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PARTIAL SUMS FOR A CERTAIN SUBCLASS OF

MEROMORPHIC UNIVALENT FUNCTIONS

M. K. AOUF, A. O. MOSTAFA, A. Y. LASHIN AND B. M. MUNASSAR

Abstract. In this paper, the class Σλ (α, β, γ) of univalent meromor-
phic functions defined using the Ruscheweyh derivative in the punctured
unit disk U∗ is introduced. We study some results concerning the par-
tial sums of meromorphic univalent starlike functions and meromorphic
univalent convex functions.

1. Introduction

Let Σ denote the class of meromorphic functions of the form:

f(z) =
1

z
+

∞∑
k=1

akz
k (ak ≥ 0) , (1.1)

which are regular and univalent in the punctured unit disc U∗ = {z : z ∈ C
and 0 < |z| < 1} = U\{0}. Let g ∈ Σ, be given by

g (z) =
1

z
+
∞∑
k=1

bkz
k, (1.2)

then the Hadamard product (or convolution) of f and g is given by

(f ∗ g) (z) =
1

z
+

∞∑
k=1

akbkz
k = (g ∗ f) (z) . (1.3)

A function f ∈ Σ is said to be meromorphically starlike of order α if

Re

{
−zf

′(z)

f(z)

}
> α (z ∈ U ; 0 ≤ α < 1). (1.4)
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Denote by Σ∗ (α) the class of all meromorphically starlike functions of order
α. A function f ∈ Σ is said to be meromorphically convex of order α if

Re

{
−(1 +

zf ′′(z)

f ′(z)
)

}
> α (z ∈ U ; (0 ≤ α < 1)). (1.5)

Denote by Σ∗k (α) the class of all meromorphically convex functions of order
α. We note that

f(z) ∈ Σ∗k (α)⇐⇒ −zf ′(z) ∈ Σ∗ (α) .

The classes Σ∗ (α) and Σ∗k(α) had been extensively studied by Pommerenke
[7] , Miller [6] and others.

For λ > −1, the Ruscheweyh derivative of order λ is denoted by Dλf and
is defined for function of the form (1.1) as follows: If

f(z) =
1

z
+

∞∑
k=1

akz
k,

then

Dλf (z) =
1

z (1− z)λ+1
∗ f (z) = z−1 +

∞∑
k=1

Dk (λ) akz
k, z ∈ U∗, (1.6)

where

Dk (λ) =
(λ+ 1) (λ+ 2) . . . (λ+ k + 1)

(k + 1)!
. (1.7)

For β ≥ 0, 0 ≤ α < 1, 0 ≤ γ < 1
2 and λ > −1, Atshan and Kulkarni [4] and

Atshan [3] defined the class Σλ (α, β, γ) consisting of functions of the form
(1.1) and satisfying the analytic criterion:

−Re

{
z(Dλf (z))′ + γz2(Dλf (z))′′

(1− γ)Dλf (z) + γz(Dλf (z))′
+ α

}
≥

β

∣∣∣∣ z(Dλf (z))′ + γz2(Dλf (z))′′

(1− γ)Dλf (z) + γz(Dλf (z))′
+ 1

∣∣∣∣ (z ∈ U) . (1.8)

We note that:
Σ0(α, 0, 0) = Σ∗(α) (0 ≤ α < 1) (see Pommerenke [7]).

Also, we note that
Σλ(α, β, 0) = Σ∗λ(α, β) =

−Re

{
z(Dλf (z))′

Dλf(z)
+ α

}
≥ β

∣∣∣∣z(Dλf (z))′

Dλf(z)
+ 1

∣∣∣∣ (z ∈ U). (1.9)

For β ≥ 0 , 0 ≤ α < 1, and λ > −1, we denote by Σ∗k,λ (α, β) the subclass

of Σ consisting of functions of the form (1.1) and satisfying the analytic
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criterion:

−Re

{
1 +

z(Dλf (z))′′

Dλf ′(z)
+ α

}
≥ β

∣∣∣∣2 +
z(Dλf (z))′′

Dλf ′(z)

∣∣∣∣ (z ∈ U) , (1.10)

We note that:
Σk,0(α, 0) = Σ∗k(α) (0 ≤ α < 1) (see Pommerenke [7]).
It is easy to observe from (1.9) and (1.10) that

f(z) ∈ Σ∗k,λ (β, α)⇐⇒ −zf ′(z) ∈ Σ∗λ (β, α) . (1.11)

In order to prove our results for functions belonging to the class Σλ (α, β, γ)
we shall need the following lemma given by Atshan and Kulkarni [4] .

