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ZERO-DIMENSIONAL SCHEMES IN THE PLANE

E. BALLICO

Abstract. Let Z ⊂ P2 be a zero-dimensional scheme. Fix t ∈ N. In
this paper we study the following question: find assumptions on Z and
t such that h1(IA(t)) < h1(IZ(t)) for all A ( Z and check if t does not
exist for a certain class of schemes Z.

1. Introduction

In the last few years at least two areas of applied mathematics saw a surge
of interest in the following abstract topic: the cohomology groups H1(IZ(t)),
t ∈ Z, where Z ⊂ Pr is a zero-dimensional scheme.

One topic is related to symmetric tensors ([16]). A cursory look at the
abstracts of [3] and [4] shows that there is a huge difference between the
case r = 2 and the case r > 2. Often the proof for arbitrary r is done
by induction on r and in the case r = 2 one may use (as in [3]) the more
elementary consequences of [12]. Motivated by the proofs in the quoted
papers we looked at a similar abstract problem ([2]).

The other topic is coding theory. Here the minimum distance and the
small (but not minimal) weights of certain evaluation codes are obtained
looking at Z and t with h1(IZ(t)) > 0 (or with h1(IZ(t)) = e for some e ≥ 2
if we look at the higher weights of the dual code as in ([13], [1]). Again, a
cursory look at the papers which quote [9] show that in the case of plane
curves (e.g. the Hermitian curve) the results are far stronger. For plane
curves the authors used [12] in [6], [7], [8], [1]. In our opinion the paper [12]
is a key tool which makes the difference between the case r = 2 and the case
r > 2. This paper is devoted to the spelling out of this opinion (see section
4 for several stumbling blocks to make this opinion a fact).

Let Z ⊂ P2 be a zero-dimensional scheme. Assume Z 6= ∅. Let s(Z) be
the minimal integer t such that h0(IZ(t)) > 0. Let τ(Z) be the maximal
integer t such that h1(IZ(t)) > 0. Let hZ be the Hilbert function of Z,
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i.e. set hZ(t) := deg(Z) − h1(IZ(t)) for all t ∈ N. The knowledge of the
Hilbert function hZ(t), t ∈ N, is equivalent to the knowledge of the numerical
character n0, . . . , ns−1 of Z ([15], [12]). We recall that s = s(Z), ni ∈ N for
all i, n0 ≥ · · · ≥ ns−1 ≥ s and

h1(IZ(t)) =
s−1∑
i=0

(max{0, ni − t− 1} −max{0, i− t− 1}) (1)

for each t ∈ Z. Hence τ(Z) = n0 − 2 and deg(Z) =
∑s−1

i=0 (ni − i) (take
t = −1 in (1)). We fix positive integers t, e and look at all schemes Z such
that h1(IZ(t)) = e and h1(IA(t)) < e for all A ( Z. Let s, τ, ni be the
invariants of such a scheme Z. Since e > 0, we have t ≤ τ . Since τ = n0− 2
and n0 ≥ · · · ≥ ns−1 ≥ s, we have τ ≥ s−2. The cases τ = s−2 and τ = s−1
are very easy (Proposition 2). We recall that the sequence n0 ≥ · · · ≥ ns−1 is
said to be connected if nt ≥ nt−1−1 for all t ∈ {1, . . . , s−1}. If n0, . . . , ns−1
is not connected, any t ∈ {1, . . . , s− 1} with nt ≤ nt−1 − 2 is called a gap.

The interesting part of this paper arises when the numerical character of
Z has gaps and the only part not contained in [12] (explicitly or implicitly) is
when there are at least two gaps. For any zero-dimensional scheme W ⊂ P2

and any effective divisor T ⊂ P2 let ResT (W ) denote the zero-dimensional
subscheme of P2 with IW : IT as its ideal sheaf. We have deg(W ) = deg(W∩
T )+deg(ResT (W )). Assume that the numerical character n0 ≥ · · · ≥ ns−1 ≥
s of Z has c > 0 gaps. Let k1, . . . , kc, c ≥ 1, be the gaps of n0, . . . , ns−1.
There are uniquely determined curves Ti ⊂ P2, 1 ≤ i ≤ c, with the following
property. Set Z0 := Z. Let T1 be be the only degree k1 curve such that
E1 := Z ∩T1 has numerical character n0, . . . , nk1−1 and Z1 := ResT1(Z) has
numerical character m0, . . . ,ms−k1−1, where mi := ni− k1 for all i (Lemma
8). If c ≥ 2, then the numerical character of Z1 is not connected and k2−k1
is its first non-gap. Let T2 ⊂ P2 be the unique degree k2−k1 curve such that
E2 := Z1 ∩ T1 has numerical character m0, . . . ,mk2−1 and Z2 := ResT2(Z1)
has numerical character a0, . . . , as−k2−1 with ai := ni − k2 for all i (Lemma
8). If c ≥ 3, then we define recursively the degree ki+1 − ki curve Ti+1 and
the zero-dimensional schemes Ei+1 := Ti+1 ∩ Zi and ResTi+1(Zi) quoting
[12]. We call the sequences T1, . . . , Tc, E1, . . . , Ec, Ec+1, Z1, . . . , Zc = Ec+1

