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ON THE SPACES OF FIBONACCI DIFFERENCE

ABSOLUTELY p-SUMMABLE, NULL AND CONVERGENT

SEQUENCES

METİN BAŞARIR, FEYZİ BAŞAR AND EMRAH EVREN KARA

Abstract. Let 0 < p < 1. In the present paper, as the domain of

the band matrix F̂ defined by the Fibonacci sequence in the classical

sequence spaces `p, c0 and c, we introduce the sequence spaces `p(F̂ ),

c0(F̂ ) and c(F̂ ), respectively. Also, we give some inclusion relations and

construct the bases of the spaces c0(F̂ ) and c(F̂ ). Finally, we compute
the alpha, beta, gamma duals of these spaces and characterize the classes

(`p(F̂ ), µ) of infinite matrices with µ ∈ {`∞, c, c0}.

1. Introduction

By N and R, we denote the sets of all natural and real numbers, respec-
tively. Let ω be the vector space of all real sequences. Any vector subspace
of ω is called a sequence space. Let `∞, c, c0 and `p denote the classes of
all bounded, convergent, null and absolutely p-summable sequences, respec-
tively; where 0 < p <∞. Moreover, we write bs and cs for the spaces of all
bounded and convergent series, respectively. Also, we use the conventions
that e = (1, 1, 1, . . .) and e(n) is the sequence whose only non-zero term is 1
in the nth place for each n ∈ N.

Let λ and µ be two sequence spaces, and A = (ank) be an infinite matrix
of real numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
transformation from λ into µ and we denote it by writing A : λ→ µ, if for
every sequence x = (xk) ∈ λ the A-transform Ax = {An(x)} of x is in µ,
where

An(x) =
∑
k

ankxk for each n ∈ N. (1.1)
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For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞. By (λ, µ), we denote the class of all matrices A
such that A : λ→ µ. Thus, A ∈ (λ, µ) if and only if the series on the right
side of (1.1) converges for each n ∈ N and every x ∈ λ, and we have Ax ∈ µ
for all x ∈ λ. Also, we write An = (ank)k∈N for the sequence in the n-th row
of A.

The domain λA of an infinite matrix A in a sequence space λ is defined
by

λA := {x = (xk) ∈ ω : Ax ∈ λ} (1.2)

which is a sequence space. Depending on the choice of the matrix A, λA
may include the original space λ or λA may be included by the original space
λ and sometimes λA may be identical to the space λ. Indeed if we choose
A = ∆, the backward difference matrix, then c∆ ⊃ c but in the case A =
∆−1 = S, the summation matrix, cS = cs ⊃ c, where both of two inclusions
are proper. However, if we define λ = c0 ⊕ span{z} with z = {(−1)k}, i.e.,
x ∈ λ if and only if x = s + αz for some s ∈ c0 and some α ∈ C, and
consider the matrix A with the rows An defined by An = (−1)ne(n) for all
n ∈ N, we have Ae = z ∈ λ but Az = e /∈ λ which gives that z ∈ λ \ λA and
e ∈ λA \ λ. That is to say that the sequence spaces λA and λ overlap but
neither contains the other.

By using the domain of a triangle infinite matrix, many sequence spaces
have recently been defined by several authors, see for instance [1, 28, 2, 7]. In
the literature, the matrix domain λ∆ is called the difference sequence space
whenever λ is a normed or paranormed sequence space, where ∆ = (dnk)
denotes the backward difference matrix defined by

dnk =

{
(−1)n−k , n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. The notion of difference sequence spaces was introduced by
Kızmaz [23], who defined the sequence spaces

X(∆) = {x = (xk) ∈ ω : (xk − xk+1) ∈ X}
for X = `∞, c and c0. The difference space bvp, consisting of all sequences
(xk) such that (xk − xk−1) is in the sequence space `p, was studied in the
case 0 < p < 1 by Altay and Başar [4] and in the case 1 ≤ p ≤ ∞ by Başar
and Altay [8], and Çolak et al. [12]. Kirişçi and Başar [24] have introduced
and studied the generalized difference sequence spaces

