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INDESTRUCTIBILITY AND THE LEVINSKI PROPERTY

ARTHUR W. APTER

Abstract. We investigate some possible interactions between an in-
destructibly supercompact cardinal and a generalization of a property
originally due to Levinski [18].

1. Introduction and preliminaries

We begin with some terminology and notational conventions. Suppose κ is

a regular cardinal. For β an arbitrary ordinal, the partial ordering Add(κ, β)

is the standard Cohen partial ordering for adding β many Cohen subsets of

κ. The partial ordering P is κ-directed closed if for every directed set D ⊆ P
of size less than κ, there is a condition in P extending each member of D. Say

that a measurable cardinal κ satisfies the Levinski property LP if 2κ = κ+,

yet GCH fails on some final segment of inaccessible cardinals below κ. Call

an ordinal α > 0 good if α is definable and is also such that for any cardinal

δ, δ+α is a regular cardinal below the least inaccessible cardinal above δ.1

Refine the preceding by saying that a measurable cardinal κ satisfies the

Levinski property LP(α) for a fixed but arbitrary good ordinal α if for every

inaccessible cardinal δ in some final segment below κ, 2δ = δ+α, yet 2κ = κ+.
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1This represents a slight abuse of notation. Strictly speaking, α is a formula with

parameter δ, which we will suppress. Examples of good ordinals include 2, 3, 75, ω + 1,
etc. This is since 2, 3, 75, and ω + 1 are all definable. Further, for α any of these values,
δ+α is regular since it is a successor cardinal. δ+α is also below the least inaccessible
cardinal above δ, which must be a (regular) limit cardinal.
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Both LP and LP(α) are variants of a property first studied by Levinski in

[18].

Beginning now our main narrative, it is an interesting and curious fact

that the large cardinal structure of the universe above a supercompact car-

dinal κ with suitable indestructibility properties can affect the large cardi-

nal structure below κ in quite surprising ways. On the other hand, these

effects may be mitigated if the universe contains relatively few large car-

dinals. These sorts of occurrences have previously been investigated in

[2, 3, 4, 5, 6, 7, 1, 8].

The purpose of this paper is to continue studying this phenomenon, but

in the context of different versions of the Levinski property together with

their interactions with an indestructibly supercompact cardinal. We begin

with the following theorem, where as in [17], κ is indestructibly supercompact

if κ’s supercompactness is preserved by arbitrary κ-directed closed forcing.

Theorem 1. Suppose that κ is indestructibly supercompact and there is a

measurable cardinal λ > κ. Then for any good ordinal α, Aα = {δ < κ | δ
is measurable, δ is not a limit of measurable cardinals, and LP(α) holds for

δ} is unbounded in κ.

The large cardinal hypothesis on λ is necessary, as we further demonstrate

by constructing via forcing models containing an indestructibly supercom-

pact cardinal κ with no measurable cardinal above it in which for fixed but

arbitrary good α, every measurable cardinal δ < κ which is not a limit of

measurable cardinals satisfies LP(α). Specifically we have:

Theorem 2. Suppose V � “ZFC + κ is supercompact + No cardinal ζ > κ

is measurable”. Let α be a good ordinal. There is then a partial ordering

P ∈ V such that V P � “ZFC + No cardinal ζ > κ is measurable + κ is

indestructibly supercompact + If δ < κ is a measurable cardinal which is not

a limit of measurable cardinals, then LP(α) holds”.

We also show the necessity of the large cardinal hypothesis on λ by con-

structing via forcing models containing an indestructibly supercompact car-

dinal κ with no measurable cardinals above it such that for every measurable
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cardinal δ < κ which is not a limit of measurable cardinals, 2δ > δ+. In

particular we have:

Theorem 3. Suppose V � “ZFC + κ is supercompact + No cardinal ζ > κ

is measurable”. There is then a partial ordering P ⊆ V such that V P � “ZFC

+ No cardinal ζ > κ is measurable + κ is indestructibly supercompact + If

δ < κ is a measurable cardinal which is not a limit of measurable cardinals,

then 2δ = δ++”.