(or, sometimes, just E1, . . . , Ec, Ec+1) the splitting sequences of Z . Notice
that each scheme Ei has a connected numerical character. The scheme Ei

uniquely determines Ti (Remark 4). We have Ec+1 = Zc, but often the
sequence E1, . . . , Ec+1 does not determine Z, even if each Ei is reduced
(Example 3). Of course, if Z is reduced, then the sequence E1, . . . , Ec+1

determines Z, because Z = E1t· · ·tEc+1. In summary, when the numerical
character of Z has c ≥ 1 gaps we associate to Z the following data which
are uniquely determined by Z:
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• c effective divisors T1, . . . , Tc ⊂ P2;
• A filtration of subschemes of Z0 := Z ⊃ Z1 ⊃ · · · ⊃ Zc with Zi =

ResTi(Zi−1), 1 ≤ i ≤ c.
• The schemes Ei := Ti ∩ Zi−1, 1 ≤ i ≤ c, and the scheme Ec+1 := Zc

with prescribed numerical character; the numerical character of each
Ei has no gaps; each Ei, 1 ≤ i ≤ c, uniquely determines the curve
Ti (Remark 4).

For instance if Z is reduced and the numerical character has c gaps, then
we get a decomposition Z = E1t · · ·tEc+1 in which each set Ei is uniquely
determined and each Ei, 1 ≤ i ≤ c, determines Ti (see section 3 for the
details). Most papers before [12] were concerned in cases in which essen-
tially there was one potential gap and the goal was to give sharp conditions
assuring that Z is a complete intersection or that it has a certain Cayley-
Bacharach property ([10]). Apparently, none of these results are related to
our problem (we are trying to find if there is a proper Ze ( Z which is
extremal for the Hilbert function in certain ranges). Any admissible Hilbert
function (i.e. any numerical character) is realized by some zero-dimensional
scheme and we may even take a reduced scheme ([10], §4). Hence obviously
among the examples in [10], §4, there are examples of sets E1 t · · · t Ec+1.
But this is not very useful in the applications, say to codes associated to
a smooth plane curve. Let C ⊂ P2 be a smooth plane curve defined over
Fq and suppose you have a Goppa code C on C associated with the embed-
ding C ↪→ P2, e.g., the dual of the code obtained evaluating all linear forms
of degree d at a certain subset of C(Fq) ([6], [7], [8]). Many properties of
this code (e.g. minimum distance, the enumeration of all codewords with
small weight) may be translated into the existence or not of zero-dimensional
schemes Z ⊂ C for which we prescribe the degree and the first part of its
numerical character (see section 4). If from these informations we get the
existence of at least one gap, then we are in good shape, because we may
often construct examples taking T1, . . . , Te and Z ⊂ C∩ (T1 + · · ·+Te) (with
care if Ti and Tj have a common components for some i 6= j).

Fix a zero-dimensional scheme Z ⊂ P2 and an integer t > 0 such that
γ := h1(IZ(t)) > 0. Notice that h1(IA(t)) ≥ γ + deg(A)− deg(Z) for every
scheme A ⊂ Z. We say that Z is strongly defective in degree t if for all
schemes A ⊂ Z we have h1(IA(t)) = max{0, γ + deg(A)− deg(Z)}.

A zero-dimensional scheme Z ⊂ P2 has maximal rank if for each t ∈ Z
either h1(IZ(t)) = 0 or h0(IZ(t)) = 0. Hence Z has maximal rank if and
only if τ(Z) < s(Z).

A zero-dimensional scheme Z ⊂ P2 is said to be in uniform position in
degree t or to have uniform position in degree t if for every degree t curve
T ⊂ P2 either Z ⊂ T or deg(Z ∩ T ) <

(
t+2
2

)
. Z is said to have uniform
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position (resp. uniform position of degree ≤ k) if it has uniform position in
degree t for all t (resp. for all t ≤ k). See Proposition 1 for a connection
between the connectedness of the numerical character of Z and the uniform
position of Z discovered by Ph. Ellia and Ch. Peskine ([12]).

We work over an algebraically closed field K. For the case of an arbitrary
perfect field, see Remarks 6 and 7.

2. The negative and the positive sides

Terminology: a lemma is either something needed later in this paper or
a minor proposition.

We often silently use the following well-known lemmas.

Lemma 1. Let Z ⊂ Pr be a zero-dimensional scheme. Fix any subscheme
W ⊆ Z and any t ∈ N. Then h1(IW (t)) ≤ h1(IZ(t)).

Proof. The integer h1(IZ(t)) is the dimension of the cokernel of the restric-
tion map H0(P2,OP2(t)) → H0(Z,OZ(t)) (and the same is true for W ).
Let IW,Z denote the ideal sheaf of W in Z. Since Z is zero-dimensional,
we have h1(Z, IW,Z(t)) = 0. Hence the restriction map H0(Z,OZ(t)) →
H0(W,OW (t)) is surjective. Hence h1(IW (t)) ≤ h1(IZ(t)). �

Lemma 2. Fix an integer t and a zero-dimensional scheme Z ⊂ Pr. We
have h1(IA(t)) < h1(IZ(t)) for all A ( Z ⇐⇒ h1(IB(t)) < h1(IZ(t)) for all
B ⊂ Z such that deg(B) = deg(Z) − 1 ⇐⇒ h0(IB(t)) = h0(IZ(t)) for all
B ⊂ Z such that deg(B) = deg(Z)− 1.