X̂ = {x = (xk) ∈ ω : B(r, s)x ∈ X} ,
where X denotes any of the spaces `∞, c, c0 and `p, and B(r, s)x = (sxk−1 +
rxk) with r, s ∈ R \ {0}, and 1 ≤ p < ∞. Following Kirişçi and Başar
[24], Sönmez [33] have examined the sequence space X(B) as the set of all
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sequences whose B(r, s, t)-transforms B(r, s, t)x = (rxk+sxk+1 + txk+2) are
in the space X ∈ {`∞, `p, c, c0} where r, s, t ∈ R\{0}. Also in [14, 32, 29, 18,
9, 34, 17], authors studied certain difference sequence spaces. Furthermore,

quite recently, Kara [21] has defined the Fibonacci difference matrix F̂ by
means of the Fibonacci sequence (fn)n∈N and introduced the new sequence

spaces `p(F̂ ) and `∞(F̂ ) which are derived by the matrix domain of F̂ in
the sequence spaces `p and `∞, respectively; where 1 ≤ p <∞.

In this paper, we introduce the sequence spaces `p(F̂ ), c0(F̂ ) and c(F̂ ) by

using the Fibonacci difference matrix F̂ , where 0 < p < 1. The rest of this
paper is organized, as follows:

In Section 2, we give some notations and basic concepts. In Section 3,

we introduce the sequence spaces `p(F̂ ), c0(F̂ ) and c(F̂ ), and establish some
inclusion relations. Also, we construct the bases of these spaces. In Section

4, the alpha, beta and gamma duals of the spaces `p(F̂ ), c0(F̂ ) and c(F̂ ) are

determined, and the classes (`p(F̂ ), `∞), (`p(F̂ ), c) and (`p(F̂ ), c0) of matrix
transformations are characterized.

2. Preliminaries

A sequence space λ is called an FK-space if it is a complete linear metric
space with continuous coordinates pn : λ → C with pn(x) = xn for all
x = (xn) ∈ λ and every n ∈ N, where C denotes the complex field. A
normed FK-space is called a BK-space, that is, a BK-space is a Banach
space with continuous coordinates. For example, the space `p is a BK-

space with ‖x‖p = (
∑

k |xk|
p)1/p and c0, c and `∞ are BK-spaces with

‖x‖∞ = supk∈N |xk|, where 1 ≤ p < ∞. The sequence space λ is said to be
solid (cf. [20, p. 48]) if and only if

λ̃ := {(uk) ∈ ω : ∃(xk) ∈ λ such that |uk| ≤ |xk| for all k ∈ N} ⊂ λ.

A sequence (bn) in a normed space X is called a Schauder basis for X
if for every x ∈ X there is a unique sequence (αn) of scalars such that
x =

∑
n αnbn, i.e., ‖x−

∑m
n=0 αnbn‖ → 0, as m→∞.

The alpha, beta and gamma duals λα, λβ and λγ of a sequence space λ
are respectively defined by

λα := {a = (ak) ∈ ω : ax = (akxk) ∈ `1 for all x = (xk) ∈ λ} ,

λβ := {a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ λ} ,
λγ := {a = (ak) ∈ ω : ax = (akxk) ∈ bs for all x = (xk) ∈ λ} .
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The sequence (fn) of Fibonacci numbers is defined by the linear recurrence
equalities

f0 = f1 = 1 and fn = fn−1 + fn−2 with n ≥ 2.

Fibonacci numbers have many interesting properties and applications in
arts, sciences and architecture. For example, the ratio sequences of Fi-
bonacci numbers converge to the golden ratio which is important in sciences
and arts. Some basic properties of sequences of Fibonacci numbers are also
given, below (cf. Koshy [25]):

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= ϕ (Golden Ratio), (2.1)

n∑
k=0

fk = fn+2 − 1 for each n ∈ N,

∑
k

1

fk
converges,

fn−1fn+1 − f2
n = (−1)n+1 for all n ≥ 1 (Cassini Formula).

One can easily derive by substituting fn+1 in Cassini’s formula that f2
n−1 +

fnfn−1 − f2
n = (−1)n+1.

