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ON THE CORE OF DOUBLE SEQUENCES

YURDAL SEVER AND BILAL ALTAY

Abstract. In this paper, we define the core of double sequences via
barriers and disks. We show that these definitions are equivalent and
give an inequality related to the P -core of bounded double sequences.

1. Introduction

The concept of the core of a sequence was introduced firstly by Knopp. So,
this type core was called the Knopp core. Let x = (xk) be a sequence in C,
the set of all complex numbers, and Rk be the least convex closed region of
complex plane containing xk, xk+1, xk+2, . . . . The Knopp core of x (K-core
of x or core of x) is defined by the intersection of all Rk (k = 1, 2, . . . ). In the
real case the K-core of x is reduced to the closed interval [lim inf x, lim supx].
If A is a nonnegative regular matrix, then the core of x, is contained the
core of Ax, provided that Ax exists (see [2]). Rhoades [16] gave a slight
generalization of Knopp’s core theorem. An alternative definition of the
Knopp core is given by Shcherbakov [19] via barriers.

By using the definitions of limit inferior, limit superior and the core of
a double sequence with the notion of the regularity of four dimensional
matrices, Patterson [11, 12] gave some results on core of double sequences.
Mursaleen [8] and Mursaleen and Edely [9] defined the almost strong regu-
larity of matrices for double sequences and have applied these matrices to
establish a core theorem and introduced the M -core for double sequences
and determined the four dimensional matrices transforming every bounded
double sequence x = (xjk) into one whose core is a subset of the M -core
of x. Çakan and Altay [3] investigated the statistical core for double se-
quences and studied an inequality related to the statistical and P -cores of
bounded double sequences. Recently, Gökhan, Çolak and Mursaleen [4] gen-
eralized the Pringsheim core for bounded double sequences and gave some
core theorems via matrix classes. Boos, Legier and Zeller [1] introduced
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and investigated the notion of e-convergence of double sequence, which is
essentially weaker than the Pringsheim convergence. Quite recently, Sever
and Talo [18] introduced the concepts of e-limit superior and inferior for real
double sequences and defined e-core for double sequences.

2. Definitions and notation

By Ω, we denote the set of all complex valued double sequences, i.e.,

Ω = {x = (xmn) : xmn ∈ C for all m,n ∈ N} ,
which is a vector space with co-ordinatewise addition and scalar multiplica-
tion of double sequences, where N and C denote the set of positive integers
and the complex field, respectively. Any vector subspace of Ω is called a
double sequence space. The space Mu of all bounded double sequences is
defined byMu =

{
x = (xmn) ∈ Ω : ‖x‖∞ = supm,n∈N |xmn| <∞

}
which is

a Banach space with the norm ‖ · ‖∞. Consider a sequence x = (xmn) ∈ Ω.
If for every ε > 0 there exists n0 = n0(ε) ∈ N such that |xmn − `| < ε
for all m,n > n0 then we call that the double sequence x is convergent in
Pringsheim’s sense to the limit ` and write P − limm,n xmn = `. By Cp,
we denote the space of all convergent double sequences in the Pringsheim’s
sense (see [15]). It is well-known that there are such sequences in the space
Cp but not in the spaceMu. So, we may mention the space Cbp of the double
sequences that are both convergent in Pringsheim’s sense and bounded, i.e.,
Cbp = Cp ∩Mu. By Cbp0, we denote the space of the double sequences which
are both convergent to zero in the Pringsheim’s sense and bounded. There
is more than one type of convergence for double sequences, so we denote
convergence by υ−convergence for υ ∈ {p, bp}.

A number α ∈ C is said to be a Pringsheim limit point of a double
sequence (xmn) if there exist two increasing sequences m1 < m2 < · · · <
mi < · · · and n1 < n2 < · · · < nj < · · · such that P − limi,j→∞ xminj = α.

Definition 2.1 ( [11]). Let P-Cn{x} be the least closed convex set that
includes all points x = (xkl) for k, l > n; then the Pringsheim core of the
double sequence x = (xkl) is the set

P-C{x} =

∞⋂
n=1

P-Cn{x}.

Definition 2.2 ( [2], p.139). Every line L divides the plane into two half-
planes. If a set of the points X lies entirely in such a half-plane (some or all
of the points may lie on the line L), we say that L is a barrier line for X.

Let λ be the space of double sequences, converging with respect to some
linear convergence rule υ− lim : λ→ C. The sum of a double series

∑
i,j xij
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with respect to this rule is defined by υ−
∑

ij xij = υ−limm,n
∑m

i=1

∑n
j=1 xij .