Proof. Fix A ( Z. There is a zero-dimensional scheme B such that A ⊆ B ⊂
Z and deg(B) = deg(Z) − 1. We have h1(IA(t)) ≤ h1(IB(t)) (Lemma 1).
Hence h1(IA(t)) < h1(IZ(t)) if h1(IB(t)) < h1(IZ(t)). We have h0(IZ(t))−
h1(IZ(t)) =

(
t+r
r

)
− deg(Z) and h0(IB(t)) − h1(IB(t)) =

(
t+r
r

)
− deg(B).

Since deg(B) = deg(Z)−1, we have h1(IB(t)) < h1(IZ(t))⇐⇒ h1(IB(t)) =
h1(IZ(t))− 1 ⇐⇒ h0(IB(t)) = h0(IZ(t)). �

The next result was proved in [12], but stated only for the uniform posi-
tion.

Proposition 1. Let Z ⊂ P2 be a zero-dimensional scheme with numerical
character n0, . . . , ns−1. If Z is in uniform position in degree ≤ t, then either
n0, . . . , ns−1 has no gap or the last gap of n0, . . . , ns−1 is at least t+ 1.

Proof. Assume that n0, . . . , ns−1 has gaps and call k ∈ {1, . . . , s − 1} the
last gap of n0, . . . , ns−1. By [12], the proposition on page 112, there is a
degree k curve T ⊂ P2 such that the zero-dimensional scheme E := Z ∩ T
has numerical character n0, . . . , nk−1. Since k is a gap of n0, . . . , ns−1, we
have nk ≤ nk−1 − 2. Since nk ≥ ns−1 ≥ s, we have nk−1 ≥ s + 2. Since
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ni ≥ nk−1 for all i ≤ k − 1, we have deg(E) =
∑k−1

i=0 ni − k(k − 1)/2 ≥
k(s+ 2)− k(k − 1)/2 = k(2s− k + 5)/2 ≥ k(k + 7)/2 ≥

(
k+2
2

)
. Since k < s,

we have h0(IZ(k)) = 0. Hence E ( Z. Since E ⊆ Z ∩T , Z is not in uniform
position in degree k. Hence k > t. �

Proposition 2. Let Z ⊂ P2 be a zero-dimensional scheme. Let n0, . . . , ns−1
be its numerical character. Hence s(Z) = s.

(a) We have τ(Z) = s − 2 if and only if Z has maximal rank and

deg(Z) =
(
s+1
2

)
.

(b) τ(Z) = s − 1 ⇐⇒ Z has maximal rank and deg(Z) 6=
(
s+1
2

)
⇐⇒ Z

has maximal rank and
(
s+1
2

)
< deg(Z) <

(
s+2
2

)
.

Proof. Since Z 6= ∅, we have s > 0. Since s(Z) = s, we have deg(Z) ≥
(
s+1
2

)
.

Since τ(Z) = n0 − 2 and ns−1 ≥ s, we have τ(Z) = s − 2 if and only if
n0 = ns−1 = s, i.e. if and only if Z has maximal rank and h1(IZ(s− 1)) =
0, i.e. (since h0(IZ(s − 1)) = 0) if and only if Z has maximal rank and

deg(Z) =
(
s+1
2

)
. In the same way we prove part (b). �

Remark 1. Fix t ∈ Z. Let Z ⊂ Pr, r ≥ 2, be a zero-dimensional scheme.
We may extend verbatim the definitions of τ(Z), s(Z), maximal rank,
strong defectivity, and uniform position to the case r > 2. Assume that
Z has maximal rank. We have τ(Z) < s(Z). Set s := s(Z). We have(
r+s−1

r

)
≤ deg(Z) <

(
r+s
r

)
. If deg(Z) >

(
r+s−1

r

)
, then τ(Z) = s − 1. If

deg(Z) =
(
r+s−1

r

)
, then τ(Z) = s− 2. We may also introduce the following

definition. Z is said to be maximally degenerate in degree t if h1(IZ(t)) > 0
and h1(IW (t)) < deg(W ) − deg(Z) + h1(IZ(t)) for every zero-dimensional
scheme W ) Z, i.e. if and only h1(IW (t)) = h1(IZ(t)) for every zero-
dimensional scheme W ⊃ Z with deg(W ) = deg(Z) + 1, i.e. if and only if
h1(IZ(t)) > 0 and Z is the scheme-theoretic base locus of the linear system
|IZ(t)|.
Remark 2. By (1) we have h1(IZ(x)) < h1(IZ(y)) for all integers x, y
such that τ(Z) ≥ x > y ≥ s. Hence if h1(IZ(t)) > 0 and t ≥ s, then

t ≥ τ(Z) + 1− h1(IZ(t)). If t < s, then h1(IZ(t)) = deg(Z)−
(
t+2
2

)
.

Lemma 3. Fix a positive integer t. Let Z ⊂ P2 be a zero-dimensional
scheme such that s(Z) ≤ t and h1(IZ(t)) > h1(IA(t)) for all A ( Z. Fix
Z ′ ⊂ Z such that deg(Z ′) = deg(Z)− 1. Then s(Z) = s(Z ′).