Now, let A = (ank) be an infinite matrix and F be the collection of all
finite subsets of N. We list the following conditions:

sup
n∈N

∑
k

|ank| <∞ (2.2)

lim
n→∞

ank = 0 for each k ∈ N (2.3)

∃αk ∈ R 3 lim
n→∞

ank = αk for each k ∈ N (2.4)

lim
n→∞

∑
k

ank = 0 (2.5)

∃α ∈ R 3 lim
n→∞

∑
k

ank = α (2.6)

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ <∞ (2.7)

sup
k,n∈N

|ank| <∞ (2.8)

Now, we can give the following lemma on the characterization of the
classes of the matrix transformations between some classical sequence spaces.

Lemma 2.1. The following statements hold:
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(a) A = (ank) ∈ (c0, c0) if and only if (2.2) and (2.3) hold.
(b) A = (ank) ∈ (c0, c) if and only if (2.2) and (2.4) hold.
(c) A = (ank) ∈ (c, c0) if and only if (2.2), (2.3) and (2.5) hold.
(d) A = (ank) ∈ (c, c) if and only if (2.2), (2.4) and (2.6) hold.
(e) A = (ank) ∈ (c0, `∞) = (c, `∞) if and only if the condition (2.2)

holds.
(f) A = (ank) ∈ (c0, `1) = (c, `1) if and only if the condition (2.7) holds.
(g) A = (ank) ∈ (`p, c) if and only if (2.4) and (2.8) hold, where 0 <

p < 1.
(h) A = (ank) ∈ (`p, `∞) if and only if the condition (2.8) holds, where

0 < p < 1.

3. The Fibonacci difference spaces of absolutely p-summable,
null and convergent sequences

In this section, we define the spaces `p(F̂ ), c0(F̂ ) and c(F̂ ) of Fibonacci
absolutely p-summable, Fibonacci null and Fibonacci convergent sequences,
where 0 < p < 1. Also, we present some inclusion theorems and construct

the Schauder bases of the spaces `p(F̂ ), c0(F̂ ) and c(F̂ ).

Recently, Kara [21] has defined the sequence space `p(F̂ ) as follows:

`p(F̂ ) =
{
x ∈ ω : F̂ x ∈ `p

}
, (1 ≤ p ≤ ∞),

where F̂ = (f̂nk) is the double band matrix defined by the sequence (fn) of
Fibonacci numbers as follows

f̂nk =


−fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,

0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. Also, in [22], Kara et al. have characterized some classes of

compact operators on the spaces `p(F̂ ) and `∞(F̂ ), where 1 ≤ p <∞.
One can derive by a straightforward calculation that the inverse F̂−1 =

(gnk) of the Fibonacci matrix F̂ is given by

gnk =

{
f2n+1

fkfk+1
, 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N.

Now, we introduce the Fibonacci difference sequence spaces `p(F̂ ), c0(F̂ )

and c(F̂ ) as the set of all sequences whose F̂ -transforms are in the spaces
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`p, c0 and c, respectively, i.e.,

`p(F̂ ) :=

{
x = (xn) ∈ ω :

∑
n

∣∣∣∣ fnfn+1
xn −

fn+1

fn
xn−1

∣∣∣∣p <∞
}
, (0 < p < 1),

c0(F̂ ) :=

{
x = (xn) ∈ ω : lim

n→∞

(
fn
fn+1

xn −
fn+1

fn
xn−1

)
= 0

}
,

c(F̂ ) :=

{
x = (xn) ∈ ω : ∃l ∈ R 3 lim

n→∞

(
fn
fn+1

xn −
fn+1

fn
xn−1

)
= l

}
.

With the notation of (1.2), the spaces `p(F̂ ), c0(F̂ ) and c(F̂ ) can be redefined
as follows:

`p(F̂ ) = (`p)F̂ , c0(F̂ ) = (c0)
F̂

and c(F̂ ) = c
F̂
.

Here and after, we assume unless stated otherwise that 0 < p < 1 and all
the terms with negative subscript are equal to zero.