Lemma 1. [4, Theorem 2.1] Let the function f be defined by (1.1). Then
f ∈ Σλ (α, β, γ) if and only if
∞∑
k=1

(1 + γk − γ) [k (1 + β) + (β + α)]Dk (λ) ak ≤ (1− α) (1− 2γ) . (1.12)

where 0 ≤ α < 1, β ≥ 0, 0 ≤ γ < 1
2 , λ > −1, and Dk (λ) is given by (1.7) .

Taking γ = 0 in Lemma 1, we obtain the following corollary.

Corollary 1. Let the function f defined by (1.1). Then f ∈ Σ∗λ (β, α) if
and only if

∞∑
k=1

[k(1 + β) + (β + α)]Dk (λ) ak ≤ (1− α). (1.13)

By using Corollary 1 and (1.11) , we can prove the following lemma.

Lemma 2. Let the function f defined by (1.1). Then f ∈ Σ∗k,λ (β, α) if and
only if

∞∑
k=1

k [k(1 + β) + (β + α)]Dk (λ) ak ≤ (1− α). (1.14)

In this paper, applying the technique used by Silverman [8] , we will in-
vestigate the ratio of a function of the form (1.1) to its sequence of partial
sums fn(z) = 1

z +
∑n

k=1 akz
k when the coefficients of f are sufficiently small

to satisfy condition (1.13) or (1.14) . More precisely, we will determine sharp
lower bounds for

Re

{
f (z)

fn (z)

}
, Re

{
fn (z)

f (z)

}
, Re

{
f
′
(z)

f ′n (z)

}
and Re

{
f
′
n (z)

f ′ (z)

}
.

In the sequel, we will make use of well-known result that Re
{

1+w(z)
1−w(z)

}
> 0

(z ∈ U) if and only if w (z) =
∑∞

k=1 ckz
k satisfies the inequality |w (z)| ≤ |z| .
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Unless otherwise stated, we will assume that f is of the form (1.1) and its
sequence of partial sums is denoted by fn(z) = 1

z +
∑n

k=1 akz
k.

For the notational convenience we shall henceforth denote

δk (λ, β, α) = [k(1 + β) + (β + α)]Dk (λ) . (1.15)

2. Main results

Theorem 1. If f of the form (1.1) satisfies condition (1.13) , then

Re

{
f (z)

fn (z)

}
≥ δn+1 (λ, β, α)− (1− α)

δn+1 (λ, β, α)
(z ∈ U) . (2.1)

The result is sharp, with extremal function

f (z) =
1

z
+

1− α
δn+1 (λ, β, α)

zn+1 (n ≥ 1) . (2.2)

Proof. We may write

δn+1 (λ, β, α)

1− α

[
f (z)

fn (z)
− δn+1 (λ, β, α)− (1− α)

δn+1 (λ, β, α)

]

=

1 +
n∑
k=1

akz
k+1 + δn+1(λ,β,α)

1−α

∞∑
k=n+1

akz
k+1

1 +
n∑
k=1

akzk+1

=
1 +A (z)

1 +B (z)
.

Set 1+A(z)
1+B(z) = 1+w(z)

1−w(z) , so that w (z) = A(z)−B(z)
2+A(z)+B(z) . Then

w (z) =

δn+1(λ,β,α)
1−α

∞∑
k=n+1

akz
k+1

2 + 2
n∑
k=1

akzk+1 + δn+1(λ,β,α)
1−α

∞∑
k=n+1

akzk+1

and

|w (z)| ≤

δn+1(λ,β,α)
1−α

∞∑
k=n+1

ak

2− 2
n∑
k=1

ak − δn+1(λ,β,α)
1−α

∞∑
k=n+1

ak

.

