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NEW NORM INEQUALITIES OF ČEBYŠEV TYPE FOR

POWER SERIES IN BANACH ALGEBRAS

S. S. DRAGOMIR, M. V. BOLDEA AND M. MEGAN

Abstract. Let f (λ) =
∑∞

n=0 αnλ
n be a function defined by power se-

ries with complex coefficients and convergent on the open diskD (0, R) ⊂
C, R > 0 and x, y ∈ B, a Banach algebra, with xy = yx.

In this paper we establish some new upper bounds for the norm of
the Čebyšev type difference

f (λ) f (λxy)− f (λx) f (λy)

provide that the complex number λ and the vectors x, y ∈ B are such
that the series in the above expression are convergent. These results
complement the earlier resuls obtained by the authors. Applications for
some fundamental functions such as the exponential function and the
resolvent function are provided as well.

1. Introduction

Let B be an algebra. An algebra norm on B is a map ‖·‖ : B→[0,∞) such
that (B, ‖·‖) is a normed space, and, further:

‖ab‖ ≤ ‖a‖ ‖b‖
for any a, b ∈ B. The normed algebra (B, ‖·‖) is a Banach algebra if ‖·‖ is a
complete norm.

We assume that the Banach algebra is unital, this means that B has an
identity 1 and that ‖1‖ = 1.

Let B be a unital algebra. An element a ∈ B is invertible if there exists
an element b ∈ B with ab = ba = 1. The element b is unique; it is called
the inverse of a and written a−1 or 1

a . The set of invertible elements of B is

denoted by InvB. If a, b ∈InvB then ab ∈InvB and (ab)−1 = b−1a−1.
For a unital Banach algebra we also have:

(i) If a ∈ B and limn→∞ ‖an‖1/n < 1, then 1− a ∈InvB;

2010 Mathematics Subject Classification. 47A63, 47A99.
Key words and phrases. Banach algebras, power series, exponential function, resolvent

function, norm inequalities.



254 S. S. DRAGOMIR, M. V. BOLDEA AND M. MEGAN

(ii) {a ∈ B: ‖1− b‖ < 1} ⊂InvB;
(iii) InvB is an open subset of B;
(iv) The map InvB 3 a 7−→ a−1 ∈InvB is continuous.

For simplicity, we denote λ1, where λ ∈ C and 1 is the identity of B, by
λ. The resolvent set of a ∈ B is defined by

ρ (a) := {λ ∈ C : λ− a ∈ InvB} ;

the spectrum of a is σ (a) , the complement of ρ (a) in C, and the resolvent

function of a is Ra : ρ (a)→InvB, Ra (λ) := (λ− a)−1 . For each λ, γ ∈ ρ (a)
we have the identity

Ra (γ)−Ra (λ) = (λ− γ)Ra (λ)Ra (γ) .

We also have that σ (a) ⊂ {λ ∈ C : |λ| ≤ ‖a‖} . The spectral radius of a is
defined as ν (a) = sup {|λ| : λ ∈ σ (a)} .

If a, b are commuting elements in B, i.e. ab = ba, then

ν (ab) ≤ ν (a) ν (b) and ν (a+ b) ≤ ν (a) + ν (b) .

Let f be an analytic functions on the open disk D (0, R) given by the
power series f (λ) :=

∑∞
j=0 αjλ

j (|λ| < R) . If ν (a) < R, then the series∑∞
j=0 αja

j converges in the Banach algebra B because
∑∞

j=0 |αj |
∥∥aj∥∥ <∞,

and we can define f (a) to be its sum. Clearly f (a) is well defined and there
are many examples of important functions on a Banach algebra B that can
be constructed in this way. For instance, the exponential map on B denoted
exp and defined as

exp a :=

∞∑
j=0

1

j!
aj for each a ∈ B.

If B is not commutative, then many of the familiar properties of the expo-
nential function from the scalar case do not hold. The following key formula
is valid, however with the additional hypothesis of commutativity for a and
b from B

exp (a+ b) = exp (a) exp (b) .