Define the sequence y = (yk) by the F̂ -transform of a sequence x = (xk),
i.e.,

yk = F̂k(x) =
fk
fk+1

xk −
fk+1

fk
xk−1 (3.1)

for all k ∈ N. Therefore, one can derive by a straightforward calculation
that

xk =

k∑
j=0

f2
k+1

fjfj+1
yj for all k ∈ N. (3.2)

Throughout the text, we suppose that the sequences x = (xk) and y = (yk)
are connected with the relation (3.1).

Theorem 3.1. The following statements hold:

(i) The sets `p(F̂ ), c0(F̂ ) and c(F̂ ) are the linear spaces with the co-
ordinatewise addition and scalar multiplication.

(ii) `p(F̂ ) is a complete p-normed space with the p-norm ‖x‖p =∑
n

∣∣∣F̂n(x)
∣∣∣p.

(iii) c0(F̂ ) and c(F̂ ) are the BK-spaces with the norm ‖x‖
c0(F̂ )

= ‖x‖
c(F̂ )

= ‖F̂ x‖∞.

Proof. This is a routine verification and so we omit the detail. �

Remark 3.2. One can easily check that the absolute property does not

hold on the spaces `p(F̂ ), c0(F̂ ) and c(F̂ ), that is ‖x‖p 6= ‖|x|‖p, ‖x‖c0(F̂ )
6=

‖|x|‖
c0(F̂ )

and ‖x‖
c(F̂ )

6= ‖|x|‖
c(F̂ )

for at least one sequence in the spaces
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`p(F̂ ), c0(F̂ ) and c(F̂ ), and this tells us that `p(F̂ ), c0(F̂ ) and c(F̂ ) are the
sequence spaces of non-absolute type, where |x| = (|xk|).

Let λ denotes any of the spaces `p, c0 and c. With the notation of (3.1),

since the transformation T : λ(F̂ ) → λ defined by x 7→ y = Tx = F̂ x is a
norm preserving linear bijection, we have the following:

Corollary 3.3. The Fibonacci difference sequence spaces `p(F̂ ), c0(F̂ ) and

c(F̂ ) of non-absolute type are linearly p-norm/norm isomorphic to the spaces

`p, c0 and c, respectively, i.e., `p(F̂ ) ∼= `p, c0(F̂ ) ∼= c0 and c(F̂ ) ∼= c.

Now, we give some inclusion relations concerned with the spaces c0(F̂ )

and c(F̂ ).

Theorem 3.4. The inclusion c0(F̂ ) ⊂ c(F̂ ) strictly holds.

Proof. It is clear that the inclusion c0(F̂ ) ⊂ c(F̂ ) holds. Further, to show the

strictness of the inclusion, consider the sequence x=(xk)=
(∑k

j=0 f
2
k+1/f

2
j

)
.

Then, we obtain by (3.1) for all k ∈ N that

F̂k(x) =
fk
fk+1

k∑
j=0

f2
k+1

f2
j

− fk+1

fk

k−1∑
j=0

f2
k

f2
j

=
fk+1

fk

which tends to ϕ, as k → ∞ by (2.1). That is to say that F̂ x ∈ c \ c0.

Thus, the sequence x is in c(F̂ ) but is not in c0(F̂ ). Hence, the inclusion

c0(F̂ ) ⊂ c(F̂ ) is strict. �

Theorem 3.5. The space `∞ does not include the spaces c0(F̂ ) and c(F̂ ).

Proof. Let us consider the sequence x = (xk) = (f2
k+1). Since f2

k+1 →∞, as

k → ∞ and F̂ x = e(0) = (1, 0, 0, . . .); the sequence x is in the space c0(F̂ )
but is not in the space `∞. This shows that the space `∞ does not include

both the space c0(F̂ ) and the space c(F̂ ), as desired. �

Theorem 3.6. The inclusions c0 ⊂ c0(F̂ ) and c ⊂ c(F̂ ) strictly hold.