Proof. Obviously s(Z ′) ≤ s(Z). Assume s(Z ′) < s(Z). Since h1(IZ(t)) >
h1(IZ′(t)) and deg(Z ′) = deg(Z) − 1, we have h0(IZ′(t)) = h0(IZ(t)), i.e.
Z is contained in the base locus of |IZ′(t)|. Since t ≥ s(Z ′), Z is contained
in the base locus of |IZ′(s(Z ′))|. The definition of the integer s(Z ′) gives
|IZ′(s(Z ′))| 6= ∅. Hence s(Z) ≤ s(Z ′). �
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Lemma 4. Let Z ⊂ P2 be a zero-dimensional scheme whose numerical
character n0, . . . , ns−1 is connected. Then sn0 − s(s− 1) ≤ deg(Z) ≤ sn0 −
s(s− 1)/2 and sns−1 − s(s− 1)/2 ≤ deg(Z) ≤ sns−1

Proof. We have deg(Z) =
∑s−1

i=0 (ni − i). Since the numerical character of

Z is connected, we have sn0 − s(s − 1)/2 ≤
∑s−1

i=0 ni ≤ sn0 and sns−1 ≤∑s−1
i=0 ni ≤ sns−1 + s(s− 1)/2. �

Lemma 5. Let Z ⊂ P2 be a zero-dimensional scheme. Set τ := τ(Z) and
call n0, . . . , ns−1 the numerical character of Z. Set e := h1(IZ(τ)). Then e
is the number of integers i ∈ {0, . . . , s− 1} such that ni = n0.

Proof. We have e =
∑s−1

i=1 (max{0, ni − τ − 1} − max{0, i − τ − 1}). Since
τ = n0 − 2 and n0 ≥ ns−1 ≥ s, we have i − τ − 1 ≤ 0 for all i ≤ s − 1 and
ni − τ − 1 > 0 ⇐⇒ ni = n0 ⇐⇒ ni − τ − 1 = 1. �

Lemma 6. Let Z ⊂ P2 be a zero-dimensional scheme. Set τ := τ(Z). If
h1(IZ(τ)) > h1(IZ′(τ)) for all Z ′ ( Z, then the numerical character of Z
is connected.

Proof. Assume that the numerical character n0, . . . , ns−1 of Z is not con-
nected and call t ∈ {1, . . . , s− 1} one of its gaps, i.e. assume nt ≤ nt−1 − 2.
By [12], Proposition at page 112, there is a degree t curve T such that the
scheme Z1 := Z ∩ T has numerical character n0, . . . , nt−1. Since nt < nt−1,
in the strings n0, . . . , ns−1 and n0, . . . , ns−1 the integer n0 appears the same
number of times. Apply Lemma 5 to Z and to Z1. �

Proposition 3. Let Z ⊂ P2 be a zero-dimensional scheme whose numerical
character n0, . . . , ns−1 is not connected. Let m be the last gap of n0, . . . , ns−1.
Fix any integer t ≥ s such that h1(IA(t)) < h1(IZ(t)) for all A ( Z. Then
t ≤ nm − 2.

Proof. Set e := h1(IZ(t)). Taking A = ∅ we get e > 0. By [12], Proposition
at page 112, there is a degree m curve T ⊂ P2 such that the scheme E :=
Z ∩ T has numerical character n0, . . . , nm−1. Since m < s, we have E ( Z.
Hence h1(IE(t)) < h1(IZ(t)). Formula (1) gives nm − t − 1 > 0, i.e. t ≤
nm − 2. �

Remark 3. Let A ⊂ P2 be a zero-dimensional scheme with numerical char-
acter n0, . . . , ns−1. Formula (1) shows that the numerical character of A
determines the Hilbert function hA of A. We recall how to get the numeri-
cal character of A in terms of its Hilbert function. The integer n0− 2 is the
maximal integer t such that h1(IA(t)) > 0. The integer h1(IA(n0−2)) is the
number of the integers i such that ni = n0. Fix an integer k ∈ {1, . . . , s−1}
such that nk < nk−1. Assume we have proved that the values hA(t) for all
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integers t ≥ nk−1 − 1 give the string n0, . . . , nk−1. By (1) the integer nk is
the largest integer t ≤ nk−1 such that h1(IA(t− 1))− h1(IA(t− 2)) > k.

Lemma 7. Let Z ⊂ P2 be a zero-dimensional scheme with numerical char-
acter n0, . . . , ns−1.

(i) We have h0(IZ(s)) = 1 + α , where α is the number of integers i
with ni = s.

(ii) h0(IZ(s)) = 1 if and only if ns−1 > s.

Proof. We have h0(IZ(s)) − h1(IZ(s)) =
(
s+2
2

)
− deg(Z). Since h0(IZ(s −

1)) = 0, we have h1(IZ(s − 1)) =
(
s+1
2

)
− deg(Z). Apply (1) first for t = s

and then for t = s − 1. We get h1(IZ(s − 1)) − h1(IZ(s)) = s − α. Hence
h0(IZ(s)) = 1 + α.

Part (ii) follows from part (i). �

Proposition 4. Let Z ⊂ P2 be a zero-dimensional scheme. Set s := s(Z).