In a general Banach algebra B it is difficult to determine the elements in
the range of the exponential map exp (B) , i.e. the element which have a
”logarithm”. However, it is easy to see that if a is an element in B such that
‖1− a‖ < 1, then a is in exp (B) . That follows from the fact that if we set

b = −
∞∑
n=1

1

n
(1− a)n ,

then the series converges absolutely and, as in the scalar case, substituting
this series into the series expansion for exp (b) yields exp (b) = a.
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It is known that if x and y are commuting, i.e. xy = yx, then the
exponential function satisfies the property

exp (x) exp (y) = exp (y) exp (x) = exp (x+ y) .

Also, if x is invertible and a, b ∈ R with a < b then∫ b

a
exp (tx) dt = x−1 [exp (bx)− exp (ax)] .

Moreover, if x and y are commuting and y − x is invertible, then∫ 1

0
exp ((1− s)x+ sy) ds =

∫ 1

0
exp (s (y − x)) exp (x) ds

=

(∫ 1

0
exp (s (y − x)) ds

)
exp (x)

= (y − x)−1 [exp (y − x)− I] exp (x)

= (y − x)−1 [exp (y)− exp (x)] .

Inequalities for functions of operators in Hilbert spaces may be found in
the papers [3], [2] and in the recent monographs [4], [5], [7] and the references
therein.

In order to state some earlier results [6] that motivate our current work
we need some preparation as follows.

Let αn be nonzero complex numbers and let

R :=
1

lim sup |αn|
1
n

.

Clearly 0 ≤ R ≤ ∞, but we consider only the case 0 < R ≤ ∞.
Denote by:

D(0, R) =

{
{λ ∈ C : |λ| < R}, if R <∞
C, if R =∞,

consider the functions:

λ 7→ f(λ) : D(0, R)→ C, f(λ) :=

∞∑
n=0

αnλ
n

and

λ 7→ fA(λ) : D(0, R)→ C, fA(λ) :=

∞∑
n=0

|αn|λn.

Let B be a unital Banach algebra and 1 its unity. Denote by

B(0, R) =

{
{x ∈ B : ‖x‖ < R}, if R <∞
B, if R =∞.
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We associate to f the map:

x 7→ f̃(x) : B(0, R)→ B, f̃(x) :=
∞∑
n=0

αnx
n.

Obviously, f̃ is correctly defined because the series
∑∞

n=0 αnx
n is absolutely

convergent, since
∑∞

n=0 ‖αnxn‖ ≤
∑∞

n=0 |αn| ‖x‖
n.

In addition, we assume that s2 :=
∑∞

n=0 n
2 |αn| <∞. Let s0 :=

∑∞
n=0 |αn|

<∞ and s1 :=
∑∞

n=0 n |αn| <∞.
With the above assumptions we have that [6]:

Theorem 1. Let λ ∈ C such that max{|λ| , |λ|2} < R <∞ and let x, y ∈ B
with ‖x‖ , ‖y‖ ≤ 1 and xy = yx. Then:

(i) We have∥∥∥f̃ (λ · 1) f̃ (λxy)− f̃ (λx) f̃ (λy)
∥∥∥

≤
√

2ψmin {‖x− 1‖ , ‖y − 1‖} fA
(
|λ|2
)

(1.1)

where:

ψ2 := s0s2 − s2
1. (1.2)

(ii) We also have∥∥∥f̃ (λ · 1) f̃ (λxy)− f̃ (λx) f̃ (λy)
∥∥∥

≤
√

2 min {‖x− 1‖ , ‖y − 1‖} fA (|λ|)

×
{
fA (|λ|)

[
|λ| f ′A (|λ|) + |λ|2 f ′′A (|λ|)

]
−
[
|λ| f ′A (|λ|)

]2}1/2
. (1.3)

For other similar results, see [6].
In this paper we establish some new upper bounds for the norm of the

Čebyšev type difference

f̃ (λ · 1) f̃ (λxy)− f̃ (λx) f̃ (λy) (1.4)

provide that the complex number λ and the vectors x, y ∈ B are such
that the series in (1.4) are convergent. Applications for some fundamental
functions such as the exponential function and the resolvent function are
provided as well.

