the

prime radical of A regarded as a ring.

Proof. Statements a) and b) can be proved by the same means as in the case
of ordinary graded rings (see [2] or [18]), while c) follows directly from a)
and b). �

The Jacobson radical of an anneid, the homogeneous part of a graded
ring with induced operations, is thoroughly examined in [5], inspired by [8]
(see also [3]). In this section we will see that the similar theory may be
established for quasianneids under some appropriate modifications in for-
mulations and in proofs of relevant results. In this section, quasimoduloids
are, for convenience, denoted by M.

Let A be a quasianneid, M a right A-quasimoduloid, N a subquasimodu-
loid of M, and S a subset of M. If (N : S) denotes the set of elements a ∈ A
such that Sa ⊆ N, then it can be easily proved that (N : S) is a right ideal
of A. Particularly, if x ∈M, then (0 : x) is a right ideal of A.

The heart [17] of an A-quasimoduloid M, denoted by C, is defined to be
the set {x ∈M | (∀y ∈M) x#y}.

An A-quasimoduloid M is called regular [17] if for every a, b ∈ A and
x ∈ M, xa, xb /∈ C, where C is the heart of M, and xa#xb, imply a#b.
A quasianneid A is called right regular [17] if it is regular as a right A-
quasimoduloid. The notion of a left regular and of a regular quasianneid is
clear enough.

If M and M ′ are two A-quasimoduloids, then the mapping f : M → M ′

is called a quasihomomorphism [17] if for all x, y ∈ M and a ∈ A : a)
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x#y implies f(x)#f(y) and f(x + y) = f(x) + f(y); b) f(xa) = f(x)a.
If, moreover, f(x)#f(y) and f(x), f(y) /∈ C ′ imply x#y, where C ′ denotes
the heart of M ′, then f is called a homomorphism. The paragraded ver-
sions of these mappings are called quasihomogeneous homomorphism and
homogeneous homomorphism, respectively (see [17]).

Lemma 3.2. If M is a regular A-quasimoduloid and 0 6= x ∈ M, then
A/(0 : x) ∼= xA.

Proof. Let f : A → xA be the mapping defined by f(a) = xa (a ∈ A).
If a, b ∈ A and a#b, then xa#xb and x(a + b) = xa + xb, so f(a + b) =
f(a) + f(b). Also, f(ab) = x(ab) = (xa)b = f(a)b. Hence, f is a quasihomo-
morphism of A-quasimoduloids. It is a homomorphism, since, if f(a)#f(b)
and f(a), f(b) /∈ C, then xa#xb, xa, xb /∈ C, and since M is regular, we
have a#b. The kernel of f is a right ideal of A, namely, (0 : x), while its
image is obviously xA. According to the first isomorphism theorem [17],
A/(0 : x) ∼= xA. �

Definition 3.3. An A-quasimoduloid M is called irreducible if MA 6= 0
and if 0 and M are its only subquasimoduloids.

Definition 3.4. The Jacobson radical of a quasianneid (paraanneid) A is
defined to be the intersection of annihilators of all irreducible regular A-
quasimoduloids (A-paramoduloids). The intersection of annihilators of all
irreducible A-quasimoduloids (A-paramoduloids) is called the large Jacobson
radical of a quasianneid (paraanneid) A.

Remark 3.5. It is clear that the large Jacobson radical of a quasianneid is
contained in the Jacobson radical of a quasianneid. Also, the prime radical
of a quasianneid is contained in the large Jacobson radical of an anneid.

Definition 3.6. A right ideal I of a quasianneid A is called modular if there
exists an element u ∈ A such that a ∼ ua mod I, for all a ∈ A. We say that
I is a modular ideal with respect to u.

Remark 3.7. Let us notice that, if I is a proper modular ideal with respect
to u, then δ(u) and δ(u2) have a common upper bound. Indeed, since I is
proper, u /∈ I, and so, u#u2 and u− u2 ∈ I. Hence, u2 /∈ I, and so, u2 6= 0,
and the claim follows.