We have h1(IZ(t)) = deg(Z)−
(
t+2
2

)
for every t ∈ {0, . . . , s− 1}.

(i) h1(IA(s−1)) < h1(IZ(s−1)) for each A ( Z if and only if h0(IB(s−
1)) = 0 for each B ⊂ Z with deg(B) = deg(Z)− 1.

(ii) If h0(IZ(s)) = 1, then h0(IA(s−1)) < h1(IZ(s−1)) for each A ( Z.
(iii) For each t ≤ s− 2 we have h1(IA(t)) < h1(IZ(t)) for any A ( Z.
(iv) Fix an integer t < s. Z is strongly defective in degree t if and only

if γ := deg(Z) −
(
t+2
2

)
> 0 and deg(Z ∩ T ) < deg(Z) − γ for each

T ∈ |OP2(t)|. If t ≤ s− 2, then γ ≥
(
s+1
2

)
−
(
t+2
2

)
> 0.

Proof. Let B denote the set of all zero-dimensional schemes B ⊂ Z such
that deg(B) = deg(Z)− 1. Fix any integer t ≤ s− 1. If there is A ( Z such
that h1(IA(t)) = h1(IZ(t)), then h1(IB(t)) = h1(IB(t)) = h1(IZ(t)) for
some B ∈ B (Lemma 2). For any B ∈ B we have h0(IB(t)) = h0(IZ(t)) =
0 (Lemma 2 and the inequality t < s). If B ∈ B and h0(IB(t)) = 0,

then h1(IB(t)) = deg(B) −
(
t+2
2

)
= h1(IZ(t)) − 1. Now assume t ≤ s −

2. If h0(IB(t)) > 0, then h0(IB(s − 1)) ≥ 3 and hence h0(IZ(s − 1)) ≥
2, a contradiction. If h0(IB(s − 1)) > 0, then h0(IB(s)) ≥ 3 and hence
h0(IZ(s)) ≥ 2. We just proved parts (i), (ii), and (iii).

Now we prove part (iv). Since deg(Z) ≥
(
s+1
2

)
, we have γ ≥

(
s+1
2

)
−
(
t+2
2

)
.

Hence γ > 0 if t ≤ s−2. Fix A ( Z. First assume w := deg(Z)−deg(A) ≤ γ.

Since h0(IA(t))− h1(IA(t)) =
(
t+2
2

)
− deg(A), we have h1(IA(t)) = γ −w if

and only if h0(IA(w)) = 0. Now assume w > γ. There is a zero-dimensional
scheme A1 such that A ⊂ A1 ⊂ Z and deg(A1) = deg(Z) − γ. We have
h1(IA(t)) ≤ h1(IA1(t)) (Lemma 1). We just proved that h1(IA1(t)) = 0 if
and only if h0(IA1(t)) = 0, concluding the proof of part (iv). �
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Proposition 5. Let E ⊂ P2 be a zero-dimensional scheme, E 6= ∅. Let
n0, . . . , ns−1 be the numerical character of E. Fix an integer d such that
s−2 ≤ d ≤ ns−1−2. Set ε := h1(IE(d)). Then h1(IA(d)) < ε for all A ( E
(even if A = ∅)
Proof. The lemma is true for A = ∅, because (1) gives ε > 0 (here we use the
inequalities s− 1− d− 1 ≤ 0 and ns−1− d− 1 > 0). Now assume A 6= ∅ and
call m0, . . . ,mr−1 the numerical character of A. Obviously r ≤ s. Let t be
the maximal integer ≤ s−1 such that mt ≥ d+2 with the convention t = −1
if there is no such integer. If t = −1, then (1) gives h1(IA(d)) = 0. Hence
we may assume t ∈ {0, . . . , r − 1}. Use (1) for Z and A with t := d. Since
d ≥ s− 2, we have max{0, s− 1− d− 1} = 0 and max{0, r− 1− d− 1} = 0.

Hence ε =
∑s−1

i=0 (ni − d − 1) =
∑t

i=0(ni − d − 1) +
∑s−1

i=t+1(ni − d − 1)

and h1(IA(d)) =
∑t

i=0(mi − d − 1). Hence h1(IA(d)) = ε if and only if∑t
i=0mi =

∑s−1
i=0 ni (or, by Lemma 1, if and only if

∑t
i=0mi ≥

∑s−1
i=0 ni).

We have deg(E) =
∑s−1

i=0 (ni − i) =
∑t

i=0(ni − i) +
∑s−1

i=t+1(ni − i) and

deg(A) =
∑r−1

i=0 (mi − i) =
∑t

i=0(mi − i) +
∑r−1

i=t+1(mi − i). Since mj > j

for all j < r and nh > h for all h < s, we have
∑t

i=0mi ≥
∑k−1

i=0 ni if and
only if t = r − 1 = s− 1 and deg(A) = deg(E), i.e. if and only if A = E, a
contradiction. �

If d ∈ {s−2, s−1}, then Proposition 5 is a particular case of Proposition 4.
The following examples shows that Proposition 5 cannot be improved,

without making some assumptions not involving only the numerical charac-
ter.