Proof. Let λ = c0 or c. Since the matrix F̂ = (f̂nk) satisfies the conditions

sup
n∈N

∑
k

∣∣∣f̂nk∣∣∣ = sup
n∈N

(
fn
fn+1

+
fn+1

fn

)
= 2 +

1

2
=

5

2
,

lim
n→∞

f̂nk = 0,

lim
n→∞

∑
k

f̂nk = lim
n→∞

(
fn
fn+1

− fn+1

fn

)
=

1

ϕ
− ϕ
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we conclude by Parts (a) and (d) of Lemma 2.1 that F̂ ∈ (λ, λ). This leads

to the fact that F̂ x ∈ λ for any x ∈ λ. Thus, x ∈ λ(F̂ ). This shows that

λ ⊂ λ(F̂ ).

Now, let x = (xk) = (f2
k+1). Then, it is clear that x ∈ λ(F̂ ) \λ. This says

that the inclusion λ ⊂ λ(F̂ ) is strict. �

Theorem 3.7. The spaces c0(F̂ ) and c(F̂ ) are not solid.

Proof. Consider the sequences u = (uk) and v = (vk) defined by uk = f2
k+1

and vk = (−1)k+1 for all k ∈ N. Then, it is clear that u ∈ c0(F̂ ) and v ∈ `∞.

Nevertheless uv = {(−1)k+1f2
k+1} is not in the space c0(F̂ ), since

F̂k(uv) =
fk
fk+1

(−1)k+1f2
k+1 −

fk+1

fk
(−1)kf2

k = 2(−1)k+1fkfk+1

for all k ∈ N. This shows that the multiplication `∞c0(F̂ ) of the spaces `∞
and c0(F̂ ) is not a subset of c0(F̂ ). Hence, the space c0(F̂ ) is not solid.

It is clear here that if the space c0(F̂ ) is replaced by the space c(F̂ ), then

we obtain the fact that c(F̂ ) is not solid. This completes the proof. �

It is known from Theorem 2.3 of Jarrah and Malkowsky [19] that if T is a
triangle then the domain λT of T in a normed sequence space λ has a basis
if and only if λ has a basis. As a direct consequence of this fact, we have:

Corollary 3.8. Define the sequences c(−1) =
{
c

(−1)
k

}
k∈N and c(n) =

{
c

(n)
k

}
k∈N

for every fixed n ∈ N by

c
(−1)
k =

k∑
j=0

f2
k+1

fjfj+1
and c

(n)
k :=

{
0 , 0 ≤ k ≤ n− 1,

f2k+1

fnfn+1
, k ≥ n.

Then, the following statements hold:

(a) The sequence
{
c(n)
}∞
n=0

is a basis for the spaces `p(F̂ ) and c0(F̂ ),

and every sequence x ∈ c0(F̂ ) or in the space `p(F̂ ), has a unique

representation of the form x =
∑

n F̂n(x)c(n).

(b) The sequence
{
c(n)
}∞
n=−1

is a basis for the space c(F̂ ) and every

sequence z = (zn) ∈ c(F̂ ) has a unique representation of the form

z = lc(−1) +
∑

n

[
F̂n(z)− l

]
c(n), where l = limn→∞ F̂n(z).
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4. The alpha, beta and gamma duals of the spaces `p(F̂ ), c0(F̂ )

and c(F̂ ), and some matrix transformations

In this section, we determine the alpha, beta and gamma duals of the

spaces `p(F̂ ), c0(F̂ ) and c(F̂ ), and characterize the classes of infinite matrices

from the spaces `p(F̂ ) to the spaces `∞, c and c0.

Theorem 4.1. The alpha dual of the spaces c0(F̂ ) and c(F̂ ) is the set

d1 :=

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣∑
k∈K

bnk

∣∣∣∣∣ <∞
}
,

where the matrix B = (bnk) is defined by

bnk :=

{
f2n+1

fkfk+1
an , 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N.