2. Results

We start with the following result that is of interest in itself.
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Lemma 1. Let f(λ) =
∑∞

n=0 αnλ
n be a function defined by power series

with complex coefficients and convergent on the open disk D(0, R) ⊂ C,
R > 0 and x, y ∈ B with xy = yx.

If ‖y‖ < 1, λ ∈ C and x ∈ B with |λ| ‖x‖ < R, then we have the inequality:∥∥∥f̃ (λx) yk − f̃ (λxy)
∥∥∥ ≤ ‖y − 1‖

1− ‖y‖

[
fA (|λ| ‖x‖)− |αk| |λ|k ‖x‖k

]
, (2.1)

for any k ∈ N, k ≥ 0.

Proof. We have for m ≥ 2 and 1 ≤ k ≤ m− 1 that(
m∑
j=0

αjλ
jxj

)
yk −

m∑
j=0

αjλ
j (xy)j =

(
m∑
j=0

αjλ
jxj

)
yk −

m∑
j=0

αjλ
jxjyj

=
m∑
j=0

αjλ
jxj
(
yk − yj

)
=

m∑
j=0,j 6=k

αjλ
jxj
(
yk − yj

)
= A. (2.2)

Since

yk − yj =
k−1∑
l=j

(
yl−1 − yl

)
=

k−1∑
l=j

yl (y − 1) ,

then by taking the norm in (2.2) we get:

‖A‖ ≤
m∑

j=0,j 6=k
|αj | |λ|j ‖x‖j

∥∥∥∥ k−1∑
l=j

yl (y − 1)

∥∥∥∥
≤

m∑
j=0,j 6=k

|αj | |λ|j ‖x‖j
k−1∑
l=j

‖y‖l ‖y − 1‖

= ‖y − 1‖
m∑

j=0,j 6=k
|αj | |λ|j ‖x‖j

k−1∑
l=j

‖y‖l =: B. (2.3)

Observe that
k−1∑
l=j

‖y‖l ≤
m−1∑
l=0

‖y‖l

and then we have

B ≤ ‖y − 1‖
m−1∑
l=0

‖y‖l
m∑

j=0,j 6=k
|αj | |λ|j ‖x‖j

= ‖y − 1‖
m−1∑
l=0

‖y‖l
(

m∑
j=0

|αj | |λ|j ‖x‖j − |αk| |λ|k ‖x‖k
)
. (2.4)
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Utilising the inequalities (2.2)-(2.4) we conclude that∥∥∥∥∥
(

m∑
j=0

αjλ
jxj

)
yk −

m∑
j=0

αjλ
j (xy)j

∥∥∥∥∥
≤ ‖y − 1‖

m−1∑
l=0

‖y‖l
(

m∑
j=0

|αj | |λ|j ‖x‖j − |αk| |λ|k ‖x‖k
)

(2.5)

for any m ≥ 2 and 1 ≤ k ≤ m− 1.
Since the series

∑m
j=0 αjλ

jxj and
∑m

j=0 αj (λxy)j are convergent in B and,

because ‖y‖ < 1, then
∑∞

l=0 ‖y‖
l = 1

1−‖y‖ , then by letting m→∞ in (2.5),

we get the desired result (2.1).
If k = 0, then

m∑
j=0

αjλ
jxj −

m∑
j=0

αjλ
j (xy)j =

m∑
j=1

αjλ
jxj
(
1− yj

)
=: C.