Example 1. Fix a zero-dimensional scheme W ⊂ P2 with numerical char-
acter a0, . . . , as−1 such that as−1 = s, i.e. such that b := h0(IW (s)) ≥ 2
(Lemma 7). Take a general P ∈ P2. Set Z := W∪{P}. Since P is general, we
have h0(IZ(t)) = h0(IW (t))− 1 for all t ≥ s. Hence h1(IZ(t)) = h1(IW (t))
for all t ≥ s. Since b ≥ 2, we have s(Z) = s. We get that the numerical
character n0, . . . , ns−1 of Z satisfies ns−b+1 = as−b+1 +1 = s+1 and ni = ai
for all i 6= s− b+ 1.

Example 2. Fix a zero-dimensional scheme W ⊂ P2 with numerical char-
acter a0, . . . , as−1 such that as−1 > s, i.e. such that h0(IW (s)) = 1 (Lemma
7). Take a general P ∈ P2. Set Z := W ∪ {P}. Since P is general, we have
h0(IZ(t)) = h0(IW (t)) − 1 for all t ≥ s. Hence h1(IZ(t)) = h1(IW (t)) for
all t ≥ s and s(Z) = s + 1. Let n0, . . . , ns+1 be the numerical character of
Z. We have ni = ai for all i ≤ s− 1 and ns = s+ 1.

Proposition 6. Let Z ⊂ P2 be a zero-dimensional scheme with numerical
character n0, . . . , ns−1. Assume the existence of an integer t > 0 such that
e := h1(IZ(t)) > 0. Then we have t ≤ n0 − 2.
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(a) Assume that n0, . . . , ns−1 is not connected and call k its last gap.
Assume h1(IA(t)) < e for all A ( Z. Then t ≤ nk−2. If t ≥ s, then

e =
∑s−1

i=0 max{0, ni − t− 1}.
(b) Assume that n0, . . . , ns−1 is connected. If s ≥ n0 − t, then e ≥

(n0 − t− 1)(n0 − t)/2.

Proof. Since τ(Z) = n0 − 2, we have t ≤ n0 − 2.
(i) Take the set-up of part (a). Assume that n0, . . . , ns−1 is not con-

nected and call k its last gap. There is a degree k curve T ⊂ P2 such that
E := Z ∩ T has numerical character n0, . . . , nk−1. By (1) applied first to Z
and then to E we get that h1(IE(y)) = h1(IZ(y)) if and only if y ≥ nk − 1.
The value for e is given by (1).

(ii) Assume that n0, . . . , ns−1 is connected. Hence ni ≥ n0−i for all i. If

s ≥ n0−t, then (1) gives e ≥
∑n0−t−2

i=0 (ni−t−1) ≥
∑n0−t−2

i=0 (n0−t−1−i) =
(n0 − t− 1)(n0 − t)/2. �

3. The decomposition for numerical characters with gaps

In this paper a curve T ⊂ P2 is an effective divisor, i.e. it has no embedded
point.

For any curve T ⊂ P2 and any zero-dimensional scheme Z ⊂ P2 the
residual scheme ResT (Z) of Z with respect to T is the closed subscheme of
P2 with IT : IZ as its ideal sheaf. Set k := deg(T ). For any y ∈ Z we have
an exact sequence

0→ IResT (Z)(y − k)→ IZ(y)→ IZ∩T,T (y)→ 0 (2)

Notice that ResT (Z) ⊆ Z. Taking the Hilbert polynomials in (2) we get
deg(Z) = deg(Z ∩ T ) + deg(ResT (Z)). If H ⊂ P2 is any curve, then
ResH(ResT (Z)) = ResT+H(Z) = ResT (ResH(Z)), in which T + H is the
sum as divisors, i.e. counting the multiplicities of the irreducible compo-
nents.

For any integer d > 0 set N(d) := d(d+ 3)/2. Let νd : P2 → PN(d) denote
the order d Veronese embedding of P2, i.e. the embedding of P2 induced
by the complete linear system |OP2(d)|. For any zero-dimensional scheme

W ⊂ PN(d) let 〈W 〉 denote the linear span of W , i.e. the intersection of all

hyperplanes containing W , with the convention 〈W 〉 = PN(d) if there is no
hyperplane. Notice that 〈∅〉 = ∅.
Lemma 8. Let Z ⊂ P2 be a zero-dimensional scheme whose numerical
character n0, . . . , ns−1 is not connected. Let k be any gap of the numerical
character n0, . . . , ns−1. There is a unique degree k effective divisor T ⊂ P2

