PARTIAL SUMS FOR A CERTAIN SUBCLASS OF MEROMORPHIC UNIVALENT FUNCTIONS

M. K. AOUF, A. O. MOSTAFA, A. Y. LASHIN AND B. M. MUNASSAR

ABSTRACT. In this paper, the class $\Sigma_{\lambda}(\alpha,\beta,\gamma)$ of univalent meromorphic functions defined using the Ruscheweyh derivative in the punctured unit disk U^{*} is introduced. We study some results concerning the partial sums of meromorphic univalent starlike functions and meromorphic univalent convex functions.

1. INTRODUCTION

Let Σ denote the class of meromorphic functions of the form:

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k \ (a_k \ge 0), \qquad (1.1)$$

which are regular and univalent in the punctured unit disc $U^* = \{z : z \in \mathbb{C}$ and $0 < |z| < 1\} = U \setminus \{0\}$. Let $g \in \Sigma$, be given by

$$g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} b_k z^k,$$
 (1.2)

then the Hadamard product (or convolution) of f and g is given by

$$(f * g)(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k b_k z^k = (g * f)(z).$$
 (1.3)

A function $f \in \Sigma$ is said to be meromorphically starlike of order α if

$$\operatorname{Re}\left\{-\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U; \ 0 \le \alpha < 1).$$
(1.4)

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Partial sums, meromorphic univalent functions, Ruscheweyh derivative.

Denote by $\Sigma^*(\alpha)$ the class of all meromorphically starlike functions of order α . A function $f \in \Sigma$ is said to be meromorphically convex of order α if

$$\operatorname{Re}\left\{-(1+\frac{zf''(z)}{f'(z)})\right\} > \alpha \ (z \in U; \ (0 \le \alpha < 1)).$$
(1.5)

Denote by $\Sigma_k^*(\alpha)$ the class of all meromorphically convex functions of order α . We note that

$$f(z) \in \Sigma_k^*(\alpha) \iff -zf'(z) \in \Sigma^*(\alpha)$$
.

The classes $\Sigma^*(\alpha)$ and $\Sigma^*_k(\alpha)$ had been extensively studied by Pommerenke [7], Miller [6] and others.

For $\lambda > -1$, the Ruscheweyh derivative of order λ is denoted by $D^{\lambda}f$ and is defined for function of the form (1.1) as follows: If

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,$$

then

$$D^{\lambda}f(z) = \frac{1}{z(1-z)^{\lambda+1}} * f(z) = z^{-1} + \sum_{k=1}^{\infty} D_k(\lambda) a_k z^k, \quad z \in U^*, \quad (1.6)$$

where

$$D_k(\lambda) = \frac{(\lambda+1)(\lambda+2)\dots(\lambda+k+1)}{(k+1)!}.$$
(1.7)

For $\beta \geq 0$, $0 \leq \alpha < 1, 0 \leq \gamma < \frac{1}{2}$ and $\lambda > -1$, Atshan and Kulkarni [4] and Atshan [3] defined the class $\Sigma_{\lambda}(\alpha, \beta, \gamma)$ consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$-\operatorname{Re}\left\{\frac{z(D^{\lambda}f(z))' + \gamma z^{2}(D^{\lambda}f(z))''}{(1-\gamma)D^{\lambda}f(z) + \gamma z(D^{\lambda}f(z))'} + \alpha\right\} \geq \beta \left|\frac{z(D^{\lambda}f(z))' + \gamma z^{2}(D^{\lambda}f(z))''}{(1-\gamma)D^{\lambda}f(z) + \gamma z(D^{\lambda}f(z))'} + 1\right| (z \in U).$$

$$(1.8)$$

We note that:

$$\begin{split} \Sigma_0(\alpha,0,0) &= \Sigma^*(\alpha) \ (0 \leq \alpha < 1) \ (\text{see Pommerenke [7]}). \\ \text{Also, we note that} \\ \Sigma_\lambda(\alpha,\beta,0) &= \Sigma^*_\lambda(\alpha,\beta) = \end{split}$$

$$-\operatorname{Re}\left\{\frac{z(D^{\lambda}f(z))'}{D^{\lambda}f(z)} + \alpha\right\} \ge \beta \left|\frac{z(D^{\lambda}f(z))'}{D^{\lambda}f(z)} + 1\right| (z \in U).$$
(1.9)

For $\beta \geq 0$, $0 \leq \alpha < 1$, and $\lambda > -1$, we denote by $\sum_{k,\lambda}^{*}(\alpha,\beta)$ the subclass of Σ consisting of functions of the form (1.1) and satisfying the analytic

criterion:

$$-\operatorname{Re}\left\{1+\frac{z(D^{\lambda}f(z))''}{D^{\lambda}f'(z)}+\alpha\right\} \ge \beta \left|2+\frac{z(D^{\lambda}f(z))''}{D^{\lambda}f'(z)}\right| (z \in U), \quad (1.10)$$