Definition 3.8. A quasimoduloid M over a quasianneid A is called strictly
cyclic if there exists x ∈M such that M = xA. Such an element x is called
a strict generator of M.

An A-quasimoduloid M (see [17]) is said to be without heart if

C = {x ∈M | (∀y ∈M) x#y} = 0.
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Lemma 3.9. A regular A-quasimoduloid M without heart which is strictly
cyclic is isomorphic to A/I, where I is a modular right ideal of A. Every
modular right ideal I of A is of the form (0 : x), where x is a strict generator
of an A-quasimoduloid M.

Proof. Let M be a strictly cyclic regular A-quasimoduloid without heart,
and let x be its strict generator. Then, according to Lemma 3.2, M = xA ∼=
A/(0 : x). We hence need to prove that (0 : x) is modular. Since x ∈ xA and
since M is regular, there exists u ∈ A such that x = xu. For an arbitrary
a ∈ A we have xa = xua. If xa = 0, then both a and ua belong to (0 : x).
If xa = xua 6= 0, then, since M is without heart, and since M is regular,
we have a#ua and 0 = xa − xua = x(a − ua), and so, a − ua ∈ (0 : x).
Therefore, u is a left identity modulo (0 : x), and so, (0 : x) is modular. The
second assertion is clear. �

Similarly to the case of rings, one may now prove the following theorem.

Theorem 3.10. If M is an irreducible regular A-quasimoduloid without
heart, then M ∼= A/I, where I is a maximal modular right ideal of A. Con-
versely, if I is a maximal modular right ideal of a regular quasianneid A
without heart, then A/I is an irreducible regular A-quasimoduloid without
heart.

Theorem 3.11. The Jacobson radical of a regular quasianneid A without
heart coincides with the intersection of all maximal modular right ideals of
A.

Proof. If A is a regular quasianneid A without heart, and I is a maximal
modular right ideal of A, then A/I is a regular A-quasimoduloid without
heart, and so, the claim follows from the previous theorem. �

The proof of the following theorem is analogous to the proof of the cor-
responding theorem for anneids given in [5], but we give it here for the sake
of completeness.

Theorem 3.12. Let A be a paraanneid, A its linearization. If Jl(A) is the
large Jacobson radical of A and J(A) the ordinary Jacobson radical of the
ring A, then Jl(A) = J(A) ∩A.

Proof. Since every irreducible A-module M may be regarded as an irre-
ducible A-paramoduloid M, and since (0 : M)A ⊆ (0 : M)A, we have

Jl(A) ⊆ J(A) ∩ A. Now, let a ∈ J(A) ∩ A and let M be an irreducible A-
paramoduloid. It is enough to prove that a ∈ (0 : M). Suppose a /∈ (0 : M).
Then there exists x 6= 0 such that xa 6= 0. Since M is irreducible, xa is a
strict generator of M, and hence, M = xaA, where M is the linearization
of M. Let b̄ ∈ A such that x = xab̄. Then, for all ȳ ∈ A, x(ȳ − ab̄ȳ) = 0,
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i.e., ȳ − ab̄ȳ ∈ (0 : x), for all ȳ ∈ A. Since a ∈ J(A), ab̄ also belongs to
J(A). If z̄ is a quasi-inverse of ab̄ in A, then, since z̄−ab̄z̄ ∈ (0 : x), we have
ab̄ ∈ (0 : x), which implies xab̄ = 0, and therefore x = 0, a contradiction.
Hence, J(A) ∩A ⊆ Jl(A). �

Lemma 3.13. Let A be a regular paraanneid without heart such that for each
element δ of the corresponding paragrading set ∆∗ we have either δ2 = 0 or
δ2 = δ with respect to the minimal multiplication. Then degrees of all unities
modulo a proper modular right ideal of A have a common idempotent upper
bound.