such that E := Z ∩ T has numerical character n0, . . . , nk−1. Moreover, the
scheme ResT (Z) has numerical character m0, . . . ,ms−k−1, where mi := ni−
k for all i.
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Proof. The existence of T and the “ Moreover ” part are true by [12], the
proposition on page 112. Set d := nk−1−2 and ε := h1(IZ(d)). Assume that
H ⊂ P2 is another degree k effective divisor such that F := Z∩H has numer-
ical character n0, . . . , nk−1. Since n0, . . . , nk−1 is the numerical character of
E and F , n0, . . . , ns−1 is the numerical character of Z and nk ≤ nk−1−2 = d,
(1) gives h1(IE(d)) = h1(IF (d)) = ε. Since E ⊆ E ∪F ⊆ Z, Lemma 1 gives
h1(IE(d)) ≤ h1(IE∪F (d)) ≤ h1(IZ(d)). Hence h1(IE∪F (d)) = ε. The defi-
nition of the Veronese embedding νd gives dim(〈νd(E)〉) = deg(E) − 1 − ε,
dim(〈νd(F )〉) = deg(F ) − 1 − ε and dim(〈νd(E ∪ F )〉) = deg(E) − 1 − ε.
Since E ∩ F ⊆ E, Lemma 1 gives dim(〈νd(E ∩ F )〉 ≥ deg(E ∩ F ) − 1 − ε.
Since deg(E) + deg(F ) = deg(E ∪ F ) + deg(E ∩ F ), Grassmann’s for-
mula gives dim(〈νd(E)〉) ∩ 〈νd(F )〉) = deg(E ∩ F ) − ε. Since νd(E ∩ F ) ⊂
〈νd(E)〉 ∩ 〈νd(F )〉, we get dim(〈νd(E ∩ F )〉 = deg(E ∩ F ) − 1 − ε, i.e.
h1(IE∩F (d)) = ε. Lemma 5 gives E ∩ F = E, i.e. E = F , a contradic-
tion. �

Remark 4. Let Z ⊂ P2 be a zero-dimensional scheme whose numerical
character is not connected, say it has c gaps k1, . . . , kc. Let T1, . . . , Tc,
E1, . . . , Ec+1, Z1, . . . , Zc = Ec+1 be the splitting sequence of Z. Set k0 := 0.
We have h0(IEi(ki − ki−1)) = 1 for all i (Lemma 7 applied to Ei). Hence
Ti is the only element of |IEi(ki − ki−1)|. For any zero-dimensional scheme
A ⊂ P2 there is at most one integer t such that h0(IA(t)) = 1. Hence
the sequence E1, . . . , Ec uniquely determines the curves T1, . . . , Tc and the
gaps k1, . . . , kc. The Hilbert function of each Ei gives its numerical char-
acter. Hence the sequence E1, . . . , Ec+1 uniquely determines the numerical
character of Z.

Remark 5. Assume that Z is reduced and that its numerical character
is not connected. Let T1, . . . , Tc, E1, . . . , Ec+1, Z1, . . . , Zc = Ec+1 be the
splitting sequence of Z. In this case Ei ∩ Ej = ∅ for all i 6= j, Z = E1 t
· · · t Ec+1 and Zi = tc+1

h=i+1Eh for all i ∈ {1, . . . , c}. Hence in this case
the sequence E1, . . . , Ec+1 gives Z and (by Remark 4) all the data of the
splitting sequence of Z.

Proposition 7. Let Z ⊂ P2 be a zero-dimensional scheme whose numer-
ical character n0, . . . , ns−1 is not connected. Let k1, . . . , kc be the gaps of
n0, . . . , ns−1 and E1, . . . , Ec+1 the splitting sequence of Z. Set k0 := 0.
Then h0(IE1(ki − ki−1)) = 1 for all i ∈ {1, . . . , c} and h0(IEc+1(s − kc)) =

h0(IZ(s)).

Proof. We proved in Remark 4 that h0(IE1(ki − ki−1)) = 1 for all i ∈
{1, . . . , c}. Since Ec+1 has a numerical character with length s − kc, we
have |IEc+1(s − kc)| 6= ∅. Obviously for each A ∈ |IEc+1(s − kc)| we have
A∪T1∪· · ·∪Tc ∈ |IZ(s)|. Let α be the number of integers i ∈ {0, . . . , s−1}
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such that ni = s. We have h0(IZ(s)) = 1 + α (Lemma 7). Recall that Ec+1

has numerical character b0, . . . , br−1 with r = s− kc and bi = ni+kc − kc for
all i ([12], Proposition at page 112). Hence bi = s− kc for exactly α indices
i. Hence Lemma 7 gives h0(IEc+1(s− kc)) = 1 + α = h0(IZ(s)). �

The next example shows that even if each term E1, . . . , Ec+1 of a split-
ting is reduced, then Z may be unreduced and different schemes may have
the same splitting sequence E1, . . . , Ec+1. Of course, the sets E1, . . . , Ec+1

cannot be pairwise disjoints if Z is not reduced. In the next example we
have c = s.

Example 3. Fix an integer s ≥ 2 and integers n0, . . . , ns−1 such that ns−1 ≥
s and ni ≤ ni−1 − 2 for all i ∈ {1, . . . , s − 1}. Fix a line L ⊂ P2 and sets
E1, . . . , Ec+1 such that Ec+1 ⊂ · · · ⊂ E1 ⊂ L and ](Ei) = ni−1 + i − 1 for
all i. For each P ∈ E1 fix any line LP ⊂ P2 such that P ∈ LP and LP 6= L.
Set Z := tP∈E1ZP , where ZP is the degree i divisor of LP with P as its
reduction and i is the maximal integer with P ∈ Ei. In this case as splitting
curves we use s times the line L.

Remark 6. Fix an algebraically closed field L ⊃ K. Let Z ⊂ P2 be a
zero-dimensional scheme defined over K. Obviously Z is defined over L.
Since the inclusion K ⊂ L is flat and cohomology commutes with flat base
change ([14], Proposition III.9.3), the integers h1(IZ(t)), t ∈ Z, are the same
if we see Z defined over K or over L. Hence the Hilbert function and the
numerical character of Z are the same over K and over L.