We take this opportunity to make a few remarks concerning Theorems

2 and 3. In the conclusions of Theorem 3, there is nothing special about

having 2δ = δ++ for every measurable cardinal δ < κ which is not a limit of

measurable cardinals. As our methods of proof will show, it is also possible

to have 2δ = δ+3, 2δ = δ+4, etc. In addition, for both Theorems 2 and

3, the measurable cardinal δ < κ cannot in general be a limit of measur-

able cardinals. This is since for any n < ω, (Add(κ+, 1) ∗ ˙Add(κ, κ+n))V
P

is κ-directed closed in V P. Standard arguments (see [14, Exercise 15.16])

show that after forcing with Add(κ+, 1), 2κ = κ+. Thus, if V P � “κ is

indestructibly supercompact”, V P∗ ˙Add(κ+,1)∗ ˙Add(κ,κ+n) � “κ is supercompact

+ 2κ = κ+n + κ is a measurable limit of measurable cardinals”. Hence,

by reflection, in V P∗ ˙Add(κ+,1)∗ ˙Add(κ,κ+n), Bn = {δ < κ | δ is a measurable

limit of measurable cardinals and 2δ = δ+n} is unbounded in κ. Because

(Add(κ+, 1) ∗ ˙Add(κ, κ+n))V
P

is κ-directed closed in V P, Bn is unbounded

in V P as well. This precludes the conclusions of both Theorems 2 and 3

holding for δ when δ < κ is a measurable limit of measurable cardinals.

We conclude Section 1 with a very brief discussion of some preliminary

material. We presume a basic knowledge of large cardinals and forcing. A

good reference in this regard is [14]. When forcing, q ≥ p means that q is

stronger than p. We will have two slight abuses of notation. In particular,

when G is V -generic over P, we take both V [G] and V P as being the generic

extension of V by P. We also occasionally confuse terms with the sets they

denote, especially for ground model sets and variants of the generic object.

For α < β ordinals, [α, β) and (α, β) are as in standard interval notation.

We recall for the benefit of readers the definition given by Hamkins in

[13, Section 3] of the lottery sum of a collection of partial orderings. If A is
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a collection of partial orderings, then the lottery sum is the partial ordering

⊕A = {〈P, p〉 | P ∈ A and p ∈ P} ∪ {0}, ordered with 0 below everything

and 〈P, p〉 ≤ 〈P′, p′〉 iff P = P′ and p ≤ p′. Intuitively, if G is V -generic over

⊕A, then G first selects an element of A (or as Hamkins says in [13], “holds

a lottery among the posets in A”) and then forces with it.2

A corollary of Hamkins’ work on gap forcing found in [11, 12] will be

employed in the proof of Theorems 2 and 3. We therefore state as a sep-

arate theorem what is relevant for this paper, along with some associated

terminology, quoting from [11, 12] when appropriate. Suppose P is a partial

ordering which can be written as Q ∗ Ṙ, where |Q| < δ, Q is nontrivial,

and 
Q “Ṙ is δ+-directed closed”. In Hamkins’ terminology of [11, 12], P
admits a gap at δ. Also, as in the terminology of [11, 12] and elsewhere, an

embedding j : V → M is amenable to V when j � A ∈ V for any A ∈ V .

The specific corollary of Hamkins’ work from [11, 12] we will be using is

then the following.

Theorem 4. (Hamkins) Suppose that V [G] is a generic extension obtained

by forcing with P that admits a gap at some regular δ < κ. Suppose further

that j : V [G]→M [j(G)] is an elementary embedding with critical point κ for

which M [j(G)] ⊆ V [G] and M [j(G)]δ ⊆ M [j(G)] in V [G]. Then M ⊆ V ;

indeed, M = V ∩M [j(G)]. If the full embedding j is amenable to V [G], then

the restricted embedding j � V : V → M is amenable to V . If j is definable

from parameters (such as a measure or extender) in V [G], then the restricted

embedding j � V is definable from the names of those parameters in V .

A consequence of Theorem 4 is that if P admits a gap at some regular δ < κ

and V P � “κ is measurable”, then V � “κ is measurable” as well.

2. The proofs of theorems 1 – 3

We turn now to the proof of Theorem 1, whose proof will depend on the

existence of a certain partial ordering P(δ, λ, α). We isolate the existence of

this key forcing notion in the following theorem.