Proof. Let a = (an) ∈ ω. Consider the equality

anxn =

n∑
k=0

f2
n+1

fkfk+1
anyk =

n∑
k=0

bnkyk = Bn(y). (4.1)

By (4.1), we obtain that ax = (anxn) ∈ `1 whenever x = (xk) ∈ c0(F̂ )

or c(F̂ ) if and only if By ∈ `1 whenever y = (yk) ∈ c0 or c. That is, the

sequence a = (an) is in the alpha dual of the space c0(F̂ ) or c(F̂ ) if and only
if B ∈ (c0, `1) = (c, `1). By taking B instead of A in part (f) of Lemma 2.1,

we obtain that a ∈
[
c0(F̂ )

]α
=
[
c(F̂ )

]α
if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

bnk

∣∣∣∣∣ <∞
which means that

[
c0(F̂ )

]α
=
[
c(F̂ )

]α
= d1. �

Theorem 4.2. Define the sets d2, d3, d4 and d5, as follows:

d2 :=

{
a = (ak) ∈ ω : sup

n∈N

n∑
k=0

∣∣∣∣ n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣ <∞},
d3 :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
j=k

f2
j+1

fkfk+1
aj exists for each k ∈ N

}
,

d4 :=

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=0

n∑
j=k

f2
j+1

fkfk+1
aj exists

}
,
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d5 :=

{
a = (ak) ∈ ω : sup

k,n∈N

∣∣∣∣ n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣ <∞}.
Then, the following statements hold:

(a)
[
c0(F̂ )

]α
=
[
c(F̂ )

]α
= d1.

(b)
[
c0(F̂ )

]β
= d2 ∩ d3.

(c)
[
c(F̂ )

]β
= d2 ∩ d3 ∩ d4.

(d)
[
`p(F̂ )

]β
= d3 ∩ d5.

(e)
[
c0(F̂ )

]γ
=
[
c(F̂ )

]γ
= d2.

(f)
[
`p(F̂ )

]γ
= d5.

Proof. Consider the equality

n∑
k=0

akxk =

n∑
k=0

ak

( k∑
i=0

f2
k+1

fifi+1
yi

)
=

n∑
k=0

( n∑
i=k

f2
i+1

fkfk+1
ai

)
yk = Cn(y), (4.2)

where C = (cnk) defined by

cnk :=

{ ∑n
i=k

f2i+1

fkfk+1
ai , 0 ≤ k ≤ n

0 , k > n

for all k, n ∈ N. Then, we observe by (4.2) that ax = (anxn) ∈ cs whenever

x ∈ c0(F̂ ) if and only if Cy ∈ c whenever y = (yk) ∈ c0 which means that

a ∈
[
c0(F̂ )

]β
if and only if C ∈ (c0, c). By using Part (b) of Lemma 2.1, we

derive that

sup
n∈N

∑
k

∣∣∣∣∣
n∑
i=k

f2
i+1

fkfk+1
ai

∣∣∣∣∣ <∞,
lim
n→∞

n∑
i=k

f2
i+1

fkfk+1
ai exists for each k ∈ N.

Hence, we conclude that
[
c0(F̂ )

]β
= d2 ∩ d3.

In a similar way, one can easily show the facts about the beta duals of the

spaces c(F̂ ), `p(F̂ ) and gamma duals of the spaces c0(F̂ ), c(F̂ ), `p(F̂ ). �

Now, we give the theorems characterizing the classes (`p(F̂ ) : `∞), (`p(F̂ ) :

c) and (`p(F̂ ) : c0) of infinite matrices.

Theorem 4.3. A = (ank) ∈ (`p(F̂ ) : `∞) if and only if

sup
k,n∈N

∣∣∣∣∣∣
∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣∣∣ <∞. (4.3)
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Proof. A = (ank) ∈ (`p(F̂ ) : `∞) and x = (xk) ∈ `p(F̂ ). Then, Ax exists and

belongs to the space `∞. Therefore, one can conclude for x(k) =
{
x

(k)
j

}
∈

`p(F̂ ) defined by

x
(k)
j :=

{
f2
j+1/fkfk+1 , j ≥ k

0 , 0 ≤ j ≤ k − 1
(4.4)

for all j, k ∈ N that Ax(k) =
(∑∞

j=k f
2
j+1anj/fkfk+1

)
∈ `∞ for each k ∈ N.

Hence, the condition (4.3) is necessary.

Conversely, suppose that (4.3) holds and take any x = (xk) ∈ `p(F̂ ).