Remark 7. Assume that K is the algebraic closure of the perfect field K.
Fix a zero-dimensional scheme Z ⊂ P2 defined over K (we do not assume
that each point of Zred is defined over K). Assume that the numerical
character of Z is not connected and call T1, . . . Tc, E1, . . . , Ec+1, Z1, . . . , Zc =
Ec+1 the splitting sequence of Z. There is a finite extension F of K in which
the constructions in [12] are defined. Hence the splitting sequence of Z is
defined over L. The uniqueness of T1, . . . , Tc (Lemma 7) implies that each Ti
is fixed by G. Hence each Ti is defined over K. Since Z and T1 are defined
over K, E1 := Z ∩ T1 and Z1 := ResT1(Z) are defined over K. In c steps we
get that the splitting sequence of Z is defined over K.

4. How to use numerical characters to find properties of
codes from plane curves

How to use [12] if a reasonable example is suggested and you want to test
it.

Let C ⊂ P2 be a smooth plane curve. Set d := deg(C). Fix an integer
t > 0, a zero-dimensional scheme E ⊂ C and a finite set B ⊂ C \ Ered.
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Let C1 be the affine code obtained evaluating H0(P2, IE(t)) at the points
of B (since B is finite we may fix the homogeneous coordinates of each
point of B to evaluate each polynomial f ∈ H0(P2, IE(t)); two different
choices give isometric codes). Let C be the code obtained evaluating at
the points of B the restriction to C of H0(P2, IE(t)) (it can be seen as
a Goppa code). If t < d, then the restriction map is injective and hence
C⊥ = C⊥1 . Anyway, C1 = C, even when t ≥ d just because B ∪ E ⊂ C and
hence the evaluation map factors through the restriction to C. Therefore,
for every t we have h1(IF∪E(t)) = h1(C,OC(t)(−F − E)) for each F ⊆ B.
We always assume h0(C,OC(t)(−B − E)) = 0, so that C is an [n, k]-code
with n := ](B) and k := h0(C,OC(t)(−E)). Hence C⊥ is an [n, n− k]-code.
The minimum distance of the code C⊥ is the minimal cardinality of a set
F ⊆ B such that h1(IF∪E(t)) > 0. We could look at the intersections of
B ∪ E first with lines and then with conics (reducible or smooth) and see
in which range they touch our problem, i.e. if there is a line (resp. a conic)
D with deg(D ∩ (B ∪E)) ≥ t+ 2 (resp. deg(D ∩ (B ∪E)) ≥ 2t+ 2). Lines
(resp. conics) correspond to a scheme B′ ∪ E with s(B′ ∪ E) = 1 (resp.
s(B′ ∪ E) = 2) and the key step is to show that either s(S ∪ E) = 1 (resp.
s(S ∪E) = 2) or 1 (resp. 2) is a gap of the numerical character of S ∪E for
a suitable S ⊆ B; in both cases the minimality of B′ implies B = B′ ∩ D
with deg(D) = 1 (resp. deg(D) = 2).

In the case of the Hermitian curve the minimum distances where pre-
viously known for all one-point codes and two-points codes. So the main
business in [6], [7] and [8] was to show that only lines or conics could give
minimum distance codewords (or codewords with small weight) and then
count in a certain ranges the lines with large intersection with B (well-known
and classical) and then the smooth conics ([11]). As far as we know there is
no list of the large integers arising as ](C(Fq2) ∩ T ) with C the Hermitian
curve over Fq2 and T an irreducible cubic. Hence we were forced to work
only in certain ranges. For arbitrary data C,E,B the paper [12] may be a
first check: look for lines or conics or cubics T with large deg(T ∩ (E ∪B)).
The paper [12] may also help in the search of a zero-dimensional scheme
E ⊂ C with good properties. In [6], [7] and [8] there are either P ∈ C \ B
and an integer a > 0 or P,Q ∈ C \ B and integers a > 0, b > 0 such that
either E = aP or E = aP +bQ (respectively one-point codes and two-points
codes). One needs to find useful integers a > 0 or a > 0, b > 0; for aP (resp
aP + bQ) we are looking at the Weierstrass semigroup of P (resp. of the
pair P,Q), or at least at their first few non-gaps; in the case of the Hermit-
ian curve these semigroups were known in advance, but in the general case
[12] may be useful to compute them in certain intervals (at least as large as
the ones for which one can find a useful set B). Sometimes this heuristic
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strategy helps even if the curve C we are interested in has a singular plane
model, but for a restricted set of integers t ([5]).

Now we fix an integer e ≥ 2 and look at the minimal cardinality of a
set B1 ⊆ B such that h1(IB1∪E(t)) = e. This cardinality is the gener-
alized Hamming e-weight of C⊥. We wrote in [1], Theorems 1 and 2, an
axiomatic treatment of this subject for lines and conics in terms of the pos-
sible intersection of B ∪E with lines and conics (it corresponds only to [12],
Remarques at page 116). It is straightforward to go on with cubics, quartics
and so on using [12], Corollaire 2, but to do this in full one would also need
a reasonable application.
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