2The terminology “lottery sum” is due to Hamkins, although the concept of the lottery
sum of partial orderings has been around for quite some time and has been referred to
at different junctures via the names “disjoint sum of partial orderings,” “side-by-side
forcing,” and “choosing which partial ordering to force with generically.”
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Theorem 5. Suppose V � “δ < λ are such that δ is a regular cardinal

and λ is the least measurable cardinal greater than λ”. Let α be a good

ordinal. There is then a δ-directed closed partial ordering P(δ, λ, α) such

that V P(δ,λ,α) � “λ is the least measurable cardinal greater than δ + LP(α)

holds for λ”.

Proof. Assume δ, λ, and α are as in the hypotheses of Theorem 5. We

define P(δ, λ, α) as P1 ∗ Ṗ2, where P1 = Add(λ+, 1). Because Add(λ+, 1) is

λ+-directed closed, V P1
� “λ is the least measurable cardinal greater than

δ”. As we have already observed, standard arguments show that V P1
�

“2λ = λ+”.

Work now in V = V P1
. P2 is defined as Pλ ∗ ˙Add(λ, λ+), where Pλ =

〈〈Pβ, Q̇β〉 | β < λ〉 is the reverse Easton iteration of length λ which begins

by forcing with Add(δ, 1) and then does nontrivial forcing only at those

γ ∈ (δ, λ) which are inaccessible cardinals in V . At such a stage γ, Q̇γ is

a term for Add(γ+, 1) ∗ ˙Add(γ, γ+α). Standard arguments once again show

that V
P1

� “2γ = γ+α if γ ∈ (δ, λ) is inaccessible”. In addition, by its

definition, P(δ, λ, α) is δ-directed closed.

It is also the case that V
P2

� “λ is measurable”. To see this, let j :

V →M be an elementary embedding witnessing the measurability of λ in V

generated by a normal measure over λ. In particular, Mλ ⊆M . We combine

several ideas (including a standard lifting argument, an idea due to Levinski

[18], and an idea due to Magidor [20]) to show that j lifts in V
Pλ∗ ˙Add(λ,λ+)

to j : V
Pλ∗ ˙Add(λ,λ+) → M j(Pλ∗ ˙Add(λ,λ+)). Specifically, let G0 be V -generic

over Pλ, and let G1 be V [G0]-generic over Add(λ, λ+). Observe that j(Pλ ∗
˙Add(λ, λ+)) = Pλ∗ ˙Add(λ+, 1)∗ ˙Add(λ, λ+α)∗Q̇∗ ˙Add(j(λ), j(λ+)). Working

in V [G0], we first note that since Pλ is λ-c.c., M [G0] remains λ-closed with

respect to V [G0]. This means that (Add(λ+, 1))M [G0] (which by the λ-

closure of M [G0] with respect to V [G0] has the same definition in both V [G0]

and M [G0]) is λ+-directed closed in both M [G0] and V [G0]. Consequently,

without fear of ambiguity, we write Add(λ+, 1) for (Add(λ+, 1))M [G0].

Since M [G0] � “|Add(λ+, 1)| = |[λ+]λ| = 2λ” and M and M [G0] have

the same cardinals at and above λ, the number of dense open subsets of

Add(λ+, 1) present in M [G0] is (22
λ
)M < j(λ). In V , since M is given



8 ARTHUR W. APTER

via an ultrapower by a normal measure over λ, |j(λ)| may be calculated

as |{f | f : λ→ λ}| = 2λ = λ+. Since λ+ is preserved from V to V [G0],

we may let 〈Dβ | β < λ+〉 ∈ V [G0] enumerate the dense open subsets of

Add(λ+, 1) present in M [G0]. We may now use the fact that Add(λ+, 1) is

λ+-directed closed in V [G0] to meet each Dβ and thereby construct in V [G0]

an M [G0]-generic object H0 over Add(λ+, 1). Our construction guarantees

that j′′G0 ⊆ G0 ∗ H0, so j lifts in V [G0] to j : V [G0] → M [G0][H0]. Note

that because Add(λ+, 1) is λ+-directed closed in both M [G0] and V [G0],

M [G0][H0] remains λ-closed with respect to V [G0][H0] = V [G0].