Then, An ∈ [`p(F̂ )]β for each n ∈ N which leads to the existence of Ax. Let

n ∈ N be fixed. Consider the following relation derived from the mth partial
sum of the series

∑
k ankxk with (3.2):

m∑
k=0

ankxk =
m∑
k=0

m∑
j=k

f2
j+1

fkfk+1
anjyk (4.5)

for all m,n ∈ N. Then, by letting m→∞ in (4.5) we have

An(x) =
∑
k

ankxk =
∑
k

enkyk = En(y) (4.6)

for all n ∈ N, where the matrix E = (enk) is defined by

enk =

∞∑
j=k

f2
j+1

fkfk+1
anj (4.7)

for all k, n ∈ N. Therefore, since∣∣∣∣∑
k

ankxk

∣∣∣∣p =

∣∣∣∣∑
k

∞∑
j=k

f2
j+1

fkfk+1
anjyk

∣∣∣∣p

≤
(∑

k

∣∣∣∣ ∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣|yk|)p

≤
(

sup
k∈N

∣∣∣∣ ∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣)p(∑
k

|yk|
)p

≤
(

sup
k∈N

∣∣∣∣ ∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣)p∑
k

|yk|p
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we obtain by taking supremum over n ∈ N that

‖Ax‖∞ = sup
n∈N

∣∣∣∣∑
k

ankxk

∣∣∣∣ ≤ (‖y‖p)1/p

sup
k,n∈N

∣∣∣∣ ∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣ <∞.
That is, Ax ∈ `∞, as desired.

This completes the proof. �

Theorem 4.4. A = (ank) ∈ (`p(F̂ ) : c) if and only if (4.3) holds, and

∃αk ∈ R such that lim
n→∞

∞∑
j=k

f2
j+1

fkfk+1
anj = αk for each k ∈ N. (4.8)

Proof. Let A = (ank) ∈ (`p(F̂ ) : c). Then, Ax exists and is in the space c

for all x = (xk) ∈ `p(F̂ ). Since the inclusion c ⊂ `∞ holds, the necessity of
the condition (4.3) follows from Theorem 4.3. The necessity of the condition

(4.8) is immediate by taking the sequence x(k) =
{
x

(k)
j

}
∈ `p(F̂ ) defined by

(4.4).
Conversely, suppose that the conditions (4.3) and (4.8) hold, and take

any x = (xk) ∈ `p(F̂ ). Then, since An ∈ {`p(F̂ )}β for each n ∈ N, Ax
exists. Then, by taking into account the relation (4.6) one can see that the
conditions (4.3) and (4.8) correspond to (2.8) and (2.4) with enk instead of
ank, respectively; where enk is given by (4.7). Hence, Ey ∈ c which gives by

(4.6) that A ∈ (`p(F̂ ) : c). �

If we replace the space c0 with the space c, then Theorem 4.4 yields the
following:

Corollary 4.5. A = (ank) ∈ (`p(F̂ ) : c0) if and only if (4.3) holds, and
(4.8) also holds with αk = 0 for all k ∈ N.

Theorem 4.6. Suppose that the elements of the infinite matrices A = (ank)
and H = (hnk) are connected by the relation

hnk = −fn+1

fn
an−1,k +

fn
fn+1

ank (4.9)

for all k, n ∈ N and µ be any given sequence space. Then, A ∈ (µ, λ(F̂ )) if
and only if H ∈ (µ, λ); where λ denotes any of the classical sequence spaces
`p, c0 or c.

Proof. Let z = (zk) ∈ µ. Then, by taking into account the relation (4.9)
one can easily derive the following equality

m∑
k=0

hnkzk =

m∑
k=0

(
−fn+1

fn
an−1,k +

fn
fn+1

ank

)
zk for all m,n ∈ N
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which yields as m → ∞ that Hn(z) = (F̂A)n(z). Therefore, we conclude

that Az ∈ λ(F̂ ) whenever z ∈ µ if and only if Hz ∈ λ whenever z ∈ µ. This
step completes the proof. �

It is trivial that combining Theorems 4.3, 4.4 and Corollary 4.5 with
Theorem 4.6, one can derive the following results:

Corollary 4.7. Let A = (ank) be an infinite matrix and a(n, k) =
∑n

j=0 ajk
for all k, n ∈ N. Then, the following statements hold:

(a) A = (ank) ∈ (`p(F̂ ), bs) if and only if (4.3) holds with a(n, k) instead
of ank.