Since

1− yj = (1− y)
(
1 + y + ...+ yj−1

)
, j ≥ 1

then ∥∥1− yj
∥∥ ≤ ‖y − 1‖

j−1∑
l=0

‖y‖l ≤ ‖y − 1‖
m−1∑
l=0

‖y‖l

and then

‖C‖ ≤ ‖y − 1‖
m−1∑
l=0

‖y‖l
m∑
j=1

|αj | |λ|j ‖x‖j

= ‖y − 1‖
m−1∑
l=0

‖y‖l
(

m∑
j=0

|αj | |λ|j ‖x‖j − |α0|

)
. (2.6)

Letting m → ∞ in (2.6), we also obtain the inequality (2.1) for k = 0.
This proves the lemma. �

Corollary 1. Let f(λ) =
∑∞

n=0 αnλ
n be a function defined by power series

with complex coefficients and convergent on the open disk D(0, R) ⊂ C,
R > 0 and x ∈ B.

If ‖x‖ < 1, λ ∈ C with |λ| ‖x‖ < R, then we have the inequality:∥∥∥f̃ (λx)xk − f̃
(
λx2

)∥∥∥ ≤ ‖x− 1‖
1− ‖x‖

[
fA (|λ| ‖x‖)− |αk| |λ|k ‖x‖k

]
, (2.7)

for any k ∈ N, k ≥ 0.

We can state the following result.
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Theorem 2. Let f(λ) =
∑∞

n=0 αnλ
n be a function defined by power series

with complex coefficients and convergent on the open disk D(0, R) ⊂ C,
R > 0 and x, y ∈ B with xy = yx. If λ, µ ∈ C are such that |µ| , |λ| ‖x‖ < R
and ‖y‖ ≤ 1 then:∥∥∥f̃ (λx) f̃ (µy)− f̃ (µ · 1) f̃ (λxy)

∥∥∥
≤ ‖y − 1‖

1− ‖y‖
[fA (|λ| ‖x‖) fA (|µ|)− fA2 (|λ| |µ| ‖x‖)] , (2.8)

where fA2 (λ) :=
∑∞

n=0 |αn|
2 λn.

Proof. Utilising Lemma 1 we have:∥∥∥∥∥f̃ (λx)

(
p∑

k=0

αkµ
kyk

)
−

(
p∑

k=0

αkµ
k

)
f̃ (λxy)

∥∥∥∥∥
=

∥∥∥∥∥
p∑

k=0

αkµ
k
(
f̃ (λx) yk − f̃ (λxy)

)∥∥∥∥∥
≤

p∑
k=0

|αk| |µ|k
∥∥∥f̃ (λx) yk − f̃ (λxy)

∥∥∥
≤

p∑
k=0

‖y − 1‖
1− ‖y‖

[
fA (|λ| ‖x‖)− |αk| |λ|k ‖x‖k

]
|αk| |µ|k

=
‖y − 1‖
1− ‖y‖

[
fA (|λ| ‖x‖)

p∑
k=0

|αk| |µ|k −
p∑

k=0

|αk| |λ|k |µ|k ‖x‖k
]

(2.9)

for any p ≥ 0.
Since all the series that are involved in the inequality from above are

convergent, then by letting p→∞ we get the desired result (2.8). �

Corollary 2. Let f(λ) =
∑∞

n=0 αnλ
n be a function defined by power series

with complex coefficients and convergent on the open disk D(0, R) ⊂ C,
R > 0 and x ∈ B. If λ, µ ∈ C are such that |µ| , |λ| ‖x‖ < R and ‖x‖ < 1
then:∥∥∥f̃ (λx) f̃ (µx)− f̃ (µ · 1) f̃

(
λx2

)∥∥∥
≤ ‖x− 1‖

1− ‖x‖
[fA (|λ| ‖x‖) fA (|µ|)− fA2 (|λ| |µ| ‖x‖)] . (2.10)
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Remark 1. If µ = λ, then we get the inequality for the Čebyšev functional:∥∥∥f̃ (λx) f̃ (λy)− f̃ (λ · 1) f̃ (λxy)
∥∥∥

≤ ‖y − 1‖
1− ‖y‖

[
fA (|λ| ‖x‖) fA (|λ|)− fA2

(
|λ|2 ‖x‖

)]
, (2.11)

provided that x, y ∈ B with xy = yx, λ ∈ C are such that |λ| , |λ| ‖x‖ < R
and ‖y‖ < 1.