We use now Levinski’s ideas of [18] to show that it is possible to rearrange

G1 to form an M [G0][H0]-generic object H1 over (Add(λ, λ+α))M [G0][H0]

in V [G0][G1]. Since V � “2λ = λ+” and j is generated by an ultrafil-

ter over λ, λ+ < j(λ) < λ++. In particular, because M [G0] � “λ+ ≤
2λ = |(Add(λ+, 1))| < j(λ)”, any γ ∈ (λ+, j(λ)) which M [G0][H0] be-

lieves to be a cardinal actually is an ordinal of cardinality λ+ in either

V , V [G0], or V [G0][G1]. Hence, V [G0][G1] � “|(λ+α)M [G0][H0]| = λ+”. Let

(λ+α)M [G0][H0] = ρ. Working in V [G0][G1], we may therefore let f : λ+ → ρ

be a bijection. For any p ∈ Add(λ, λ+), g(p) = {〈〈σ, f(β)〉, γ〉 | 〈〈σ, β〉, γ〉 ∈
p} ∈ (Add(λ, ρ))M [G0][H0]. As can be easily checked (see [18]), G1 = {g(p) |
p ∈ H} is an M [G0][H0]-generic object over (Add(λ, ρ))M [G0][H0]. As before,

our construction guarantees that j′′G0 ⊆ G0∗H0∗H1, so j lifts in V [G0][G1]

to j : V [G0]→M [G0][H0][H1].

Because (Add(λ, λ+))V [G0] is λ+-c.c. in V [G0], M [G0][H0][H1] remains

λ-closed with respect to V [G0][G1]. In addition, since M [G0][H0][H1] � “Q
is a reverse Easton iteration of length j(λ)”, M [G0][H0][H1] � “|Q| = j(λ)

and Q is j(λ)-c.c.”. This means the number of antichains of Q present in

M [G0][H0][H1] is j(λ). Further, as M [G0][H0][H1] � “Q is λ+-directed

closed” and M [G0][H0][H1] is λ-closed with respect to V [G0][G1], Q is

λ+-directed closed in V [G0][G1] as well. This means that the argument

used in the construction of H0 may be used to construct in V [G0][G1]

an M [G0][H0][H1]-generic object H2 over Q. Since once again it is the

case that j′′G0 ⊆ G0 ∗ H0 ∗ H1 ∗ H2, we may then in V [G0][G1] lift j to

j : V [G0] → M [G0][H0][H1][H2]. By the fact that Q is λ+-directed closed
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in both M [G0][H0][H1] and V [G0][G1], M [G0][H0][H1][H2] remains λ-closed

with respect to V [G0][G1][H2] = V [G0][H0][G1][H2] = V [G0][G1].

We now use arguments originally due to Magidor [20], which are also

given in [9, pages 119–120] and are found other places in the literature

as well, to construct in V [G0][G1] an M [G0][H0][H1][H2]-generic object H3

over (Add(j(λ), j(λ+))M [G0][H0][H1][H2]. For the convenience of readers, we

present these arguments below.

For ζ ∈ (λ, λ+) and p ∈ Add(λ, λ+), let p � ζ = {〈〈ρ, σ〉, η〉 ∈ p | σ < ζ}
and G1 � ζ = {p � ζ | p ∈ G1}. Clearly, V [G0][G1] � “|G1 � ζ| ≤ λ

for all ζ ∈ (λ, λ+)”. Thus, since Add(j(λ), j(λ+))
M [G0][H0][H1][H2] is j(λ)-

directed closed and j(λ) > λ+, qζ =
⋃
{j(p) | p ∈ G1 � ζ} is well-defined

and is an element of Add(j(λ), j(λ+))
M [G0][H0][H1][H2]. Further, if 〈ρ, σ〉 ∈

dom(qζ) − dom(
⋃
β<ζ qβ) (

⋃
β<ζ qβ is well-defined by closure), then σ ∈

[
⋃
β<ζ j(β), j(ζ)). To see this, assume to the contrary that σ <

⋃
β<ζ j(β).

Let β be minimal such that σ < j(β). It must thus be the case that for some

p ∈ G1 � ζ, 〈ρ, σ〉 ∈ dom(j(p)). Since by elementarity and the definitions of

G1 � β and G1 � ζ, for p � β = q ∈ G1 � β, j(q) = j(p) � j(β) = j(p � β), it

must be the case that 〈ρ, σ〉 ∈ dom(j(q)). This means 〈ρ, σ〉 ∈ dom(qβ), a

contradiction.