(b) A = (ank) ∈ (`p(F̂ ), cs) if and only if (4.3)) and (4.8) hold with
a(n, k) instead of ank.

(c) A = (ank) ∈ (`p(F̂ ), cs0) if and only if (4.3) and (4.8) hold with
a(n, k) instead of ank with αk = 0 for all k ∈ N, where cs0 denotes
the space of series converging to zero.

(d) A = (ank) ∈ (`p(F̂ ), `∞(F̂ )) if and only if (4.3) holds with hnk
instead of ank.

(e) A = (ank) ∈ (`p(F̂ ), c(F̂ )) if and only if (4.3) and (4.8) hold with
hnk instead of ank.

(f) A = (ank) ∈ (`p(F̂ ), c0(F̂ )) if and only if (4.3) and (4.8) hold with
hnk instead of ank with αk = 0 for all k ∈ N.

5. Conclusion

To review the relevant literature about the domain of the infinite matrix
A in the sequence spaces `p, c0 and c, the table on the next page may be
useful.

The present paper is devoted to the sequence spaces `p(F̂ ), c0(F̂ ) and

c(F̂ ) obtained as the domain of the double band matrix F̂ in the classical
spaces `p, c0 and c, respectively. Of course, the α-, β- and γ-duals of the

spaces c0(F̂ ), c(F̂ ) and `p(F̂ ) with 0 < p < 1 can be given, indirectly, in the
light of Theorem 3.1 of Altay and Başar [3]. However, we prefer to do this
by following the similar approach used in the proof of Theorems 4.1–4.3 of
Başar and Altay [8].

We should state that although the double sequential band matrix B(r̃, s̃)

can be reduced to the matrix F̂ in the case r̃ = (rn) and s̃ = (sn) with rn =
fn/fn+1 and sn−1 = −fn+1/fn for all n ∈ N, the main results concerning

the spaces c0(F̂ ) and c(F̂ ) are obtained independently from Candan [13]. It

is worth mentioning here that in spite of the domain of the matrix F̂ in the
space `p of absolutely p-summable sequences has been recently studied by
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Kara in [21] for 1 ≤ p < ∞, our results related to the space `p(F̂ ) are new
and are also complementary of [21].

A λ λA refer to:
∆ c0 and c c0(∆) and c(∆) [23]
∆ `p, (0 < p ≤ 1) bvp [4]

B(r, s, t) c0 and c B(c0) and B(c) [33]
C1 c0 and c c̃0 and c̃ [35]
Ar c0 and c ar0 and arc [6]
∆2 c0 and c c0(∆2) and c(∆2) [15]
u∆2 c0 and c c0(u; ∆2) and c(u; ∆2) [30]
∆m c0 and c c0(∆m) and c(∆m) [16, 11]
Rq c0 and c (N, q)0 and (N, q) [26]

∆(m) c0 and c c0(∆(m)) and c(∆(m)) [27]
G(u, v) c0 and c c0(u, v) and c(u, v) [5]

Λ c0 and c cλ0 and cλ [31]
B(r, s) c0 and c ĉ0 and ĉ [24]
Er c0 and c er0 and erc [1]
Aλ c0 and c Aλ(c0) and Aλ(c) [10]

B(r̃, s̃) c0 and c c̃0 and c̃ [13]
N t c0 and c c0(N t) and c(N t) [36]

Table 1: The domains of some triangle matrices in the spaces `p, c0 and c
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[10] N. L. Braha and F. Başar, On the domain of the triangle A(λ) on the spaces of null,

convergent and bounded sequences, Abstr. Appl. Anal., 2013, Article ID 476363, 9
pages, 2013, doi:10.1155/2013/476363.
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[36] O. Tuğ and F. Başar, On the domain of Nörlund mean in the spaces of null and
convergent sequences, TWMS J. Pure Appl. Math., 7 (1) (2016), 76–87.

(Received: June 24, 2015) Metin Başarır
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