From (2.10) we have∥∥∥∥[f̃ (λx)
]2
− f̃ (λ · 1) f̃

(
λx2

)∥∥∥∥
≤ ‖x− 1‖

1− ‖x‖
[fA (|λ| ‖x‖) fA (|µ|)− fA2 (|λ| |µ| ‖x‖)] . (2.12)

We can state now the second result:

Theorem 3. Let f(λ) =
∑∞

n=0 αnλ
n be a power series that is convergent

on the open disk D(0, R), with R > 0. If x, y ∈ B with xy = yx and
‖y‖ , ‖y‖ ≤ 1, then we have the inequalities:

∥∥∥f̃ (λ · 1) f̃ (λxy)− f̃ (λx) f̃ (λy)
∥∥∥

≤
√

2

2
‖x− 1‖ ‖y − 1‖ fA (|λ|)

[
fA (|λ|) gA (|λ|)− h2

A (|λ|)
] 1
2 , (2.13)

where

fA (λ) :=
∞∑
n=0

|αn|λn, gA (λ) :=
∞∑
n=0

n4 |αn|λn, hA (λ) :=
∞∑
n=0

n2 |αn|λn

and λ ∈ D(0, R).
Moreover, if the series s0 :=

∑∞
n=0 |αn|, s2 :=

∑∞
n=0 n

2 |αn| and s4 :=∑∞
n=0 n

4 |αn| are convergent, then we have the inequalities:∥∥∥f̃ (λx) f̃ (λy)− f̃ (λ · 1) f̃ (λxy)
∥∥∥

≤
√

2

2
‖x− 1‖ ‖y − 1‖ fA

(
|λ|2
) [
s0s4 − s2

2

] 1
2 , (2.14)

for any λ ∈ C with |λ| , |λ|2 < R.
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Proof. We observe that:

Bm : =
m∑

n,j=0

αnαjλ
nλj

(
xn − xj

)
(yn − 1)

=
m∑

n,j=0

αnαjλ
nλj

(
xnyn − xjyn − xn + xj

)
=

m∑
j=0

αjλ
j
m∑
n=0

αnλ
n (xy)n −

m∑
j=0

αjλ
jxj

m∑
n=0

αnλ
nyn

−
m∑
j=0

αjλ
j
m∑
n=0

αnλ
nxn +

m∑
j=0

αjλ
jxj

m∑
n=0

αnλ
n

=

m∑
j=0

αjλ
j
m∑
n=0

αnλ
n (xy)n −

m∑
j=0

αjλ
jxj

m∑
n=0

αnλ
nyn. (2.15)

Taking the norm and using the generalized triangle inequality we have:

‖Bm‖ ≤
m∑

n,j=0

|αn| |αj | |λ|n |λ|j
∥∥xn − xj∥∥ ‖yn − 1‖ := Cm. (2.16)

Since

yn − 1 = (y − 1)
(
yn−1 + ...+ 1

)
we have for ‖y‖ ≤ 1 that

‖yn − 1‖ ≤ ‖y − 1‖
∥∥yn−1 + · · ·+ 1

∥∥ ≤ n ‖y − 1‖ .
If n > j, then for ‖x‖ ≤ 1∥∥xn − xj∥∥ =

∥∥xj (xn−j − 1
)∥∥ ≤ ‖x‖j ∥∥xn−j − 1

∥∥ ≤ (n− j) ‖x− 1‖ .
Similarly, if j > n we have∥∥xn − xj∥∥ ≤ (j − n) ‖x− 1‖ ,
therefore for any n, j ∈ N we have:∥∥xn − xj∥∥ ≤ |n− j| ‖x− 1‖ , ‖x‖ ≤ 1.