Since M [G0][H0][H1][H2] � “j(λ) is inaccessible and 2j(λ) = j(λ+)”, an

application of [14, Lemma 15.4] shows that M [G0][H0][H1][H2] � “Add(j(λ),

j(λ+)) is j(λ+)-c.c. and has j(λ+) many maximal antichains”. This means

that if A ∈M [G0][H0][H1][H2] is a maximal antichain of Add(j(λ), j(λ+)),

A ⊆ Add(j(λ), β) for some β ∈ (j(λ), j(λ+)). Thus, since the fact V �

“2λ = λ+” and the fact j is generated by a normal measure over λ imply

that V � “|j(λ+)| = λ+”, we can let 〈Aζ | ζ ∈ (λ, λ+)〉 ∈ V [G0][G1] be an

enumeration of all of the maximal antichains of Add(j(λ), j(λ+)) present in

M [G0][H0][H1][H2].

Working in V [G0][G1], we define now an increasing sequence 〈rζ | ζ ∈
(λ, λ+)〉 of elements of Add(j(λ), j(λ+)) such that ∀ζ ∈ (λ, λ+)[rζ ≥ qζ

and rζ ∈ Add(j(λ), j(ζ))] and such that ∀A ∈ 〈Aζ | ζ ∈ (λ, λ+)〉∃β ∈
(λ, λ+)∃r ∈ A[rβ ≥ r]. Assuming we have such a sequence, H3 = {p ∈
Add(j(λ), j(λ+)) | ∃r ∈ 〈rζ | ζ ∈ (λ, λ+)〉[r ≥ p] is an M [G0][H0][H1][H2]-

generic object over Add(j(λ), j(λ+)). To define 〈rζ | ζ ∈ (λ, λ+)〉, if ζ is a
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limit, we let rζ =
⋃
β∈(λ,ζ) rβ. By the facts 〈rβ | β ∈ (λ, ζ)〉 is (strictly) in-

creasing and M [G0][H0][H1][H2] is λ-closed with respect to V [G0][G1], this

definition is valid. Assuming now rζ has been defined and we wish to de-

fine rζ+1, let 〈Bβ | β < η ≤ λ〉 be the subsequence of 〈Aβ | β ≤ ζ + 1〉
containing each antichain A such that A ⊆ Add(j(λ), j(ζ + 1)). Since

qζ , rζ ∈ Add(j(λ), j(ζ)), qζ+1 ∈ Add(j(λ), j(ζ + 1)), and j(ζ) < j(ζ + 1),

the condition r′ζ+1 = rζ ∪ qζ+1 is well-defined, since by our earlier observa-

tions, any new elements of dom(qζ+1) won’t be present in either dom(qζ) or

dom(rζ). We can thus, using the fact M [G0][H0][H1][H2] is λ-closed with

respect to V [G0][G1], define by induction an increasing sequence 〈sβ | β < η〉
such that s0 ≥ r′ζ+1, sρ =

⋃
β<ρ sβ if ρ is a limit ordinal, and sβ+1 ≥ sβ

is such that sβ+1 extends some element of Bβ. The just mentioned closure

fact implies rζ+1 =
⋃
β<η sβ is a well-defined condition.

In order to show that H3 is M [G0][H0][H1][H2]-generic over Add(j(λ),

j(λ+)), we must show that ∀A ∈ 〈Aζ | ζ ∈ (λ, λ+)〉∃β ∈ (λ, λ+)∃r ∈
A[rβ ≥ r]. To do this, we first note that 〈j(ζ) | ζ < λ+〉 is unbounded in

j(λ+). To see this, if β < j(λ+) is an ordinal, then for some f : λ → M

representing β, we can assume that for ρ < λ, f(ρ) < λ+. Thus, by the

regularity of λ+ in V , β0 =
⋃
ρ<λ f(ρ) < λ+, and j(β0) > β. This means

by our earlier remarks that if A ∈ 〈Aζ | ζ < λ+〉, A = Aρ, then we

can let β ∈ (λ, λ+) be such that A ⊆ Add(j(λ), j(β)). By construction,

for η > max(β, ρ), there is some r ∈ A such that rη ≥ r. And, as any

p ∈ Add(λ, λ+) is such that for some ζ ∈ (λ, λ+), p = p � ζ, H3 is such

that if p ∈ G1, j(p) ∈ H3. Thus, working in V [G0][G1], we have shown that

j lifts to j : V [G0][G1] → M [G0][H0][H1][H2][H3], i.e., V [G0][G1] � “λ is

measurable”.