Now |w (z)| ≤ 1 if and only if

2

(
δn+1 (λ, β, α)

1− α

) ∞∑
k=n+1

ak ≤ 2−
n

2
∑
k=1

ak,



MEROMORPHIC UNIVALENT FUNCTIONS 165

which is equivalent to

n∑
k=1

ak +

(
δn+1 (λ, β, α)

1− α

) ∞∑
k=n+1

ak ≤ 1. (2.3)

It suffices to show that the left hand side of (2.3) is bounded above by
∞∑
k=1

(
δk (λ, β, α)

1− α

)
ak, which is equivalent to

n∑
k=1

δk (λ, β, α)− (1− α)

1− α
ak +

∞∑
k=n+1

δk (λ, β, α)− δn+1 (λ, β, α)

1− α
ak ≥ 0.

To see that the function f given by (2.2) gives the sharp result, we observe

for z = reπi /(n+2) that

f (z)

fn (z)
= 1 +

1− α
δn+1 (λ, β, α)

zn+2

→ 1− 1− α
δn+1 (λ, β, α)

=
δn+1 (λ, β, α)− (1− α)

δn+1 (λ, β, α)
when r → 1−.

Therefore the proof of Theorem 1 is completed. �

Theorem 2. If f of the form (1.1) satisfies condition (1.14) , then

Re

{
f (z)

fn (z)

}
≥ (n+ 1) δn+1 (λ, β, α)− (1− α)

(n+ 1) δn+1 (λ, β, α)
(z ∈ U) . (2.4)

The result is sharp for every n, with extremal function

f (z) =
1

z
+

1− α
(n+ 1) δn+1 (λ, β, α)

zn+1 (n ≥ 1) . (2.5)

Proof. We may write

(n+ 1) δn+1 (λ, β, α)

1− α

[
f (z)

fn (z)
− (n+ 1) δn+1 (λ, β, α)− (1− α)

(n+ 1) δn+1 (λ, β, α)

]

=

1 +
n∑
k=1

akz
k+1 + (n+1)δn+1(λ,β,α)

1−α

∞∑
k=n+1

akz
k+1

1 +
n∑
k=1

akzk+1

=
1 + w (z)

1− w (z)
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where

w (z) =

(n+1)δn+1(λ,β,α)
1−α

∞∑
k=n+1

akz
k+1

2 + 2
n∑
k=1

akzk+1 + (n+1)δn+1(λ,β,α)
1−α

∞∑
k=n+1

akzk+1

.

Now

|w (z)| ≤

(n+1)δn+1(λ,β,α)
1−α

∞∑
k=n+1

ak

2− 2
n∑
k=1

ak − (n+1)δn+1(λ,β,α)
1−α

∞∑
k=n+1

ak

.

if
n∑
k=1

ak +

(
(n+ 1) δn+1 (λ, β, α)

1− α

) ∞∑
k=n+1

ak ≤ 1. (2.6)

The left hand side of (2.6) is bounded above by

∞∑
k=1

(
kδk (λ, β, α)

1− α

)
ak,

if

1

1− α

{
n∑
k=1

[kδk (λ, β, α)− (1− α)] ak

+

∞∑
k=n+1

[kδk (λ, β, α)− (n+ 1) δn+1 (λ, β, α)]ak

}
≥ 0

and the proof of Theorem 2 is completed. �

We next determine bounds for Re
{
fn(z)
f(z)

}
.