Utilising this facts we have

Cm ≤
m∑

n,j=0

|αn| |αj | |λ|n |λ|j n |n− j| ‖x− 1‖ ‖y − 1‖

= ‖x− 1‖ ‖y − 1‖
m∑

n,j=0

|αn| |αj | |λ|n |λ|j n |n− j| . (2.17)
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Further, observe that:

m∑
n,j=0

|αn| |αj | |λ|n |λ|j n |n− j| =
1

2

m∑
n,j=0

|αn| |αj | |λ|n |λ|j |n− j| (n+ j)

=
1

2

m∑
n,j=0

|αn| |αj | |λ|n |λ|j
∣∣n2 − j2

∣∣ ,
therefore

Cm ≤
1

2
‖x− 1‖ ‖y − 1‖

m∑
n,j=0

|αn| |αj | |λ|n |λ|j
∣∣n2 − j2

∣∣ := Dm. (2.18)

Using Cauchy-Bunyakovsky-Schwarz inequality we have:

m∑
n,j=0

|αn| |αj | |λ|
n
2 |λ|

j
2 |λ|

n
2 |λ|

j
2
∣∣n2 − j2

∣∣
≤

(
m∑

n,j=0

|αn| |αj | |λ|n |λ|j
) 1

2
(

m∑
n,j=0

|αn| |αj | |λ|n |λ|j
(
n2 − j2

)2) 1
2

=

(
m∑
n=0

|αn| |λ|n
)

(Em)
1
2 ,

where

Em :=
m∑

n,j=0

|αn| |αj | |λ|n |λ|j
(
n2 − j2

)2
=

m∑
n,j=0

|αn| |αj | |λ|n |λ|j
(
n4 − 2n2j2 + j4

)2
= 2

[
m∑
n=0

|αn| |λ|n
m∑
n=0

|αn| |λ|n n4 −

(
m∑
n=0

|αn| |λ|n n2

)2]
. (2.19)

Making use of (2.15)-(2.19) we get for ‖x‖ , ‖y‖ ≤ 1 that:∥∥∥∥∥∥
m∑
j=0

αjλ
j
m∑
n=0

αn (λxy)n −
m∑
j=0

αj (λx)j
m∑
n=0

αn (λy)n

∥∥∥∥∥∥
≤
√

2

2
‖x− 1‖ ‖y − 1‖

m∑
n=0

|αn| |λ|n
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×

[
m∑
n=0

|αn| |λ|n
m∑
n=0

n4 |αn| |λ|n −

(
m∑
n=0

n2 |αn| |λ|n
)2] 1

2

, (2.20)

for any m ∈ N.
Since all the series involved in (2.20) are convergent, then by letting m→

∞ in (2.20) we deduce the desired result:∥∥∥f̃ (λ · 1) f̃ (λxy)− f̃ (λx) f̃ (λy)
∥∥∥

≤
√

2

2
‖x− 1‖ ‖y − 1‖ fA (|λ|)

[
fA (|λ|) gA (|λ|)− h2

A (|λ|)
] 1
2 . (2.21)

Using Cauchy-Bunyakovsky-Schwarz inequality we also have:

m∑
n,j=0

|αn| |αj | |λ|n |λ|j
∣∣n2 − j2

∣∣
≤

(
m∑

n,j=0

|αn| |αj | |λ|2n |λ|2j
) 1

2

(
m∑

n,j=0

|αn| |αj |
∣∣n2 − j2

∣∣2) 1
2

=

(
m∑
n=0

|αn| |λ|2n
){

2

[
m∑
n=0

|αn|
m∑
j=0

j4 |αj | −
( m∑
n=0

n2 |αn|
)2
]} 1

2

. (2.22)

Making use of this inequality we then obtain in a similar way the second
part of the theorem. The details are omitted. �

3. Some examples

Consider the function f : D (0, 1)→ C defined by

f (λ) = (1− λ)−1 =

∞∑
k=0

λk.