The proof of Theorem 5 will be finished once we have shown that

V [G0][G1] � “No cardinal in the interval (δ, λ) is measurable”. To see that

this is the case, write P2 = Add(δ, 1) ∗ Ṙ. Since this definition shows that

P2 admits a gap at δ, by Theorem 4, any cardinal in the interval (δ, λ)

which is measurable in V [G0][G1] had to have been measurable in V [G0].

However, since V [G0] � “λ is the least measurable cardinal greater than

δ”, V [G0][G1] � “λ is the least measurable cardinal greater than δ” as well.

This completes the proof of Theorem 5. �
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With the proof of Theorem 5 having been established, we can now prove

Theorem 1. We follow the proofs of [2, Theorem 2] and [6, Theorem 1].

Suppose that κ is indestructibly supercompact and there is a measurable

cardinal λ > κ. We show that for any good ordinal α, Aα = {δ < κ | δ is

measurable, δ is not a limit of measurable cardinals, and LP(α) holds for δ}
is unbounded in κ. Let η > κ be the least measurable cardinal. Force with

P(κ, η, α). After this forcing, which is κ-directed closed, LP(α) holds for η,

and η remains the least measurable cardinal above κ. In particular, after

the forcing, η is a measurable cardinal which is not a limit of measurable

cardinals at which LP(α) holds. Since κ is indestructibly supercompact, by

reflection, Aα = {δ < κ | δ is measurable, δ is not a limit of measurable

cardinals, and LP(α) holds for δ} is unbounded in κ after the forcing has

been performed. Once more, we infer by the fact P(κ, η, α) is κ-directed

closed that Aα is unbounded in κ in the ground model. This completes the

proof of Theorem 1. �

Having finished the proof of Theorem 1, we turn now to the proof of

Theorem 2.

Proof. Suppose V � “ZFC + κ is supercompact + No cardinal ζ > κ is

measurable”. Let α be a fixed but arbitrary good ordinal. Take 〈δj | j < κ〉
to be the continuous, increasing enumeration of {ω} ∪ {δ < κ | δ is either a

measurable cardinal or a limit of measurable cardinals}. For any measurable

cardinal δ, δ = δj , let θδ be the least cardinal θ ∈ (δj , δj+1) such that δ is

not θ supercompact in V , or δ if δ is δj+1 supercompact in V . We define

now a length κ reverse Easton iteration P = 〈〈Pδ, Q̇δ〉 | δ < κ〉 by four cases

as follows, taking as an inductive hypothesis that if δ = δj is a measurable

cardinal, then 
Pδ “δj+1 is the least measurable cardinal greater than δ”:

(1) P0 = Add(ω, 1) = Add(δ0, 1).

(2) If δ = ω or δ is in V either a non-measurable limit of measurable

cardinals or a measurable cardinal which is not a limit of measurable

cardinals, let j be such that δ = δj . Then Pδ+1 = Pδ ∗ Q̇δ, where Q̇δ

is a term for the partial ordering P(δ++
j , δj+1, α) of Theorem 5.

(3) If δ is in V a measurable limit of measurable cardinals with δ = δj ,

then Pδ+1 = Pδ ∗ Q̇ ∗ Ṗ(η̇, δj+1, α) = Pδ ∗ Q̇δ. Here, 
Pδ “Q̇ is the
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lottery sum of all δ-directed closed partial orderings having rank less

than δj+1”, and 
Pδ∗Q̇ “η̇ is the least inaccessible cardinal greater

than max(θδ, |TC(Ṙ)|), where Ṙ is the partial ordering selected in

the stage δ lottery”.

(4) If neither Cases 1 – 3 holds, then Pδ+1 = Pδ ∗ Q̇δ, where Q̇δ is a term

for trivial forcing {∅}.

By induction, it follows that for any j < κ, Pδj is forcing equivalent to a

partial ordering having size at most 2δj < δj+1. From this, the Lévy-Solovay

results [19] show that the inductive hypothesis holds and P is well-defined.