Theorem 3. (a) If f of the form (1.1) satisfies condition (1.13) , then

Re

{
fn (z)

f (z)

}
≥ δn+1 (λ, β, α)

(1− α) + δn+1 (λ, β, α)
(z ∈ U) . (2.7)

(b) If f of the form (1.1) satisfies condition (1.14) , then

Re

{
fn (z)

f (z)

}
≥ (n+ 1) δn+1 (λ, β, α)

(1− α)− (n+ 1) δn+1 (λ, β, α)
(z ∈ U) . (2.8)

Equalities hold in (a) and (b) for the functions given by (2.2) and (2.5) ,
respectively.
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Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted.
We write

(1− α) + δn+1 (λ, β, α)

1− α

[
fn (z)

f (z)
− δn+1 (λ, β, α)

(1− α) + δn+1 (λ, β, α)

]

=

1 +
n∑
k=1

akz
k+1 − δn+1(λ,β,α)

1−α

∞∑
k=n+1

akz
k+1

1 +
∞∑
k=1

akzk+1

=
1 + w (z)

1− w (z)
,

where

|w (z)| ≤

(1−α)+δn+1(λ,β,α)
1−α

∞∑
k=n+1

ak

2− 2
n∑
k=1

ak − δn+1(λ,β,α)−(1−α)
1−α

∞∑
k=n+1

ak

≤ 1.

This last inequality is equivalent to

n∑
k=1

ak +

(
δn+1 (λ, β, α)

1− α

) ∞∑
k=n+1

ak ≤ 1. (2.9)

Since the left hand side of (2.9) is bounded above by

∞∑
k=1

(
δk (λ, β, α)

1− α

)
ak,

the proof is completed. �

We next turn to ratios involving derivatives. The proof of Theorem 4
below follows the pattern of those in Theorem 1 and (a) of Theorem 3 and
so the details may be omitted.

Theorem 4. If f of the form (1.1) satisfies condition (1.13) , then

(a) Re

{
f
′
(z)

f ′n (z)

}
≥ δn+1 (λ, β, α) + (n+ 1) (1− α)

δn+1 (λ, β, α)
(z ∈ U) ,

(b) Re

{
f
′
n (z)

f ′ (z)

}
≥ δn+1 (λ, β, α)

δn+1 (λ, β, α)− (n+ 1) (1− α)
(z ∈ U ;α 6= 0, ) .

The extremal function for the case (a) is given by (2.2) and the extremal
function for the case (b) is given by (2.2) with α 6= 0.
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Remark 1. Putting β = 0 and λ = 0 in Theorem 2, we obtain the following
corollary:

Corollary 2. If f of the form (1.1) satisfies condition (1.13) (with β =
0 and λ = 0), that is f ∈ Σ∗(α), then

(a) Re

{
f
′
(z)

f ′n (z)

}
≥ 2 (n+ 1)− nα

n+ 1 + α
(z ∈ U) ,

(b) Re

{
f
′
n (z)

f ′ (z)

}
≥ n+ 1 + α

α (n+ 2)
(z ∈ U ;α 6= 0) .

The extremal function for the case (a) is given by (2.2) (with β=0 and λ=0)
and the extremal function for the case (b) is given by (2.2) . (with β = 0, λ =
0 and α 6= 0).

Remark 2. We note that Corollary 2 corrects the result obtained by Cho
and Owa [5, Theorem 4] .

Theorem 5. If f of the form (1.1) satisfies condition (1.14) , then

(a) Re

{
f
′
(z)

f ′n (z)

}
≥ δn+1 (λ, β, α)− (1− α)

δn+1 (λ, β, α)
(z ∈ U) .

(b) Re

{
f
′
n (z)

f ′ (z)

}
≥ δn+1 (λ, β, α)

(1− α) + δn+1 (λ, β, α)
(z ∈ U) .

In both cases, the extremal function is given by (2.5) .

Proof. It is well known that f ∈ Σ∗k (α)⇐⇒ −zf ′ ∈ Σ∗ (α) . In particular, f

satisfies condition (1.14) if and only if −zf ′ satisfies condition (1.13) . Thus,
(a) is an immediate consequence of Theorem 1 and (b) follows directly from
(a) of Theorem 3. �

Remark 3. Puting β = 0 and λ = 0, in the above results, we get the results
obtained by Cho and Owa [5] .

Remark 4. Puting β = 0 and λ = 0, in the above results, we get the results
obtained by Aouf and Silverman [2 with p = 1] .

Remark 5. Puting β = 0 and λ = 0, in the above results, we get the results
obtained by Aouf and Mostafa [1 with p = B = 1 and A = 2α−1, 0 ≤ α < 1].
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