Let λ, µ be two spaces of double sequences, converging with respect to the
linear convergence rules υ1− lim and υ2− lim, respectively, and A = (amnkl)
also be a four dimensional matrix of complex numbers. Define the set

λ
(υ2)
A =

{
(xkl) ∈ Ω : Ax =

(
υ2 −

∑
k,l

amnklxkl

)
m,n∈N

exists and Ax ∈ λ
}
.

(2.1)
Then, we say, with the notation of (2.1), that A maps the space λ into the

space µ if µ ⊂ λ
(υ2)
A and denote the set of all four dimensional matrices,

mapping the space λ into the space µ, by (λ : µ). It is trivial that for any

matrix A ∈ (λ : µ), (amnkl)k,l∈N is in the β(υ2)-dual λβ(υ2) of the space
λ for all m,n ∈ N. An infinite matrix A is said to be Cυ-conservative if
Cυ ⊂ (Cv)A.

For more details on double sequences and 4-dimensional matrices, we refer
to [5, 6, 10,13,14,20–22].

A matrix A is said to be RH-regular if it maps every bounded convergent
sequence into a convergent sequence with the same limit.

Lemma 2.3 ( [5, 17]). The necessary and sufficient conditions for A to be
RH-regular are:

P − limm,n amnkl = 0, for each k, l ∈ N,
P − limm,n

∑∞,∞
k,l amnkl = 1,

P − limm,n
∑∞

k |amnkl| = 0 for each l ∈ N,
P − limm,n

∑∞
l |amnkl| = 0 for each k ∈ N,∑∞,∞

k,l |amnkl| is convergence and

there exist positive numbers A and B such that
∑

k,l>B |amnkl| < A.

3. Main result

In this article, besides Knopp core, we introduce the definition of core of
double sequences in the sense of Shcherbakov [19] and show their equivalence.
Also, we prove two theorems about core of double sequence via characteristic
values of conservative matrices. These theorems are analogous to those of
Rhoades and Maddox in [7, 16].

Theorem 3.1. Let D be the set of all P-limit points of x = (xkl) ∈ Ω.
Then,

D ⊆ P-core{x}
Proof. Let α be a P -limit point of x = (xkl). Then, there exists an increasing
sequence of integers (ki, lj) such that

P- lim
i,j
xkilj = α.
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Now, choose any n ∈ N such that the points

xkp,lq xkp,lq+1 xkp,lq+2 . . .
xkp+1,lq xkp+1,lq+1 xkp+1,lq+2 . . .
xkp+2,lq xkp+2,lq+1 xkp+2,lq+2 . . .

...
...

...
. . .

are in P -Cn{x} for kp, lq > n. Since P-Cn{x} is closed, it contains the
limit points of the sequence in itself. Hence, α is in P-Cn{x}, since n is
arbitrary. �

Now, we give an alternative definition of the P-core{x}.

Definition 3.2. a) If the set S containing the elements of x = (xkl) has no
barrier lines, then P-core{x} is the whole plane.
b) If the set S containing the elements of x = (xkl) has barrier lines, then
P-core{x} is the intersection of all half-planes containing the set D of the
limit points of x = (xkl).

We can extend the definition of the core of sequences introduced by
Shcherbakov [19] for double sequences as it follows:

Definition 3.3. Let x = (xkl) be a bounded double sequence. For z ∈ C,
let

Bx(z) =
{
w ∈ C : |w − z| ≤ P- lim sup

k,l
|xkl − z|

}
.

Then

P-C{x} =
⋂
z∈C

Bx(z).

Theorem 3.4. The Definition 2.1 and Definition 3.2 are equivalent for
bounded double sequences.

Proof. Let x = (xkl) ∈ Ω, E be the P -core{x} with respect to the Definition
2.1, D be the set of all P -limit points of x = (xkl) and F be the intersection
of all half-planes which contains D. It is known by the definition that D ⊆ E
and it is also obvious that D ⊆ F . We need to show that E = F . Suppose
that an a /∈ E. Then, a /∈ P-Cn{x} for some fixed value of n. We can draw
a barrier line L separating a from P-Cn{x}. Since P-Cn{x} is closed, so
D ⊂ P-Cn{x} and so, L separates a from D. Hence, a /∈ F . This means
that

F ⊂ E. (3.1)

Now, draw a half-plane H containing D and call the barrier line L. All
except a finite number of the elements of x = (xkl) lie on the same side of
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L as D. Otherwise, there would be at least one P -limit point on the side of
L remote from D. Consequently, there is an m such that the points

xm,m xm,m+1 xm,m+2 . . .
xm+1,m xm+1,m+1 xm+1,m+2 . . .
xm+2,m xm+2,m+1 xm+2,m+2 . . .