Proof. Let I be a proper modular right ideal of A and let u and u′ be two
unities modulo I. Observe the canonical mapping f : A → A/I. Clearly,
0 6= f(x) = f(ux) = f(u′x) for all x ∈ A \ I. Since f is a homomorphism
and A is without heart, it follows that ux#u′x. A is regular, without heart
and both ux and u′x are nonzero together imply u#u′. This means that δ(u)
and δ(u′) have a common upper bound, denote it by ξ. Then 0 < δ(u) < ξ
and 0 < δ(u′) < ξ. Also, u#u2 6= 0. Therefore 0 < δ(u) = δ(u)δ(u) < ξ2.
This and our assumption imply ξ2 = ξ. �

Remark 3.14. A paraanneid satisfying the conditions from the previous
lemma exists as Example 2.3 shows.

Definition 3.15. Let I be a proper modular right ideal of a regular paraan-
neid without heart such that for each element δ of the corresponding para-
grading set ∆∗ we have either δ2 = 0 or δ2 = δ with respect to the minimal
multiplication. The least common upper bound of all unities modulo I is
called the degree of I.

Theorem 3.16. Let A be a regular paraanneid without heart such that for
each element δ of the corresponding paragrading set ∆∗ we have either δ2 = 0
or δ2 = δ with respect to the minimal multiplication and let ξ be an idempo-
tent element of ∆∗. Also, assume that ∆∗ is a cancellative partial groupoid
with respect to the minimal multiplication. Then there exists a one-to-one
correspondence between the maximal modular right ideals of A of degree ξ
and the maximal modular right ideals of the ring A(ξ) = Aξ.

Proof. With these assumptions, we may proceed as in [5] for regular anneids.
Namely, correspondence is given in the following way. If I is a maximal
modular right ideal of A(ξ), let Î = {x ∈ A | xA ∩ A(ξ) ⊆ I}. Now, as in

[5], it may be proved that Î is a maximal modular right ideal of A of degree
ξ. Conversely, if I is a maximal modular right ideal of A of degree ξ, then
it can be easily verified that I ∩ A(ξ) is a maximal modular right ideal of
A(ξ). �
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Remark 3.17. A paraanneid satisfying the conditions from the previous
theorem exists according to Example 2.4.

Definition 3.18. An element a of a paraanneid A is called right (left)
quasi-regular if a is not a left (right) unity modulo any proper right ideal of
A. A right ideal of A is called quasi-regular if every of its elements is right
quasi-regular.

The following characterization of a right quasi-regular element is a corol-
lary of the previous theorem (for an analogous result for regular anneids,
see [4, 5]).

Theorem 3.19. Let A be a regular paraanneid without heart such that for
each element δ of the corresponding paragrading set ∆∗ we have either δ2 = 0
or δ2 = δ with respect to the minimal multiplication and assume that ∆∗ is a
cancellative partial groupoid with respect to the minimal multiplication. An
element a ∈ A is right quasi-regular if and only if one of the following two
conditions is satisfied:

i) The degree of a is not an idempotent element of ∆∗;
ii) If the degree of a is an idempotent element ξ of ∆∗, then a is a right

quasi-regular element of the ring A(ξ).

As in the classical case [8] and in the case of regular anneids [5], one
may now prove that, under the assumptions of Theorem 3.16, the Jacobson
radical of a regular paraanneid A is a quasi-regular ideal which contains all
right quasi-regular ideals of A. This and Theorem 3.16 together imply the
following theorem (for the case of regular anneids, see [4, 5]).

Theorem 3.20. Under the assumptions of Theorem 3.16, we have

J(A(ξ)) = J(A) ∩A(ξ),

where J(A(ξ)) denotes the Jacobson radical of the ring A(ξ), and J(A) de-
notes the Jacobson radical of A.
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[6] E. Ilić-Georgijević and M. Vuković, Sheaves of paragraded rings, Sarajevo J. Math.,
7 (20) (2011), 153–161.
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