Lemma 2.1. V P � “κ is indestructibly supercompact”.

Proof. We slightly modify the proofs of [2, Lemma 2.1], [6, Lemma 2.1], [7,

Lemma 3.1], and [1, Lemma 2.6], quoting verbatim when appropriate. Let

Q ∈ V P be such that V P � “Q is κ-directed closed”. Take Q̇ as a term

for Q such that 
P “Q̇ is κ-directed closed”. Suppose λ ≥ |TC(Q̇)| is an

arbitrary cardinal, and let γ = 2|[λ]
<κ|. Take j : V → M as an elementary

embedding witnessing the γ supercompactness of κ generated by a super-

compact ultrafilter over Pκ(γ) such that M � “κ is not γ supercompact”.

Since V � “No cardinal ζ > κ is measurable” and Mγ ⊆ M , the defini-

tion of P implies that in M , above the appropriate condition, j(P ∗ Q̇) is

forcing equivalent to P ∗ Q̇ ∗ Ṙ ∗ j(Q̇), where the first stage at which Ṙ is

forced to do nontrivial forcing is well above γ. Laver’s original argument

from [17] now applies and shows that V P∗Q̇ � “κ is λ supercompact”. (Sim-

ply let G0 ∗ G1 ∗ G2 be V -generic over P ∗ Q̇ ∗ Ṙ, lift j in V [G0][G1][G2]

to j : V [G0] → M [G0][G1][G2], take a master condition p for j′′G1 and

a V [G0][G1][G2]-generic object G3 over j(Q) containing p, lift j again in

V [G0][G1][G2][G3] to j : V [G0][G1] → M [G0][G1][G2][G3], and show by the

γ+-directed closure of R ∗ j(Q̇) that the supercompactness measure over

(Pκ(λ))V [G0][G1] generated by j is actually a member of V [G0][G1].) As λ

and Q were arbitrary, this completes the proof of Lemma 2.1. �

Lemma 2.2. V P � “If δ < κ is a measurable cardinal which is not a limit

of measurable cardinals, then LP(α) holds”.
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Proof. Let γ < κ be such that V � “δ = δγ is a measurable cardinal which

is not a limit of measurable cardinals”. By the definition of the δj ’s, it must

be the case that γ is a successor ordinal. Let γ = β + 1, σ = δβ, and

write P = Pσ+1 ∗ Ṗσ+1. By the definition of P and Theorem 4, it must also

be true that V Pσ+1 � “δβ+1 is the least measurable cardinal greater than

δβ + LP(α) holds for δβ+1”.3 Since 
Pσ+1 “Ṗσ+1 is δ++
β+1-directed closed”,

V Pσ+1∗Ṗσ+1
= V P � “δβ+1 is the least measurable cardinal greater than δβ

+ LP(α) holds for δβ+1” as well. The proof of Lemma 2.2 will therefore be

complete once we have shown that in V P, any measurable cardinal δ < κ

which is not a limit of measurable cardinals is such that δ = δβ+1 for some

β < κ.

To see this, assume to the contrary that δ 6= δβ+1 for any β < κ. Write

P = P0∗Q̇, where P0 = Add(ω, 1) and 
P0 “Q̇ is ℵ2-directed closed”. Since P
admits a gap at ω, by Theorem 4, any cardinal measurable in V P had to have

been measurable in V . This means that δ = δλ for some limit ordinal λ < κ,

i.e., in V , δ is a measurable limit of measurable cardinals. In particular,

in V , δ is a limit of measurable cardinals which are not themselves limits

of measurable cardinals. It consequently follows that in V , δ is a limit of

measurable cardinals which have the form δβ+1 for some β < κ. However,

the arguments of the preceding paragraph show that any such measurable

cardinal remains measurable in V P. From this, we immediately infer that

in V P, δ is a measurable limit of measurable cardinals. This contradiction

completes the proof of Lemma 2.2. �

Since P may be defined so that |P| = κ, by the results of [19], V P � “No

cardinal ζ > κ is measurable”. This fact, together with Lemmas 2.1 and

2.2, complete the proof of Theorem 2. �

3If we are in Case 2 of the definition of P at stage σ+1, then this follows by the results of
[19], since Pδβ is forcing equivalent to a partial ordering having size at most 2δβ < δβ+1. If

we are in Case 3 of the definition of P at stage σ+1, with Pσ+1 = Pσ∗Q̇∗Ṗ(η̇, δβ+1, α), then
because forcing with Q is forcing equivalent to forcing with a partial ordering having size
less than δβ+1, an application of the results of [19] shows that 
Pσ∗Q̇ “δβ+1 is measurable”.