...
...

...
. . .

are in D. Hence, P-Cm{x} ⊂ H and so, E ⊂ H. Thus,

F ⊃ E. (3.2)

On combining these two results, the proof of the theorem is completed. �

Theorem 3.5. The Definition 3.2 and Definition 3.3 are equivalent for
bounded double sequences.

Proof. Let x = (xkl) ∈ Ω, E be the P -core{x} with respect to the Definition
3.2, D be the set of all P -limit points of x = (xkl) and F be the intersection
of all half-planes those contain D.

First assume w 6∈
⋂
z∈CBx(z), say w 6∈ Bx(z0) for some z0 ∈ C. Let H

be the half-plane containing Bx(z0) whose boundary line is perpendicular
to the line containing w and z0 and tangent to the circular boundary of
Bx(z0). Since Bx(z0) ⊂ H and Bx(z0) contains P -limit points, then H is a
half-plane which contains P -limit points. Since w 6∈ H, this implies that w
is not in the intersection of half-planes. Hence, the inclusion

P-core{x} ⊂
⋂
z∈C

Bx(z) (3.3)

holds.
Conversely, if w is not in the intersection of half-planes, then there exists

a H half-plane such that w 6∈ H. Let L be the line through w that is perpen-
dicular to the boundary of H, and let p be the midpoint of the segment of
L between w and H. Let z0 be a point of L such that z0 ∈ H, and consider
the disk

B(z0) =
{
y ∈ C : |y − z0| ≤ |p− z0|

}
.

Since x is bounded and xkl ∈ H for k, l > n for some n ∈ N, we can choose
z0 sufficiently far from p so that

|p− z0| = P- lim sup
k,l

|xkl − z0|.

Thus B(z0) is one of the Bx(z) disks and w 6∈
⋂
z∈CBx(z). Hence, we

conclude that

P-core{x} ⊃
⋂
z∈C

Bx(z) (3.4)
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holds.
On combining the inclusions (3.3) and (3.4), we have the desired result.

�

Theorem 3.6. Let A = (amnkl) 4-dimensional real matrix for which

χ(A) = P- lim
m,n

∑
k,l

amnkl −
∑
k,l

P- lim
m,n

amnkl

is defined. Then the condition

there exists a positive integer N such that amnkl ≥ 0 (m,n ∈ N)

for all maks{k, l} ≥ N ∈ N (3.5)

is sufficient for

P- lim inf
m,n

Amnx ≥ χ(A)l(x) +
∑
k,l

αklxkl (3.6)

and

P- lim sup
m,n

Amnx ≤ χ(A)L(x) +
∑
k,l

αklxkl (3.7)

whenever the series
∑

k,l αklxkl is convergent. Where

P- lim
m,n

amnkl = αkl, P- lim inf
k,l

xkl = l(x) and P- lim sup
k,l

xkl = L(x).

(Note that if P- lim infk,l xkl = −∞, then (3.6) is true without (3.5)
provided that χ(A) > 0, and similarly for (3.7) when P- lim supk,l xkl =∞.)

Proof. Assume that l(x) > −∞. To prove (3.5) is sufficient, fix ε > 0. There
exists an integer N0 such that xkl ≥ l(x)− ε for all k, l ≥ N0.

Amnx =
∞∑
k=1

∞∑
l=1

amnklxkl

=
∞∑
k=1

∞∑
l=1

amnkl

[
xkl + (l(x)− ε)− (l(x)− ε)

]
=
∞∑
k=1

∞∑
l=1

amnkl[l(x)− ε] +
∞∑
k=1

∞∑
l=1

amnkl

[
xkl − (l(x)− ε)

]

= [l(x)− ε]
∞∑
k=1

∞∑
l=1

amnkl +

N0∑
k=1

N0∑
l=1

amnkl

[
xkl − (l(x)− ε)

]

+

N0∑
k=1

∞∑
l=N0+1

amnkl

[
xkl − (l(x)− ε)

]
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+

∞∑
k=N0+1

N0∑
l=1

amnkl

[
xkl − (l(x)− ε)

]
+

∞∑
k=N0+1

∞∑
l=N0+1

amnkl

[
xkl − (l(x)− ε)

]
.

Since amnkl ≥ 0 (m,n ∈ N) for all max{k, l} ≥ N0, the fifth series is non-
negative, and

Amnx ≥ [l(x)− ε]
( ∞∑
k=1

∞∑
l=1

amnkl −
N0∑
k=1

N0∑
l=1

amnkl

)
+

N0∑
k=1

N0∑
l=1

amnklxkl

+

N0∑
k=1

∞∑
l=N0+1

amnkl

[
xkl − (l(x)− ε)

]
+

∞∑
k=N0+1

N0∑
l=1

amnkl

[
xkl − (l(x)− ε)

]
.