Then

fA2 (λ) :=

∞∑
n=0

λn = (1− λ)−1

and by (2.8), we have for x, y ∈ B with xy = yx, ‖y‖ < 1 and λ, µ ∈ C with
|µ| , |λ| ‖x‖ < 1 that∥∥∥(1− λx)−1 (1− µy)−1 − (1− µ)−1 (1− λxy)−1

∥∥∥
≤ ‖y − 1‖

1− ‖y‖

[
(1− |λ| ‖x‖)−1 (1− |µ|)−1 − (1− |λ| |µ| ‖x‖)−1

]
. (3.1)
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In particular, if |λ| , ‖x‖ < 1, then∥∥∥(1− λx)−1 (1− λy)−1 − (1− λ)−1 (1− λxy)−1
∥∥∥

≤ ‖y − 1‖
1− ‖y‖

[
(1− |λ| ‖x‖)−1 (1− |λ|)−1 −

(
1− |λ|2 ‖x‖

)−1
]
. (3.2)

We also have for |λ| , ‖x‖ < 1 that∥∥∥(1− λx)−2 − (1− λ)−1 (1− λx2
)−1
∥∥∥

≤ ‖x− 1‖
1− ‖x‖

[
(1− |λ| ‖x‖)−1 (1− |λ|)−1 −

(
1− |λ|2 ‖x‖

)−1
]
. (3.3)

If we consider the function

f (λ) = (1 + λ)−1 =
∞∑
k=0

(−1)k λk,

then the inequalities (3.1)-(3.3) also holds with ” + ” instead of ”− ” in the

left hand side expressions such as (1− λx)−1 etc.
We consider the modified Bessel function functions of the first kind

Iν (λ) :=

(
1

2
λ

)ν ∞∑
k=0

(
1
4λ

2
)k

k!Γ (ν + k + 1)
, λ ∈ C

where Γ is the Gamma function and ν is a real number. An integral formula
is

Iν (λ) =
1

π

∫ π

0
eλ cos θ cos (νθ)− sin (νπ)

π

∫ ∞
0

e−λ cosh t−νtdt,

which simplifies for ν an integer n to [1]

In (λ) =
1

π

∫ π

0
eλ cos θ cos (nθ) dθ.

For n = 0 we have

I0 (λ) =
1

π

∫ π

0
eλ cos θdθ =

∞∑
k=0

(
1
4λ

2
)k

(k!)2 , λ ∈ C.

Now, if we consider the exponential function

f (λ) = exp (λ) =
∞∑
k=0

1

k!
λk,

then for ρ > 0 we have

fA2 (ρ) =

∞∑
k=0

1

(k!)2 ρ
k = I0 (2

√
ρ) .
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Making use of the inequality (2.8), we have for x, y ∈ B with xy = yx,
‖y‖ < 1 and λ, µ ∈ C that

‖exp (λx+ µy)− exp (λxy + µ · 1)‖

≤ ‖y − 1‖
1− ‖y‖

[
exp (|λ| ‖x‖+ |µ|)− I0

(
2
√
|λ| |µ| ‖x‖

)]
. (3.4)

In particular, we have

‖exp (λ (x+ y))− exp (λ (xy + 1))‖

≤ ‖y − 1‖
1− ‖y‖

[
exp (|λ| (‖x‖+ 1))− I0

(
2 |λ|

√
‖x‖
)]
. (3.5)

We also have for ‖x‖ < 1∥∥exp (2λx)− exp
(
λ
(
x2 + 1

))∥∥
≤ ‖x− 1‖

1− ‖x‖

[
exp (|λ| (‖x‖+ 1))− I0

(
2 |λ|

√
‖x‖
)]

(3.6)

for any λ ∈ C. If we take λ = 1, then we get∥∥exp (2x)− exp
(
x2 + 1

)∥∥
≤ ‖x− 1‖

1− ‖x‖

[
exp (‖x‖+ 1)− I0

(
2
√
‖x‖
)]

(3.7)

for ‖x‖ < 1.
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