Because Pσ ∗ Q̇ = P0 ∗ Ṙ, where P0 = Add(ω, 1) and 
P0 “Ṙ is ℵ2-directed closed”, Pσ ∗ Q̇
admits a gap at ω. Therefore, by Theorem 4, any cardinal measurable in V Pσ∗Q̇ had to
have been measurable in V . This means that 
Pσ∗Q̇ “δβ+1 is the least measurable cardinal

greater than δβ”. This fact is then preserved after forcing with P(η, δβ+1, α).
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Having finished the proof of Theorem 2, we turn now to the proof of

Theorem 3.

Proof. Suppose V � “ZFC + κ is indestructibly supercompact + No cardinal

ζ > κ is measurable”. Without loss of generality, by first forcing GCH if

necessary and then forcing with the (possibly proper class) reverse Easton

iteration which is trivial except at inaccessible stages δ, where the partial

ordering used is Add(δ, δ++), we may assume in addition that V � “2δ = δ++

for every inaccessible cardinal δ”.

As in the proof of Theorem 2, let 〈δj | j < κ〉 be the continuous, increasing

enumeration of {ω} ∪ {δ < κ | δ is either a measurable cardinal or a limit

of measurable cardinals}. We define now a length κ reverse Easton iteration

P = 〈〈Pδ, Q̇δ〉 | δ < κ〉 by three cases as follows:

(1) P0 = Add(ω, 1) = Add(δ0, 1).

(2) If δ is in V a measurable limit of measurable cardinals with δ = δj ,

then Pδ+1 = Pδ ∗ Q̇δ, where 
Pδ “Q̇δ is the lottery sum of all δ-

directed closed partial orderings having rank less than δj+1”.

(3) If neither Cases 1 nor 2 holds, then Pδ+1 = Pδ ∗ Q̇δ, where Q̇δ is a

term for trivial forcing {∅}.

The same reasoning as given for Theorem 2 allows us to infer that V P � “κ

is indestructibly supercompact + No cardinal ζ > κ is measurable”. The

proof of Theorem 3 will therefore be completed by the following lemma.

Lemma 2.3. V P � “If δ < κ is a measurable cardinal which is not a limit

of measurable cardinals, then 2δ = δ++”.

Proof. We argue in analogy to the proof of Lemma 2.2. Let γ < κ be such

that V � “δ = δγ is a measurable cardinal which is not a limit of measurable

cardinals”. As before, by the definition of the δj ’s, it must be the case that γ

is a successor ordinal. Let γ = β+1, σ = δβ, and write P = Pσ+1 ∗ Ṗσ+1. By

the definition of P, it inductively follows that Pσ+1 is forcing equivalent to a

partial ordering having size less than δβ+1. Since 
Pσ+1 “Ṗσ+1 is (at least)

δ+3-directed closed”, in both V Pσ+1 and V Pσ+1∗Ṗσ+1
= V P, δ is a measurable

cardinal which is not a limit of measurable cardinals and 2δ = δ++. The

same proof as given in Lemma 2.2 now shows that if V P � “δ is a measurable
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cardinal which is not a limit of measurable cardinals”, then δ = δρ+1 for some

ρ < κ. This completes the proof of both Lemma 2.3 and Theorem 3. �

�

In conclusion to this paper, we note that Theorems 1 – 3 remain valid if

the definition of good ordinal is changed to allow δ+α to be a regular cardinal

above the least inacessible cardinal greater than δ. The definition used in

this paper was chosen as a matter of convenience and ease of presentation.

In addition, we observe that results analogous to Theorems 1 – 3 hold if

κ is either an indestructible strong cardinal in Gitik and Shelah’s sense of

[10] or an indestructible strongly unfoldable cardinal in Johnstone’s sense

of [15, 16]. (See [15, 16] for the definition of strongly unfoldable cardinal.)

Readers may work out the details for themselves.
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