If we take P- lim inf in this inequality for all m,n, k, l ∈ N, we obtain

P- lim inf
m,n

Amnx ≥ χ(A)l(x) +
∑
k,l

αklxkl.

The inequality (3.7) is obtained from (3.6) by considering −x instead
of x. �

Theorem 3.7. Let A = (amnkl) be a reel four dimensinal matrix for which
χ(A) is defined. Then,

P- lim
m,n

∑
k,l

|amnkl| = P- lim
m,n

∑
k,l

amnkl = t

is sufficient condition for (3.6) and (3.7) to hold for all bounded double
sequences x = (xkl) for which the series

∑
k,l αklxkl is convergent.

Proof. If we write for all m,n, k, l ∈ N

bmnkl =
|amnkl|+ amnkl

2
and cmnkl =

|amnkl| − amnkl
2

,

then

amnkl = bmnkl − cmnkl.
By hypothesis, it is clear that

P- lim
m,n

∑
k,l

bmnkl = t and P- lim
m,n

∑
k,l

cmnkl = 0.

Since x = (xkl) is bounded, there exists a number K > 0 such that |xkl| < K
for all k, l ∈ N. For any fixed ε > 0, there exist integer M,N > q such that
xkl ≥ l(x)− ε and k, l > N and m,n > M,∑

k,l

cmnkl <
ε

K + d+ ε
,
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where d = max(|l|, |L|). Let r > max{M,N} and write

Amnx =

∞∑
k=1

∞∑
l=1

amnklxkl

=

∞∑
k=1

∞∑
l=1

amnkl

[
xkl + (l(x)− ε)− (l(x)− ε)

]
=

∞∑
k=1

∞∑
l=1

amnkl[l(x)− ε] +

∞∑
k=1

∞∑
l=1

amnkl

[
xkl − (l(x)− ε)

]
= [l(x)− ε]

∑
k,l

amnkl +

r∑
k=1

r∑
l=1

amnkl

[
xkl − (l(x)− ε)

]
+

r∑
k=1

∞∑
l=r+1

amnkl

[
xkl − (l(x)− ε)

]
+

∞∑
k=r+1

r∑
l=1

amnkl

[
xkl − (l(x)− ε)

]
+

∞∑
k=r+1

∞∑
l=r+1

bmnkl

[
xkl − (l(x)− ε)

]
−
∞∑

k=r+1

∞∑
l=r+1

cmnkl

[
xkl − (l(x)− ε)

]
.

Since
∞∑

k=r+1

∞∑
l=r+1

bmnkl

[
xkl − (l(x)− ε)

]
≥ 0,

∞∑
k=r+1

∞∑
l=r+1

cmnkl

[
xkl − (l(x)− ε)

]
<
[
K + |l(x)|+ ε

] ∞∑
k=r+1

∞∑
l=r+1

cmnkl < ε,

∞∑
l=r+1

amnkl < ε

and
∞∑

k=r+1

amnkl < ε

for each m,n > r, we have

P- lim inf
m,n

Amnx ≥ [l(x)− ε]
(
t−

∑
k,l

αkl

)
+
∑
k,l

αklxkl + ε. (3.8)

Since the proof of (3.7) is similar to that of (3.6), we omit it. �

Definition 3.8. A = (amnkl) is called almost positive if P- limm,n
∑
a−mnkl

= 0 where a−mnkl = max{−amnkl, 0}.
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Theorem 3.9. Let B = (bmnkl) any RH-regular and almost positive matrix.
Then, there is no matrix A such that P- lim supAx ≤ P- lim inf Bx for
x ∈Mu.

Proof. Suppose that, if possible, there exists such a matrix A = (amnkl). By
Theorem 3.2 [11]

P- lim supBx ≤ P- lim supx

and we have

P- lim supAx ≤ P- lim inf Bx ≤ P- lim supBx ≤ P- lim supx

whence A = (amnkl) is RH-regular. By the Corollary 3.1 [12] there exists
z ∈ Mu such that P- lim inf Az 6= P- lim supAz. Since P- lim supAx ≤
P- lim supBx we get P- lim inf Bx ≤ P- lim inf Ax. So, P- lim inf Bz <
P- lim supAz ≤ P- lim inf Bz, a contradiction.

This completes the proof of the theorem. �

References

[1] J. Boos, T. Leiger and K. Zeller, Consistency theory for SM-methods, Acta Math.
Hungar., 76 (1997), 83–116.

[2] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan and Co. Limited,
London, 1950.
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