We note that:

 $\Sigma_{k,0}(\alpha, 0) = \Sigma_k^*(\alpha) \ (0 \le \alpha < 1)$ (see Pommerenke [7]). It is easy to observe from (1.9) and (1.10) that

$$f(z) \in \Sigma_{k,\lambda}^* \left(\beta, \alpha \right) \Longleftrightarrow -z f'(z) \in \Sigma_{\lambda}^* \left(\beta, \alpha \right).$$
(1.11)

In order to prove our results for functions belonging to the class $\Sigma_{\lambda}(\alpha, \beta, \gamma)$ we shall need the following lemma given by Atshan and Kulkarni [4].

Lemma 1. [4, Theorem 2.1] Let the function f be defined by (1.1). Then $f \in \Sigma_{\lambda}(\alpha, \beta, \gamma)$ if and only if

$$\sum_{k=1} (1 + \gamma k - \gamma) \left[k \left(1 + \beta \right) + (\beta + \alpha) \right] D_k(\lambda) a_k \le (1 - \alpha) \left(1 - 2\gamma \right). \quad (1.12)$$

where $0 \le \alpha < 1$, $\beta \ge 0$, $0 \le \gamma < \frac{1}{2}$, $\lambda > -1$, and $D_k(\lambda)$ is given by (1.7).

Taking $\gamma = 0$ in Lemma 1, we obtain the following corollary.

Corollary 1. Let the function f defined by (1.1). Then $f \in \Sigma^*_{\lambda}(\beta, \alpha)$ if and only if

$$\sum_{k=1}^{\infty} \left[k(1+\beta) + (\beta+\alpha) \right] D_k(\lambda) a_k \le (1-\alpha).$$
(1.13)

By using Corollary 1 and (1.11), we can prove the following lemma.

Lemma 2. Let the function f defined by (1.1). Then $f \in \Sigma_{k,\lambda}^*(\beta, \alpha)$ if and only if

$$\sum_{k=1}^{\infty} k \left[k(1+\beta) + (\beta+\alpha) \right] D_k(\lambda) a_k \le (1-\alpha).$$
(1.14)

In this paper, applying the technique used by Silverman [8], we will investigate the ratio of a function of the form (1.1) to its sequence of partial sums $f_n(z) = \frac{1}{z} + \sum_{k=1}^n a_k z^k$ when the coefficients of f are sufficiently small to satisfy condition (1.13) or (1.14). More precisely, we will determine sharp lower bounds for

$$\operatorname{Re}\left\{\frac{f\left(z\right)}{f_{n}\left(z\right)}\right\}, \ \operatorname{Re}\left\{\frac{f_{n}\left(z\right)}{f\left(z\right)}\right\}, \ \operatorname{Re}\left\{\frac{f'\left(z\right)}{f'_{n}\left(z\right)}\right\} \text{ and } \operatorname{Re}\left\{\frac{f'_{n}\left(z\right)}{f'\left(z\right)}\right\}.$$

In the sequel, we will make use of well-known result that $\operatorname{Re}\left\{\frac{1+w(z)}{1-w(z)}\right\} > 0$ $(z \in U)$ if and only if $w(z) = \sum_{k=1}^{\infty} c_k z^k$ satisfies the inequality $|w(z)| \le |z|$.

Unless otherwise stated, we will assume that f is of the form (1.1) and its sequence of partial sums is denoted by $f_n(z) = \frac{1}{z} + \sum_{k=1}^n a_k z^k$. For the notational convenience we shall henceforth denote

$$\delta_k(\lambda,\beta,\alpha) = [k(1+\beta) + (\beta+\alpha)] D_k(\lambda).$$
(1.15)

2. Main results

Theorem 1. If f of the form (1.1) satisfies condition (1.13), then

$$\operatorname{Re}\left\{\frac{f(z)}{f_n(z)}\right\} \ge \frac{\delta_{n+1}(\lambda,\beta,\alpha) - (1-\alpha)}{\delta_{n+1}(\lambda,\beta,\alpha)} \quad (z \in U).$$
(2.1)

The result is sharp, with extremal function

$$f(z) = \frac{1}{z} + \frac{1-\alpha}{\delta_{n+1}(\lambda,\beta,\alpha)} z^{n+1} \quad (n \ge 1).$$

$$(2.2)$$

Proof. We may write

$$\frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \left[\frac{f(z)}{f_n(z)} - \frac{\delta_{n+1}(\lambda,\beta,\alpha) - (1-\alpha)}{\delta_{n+1}(\lambda,\beta,\alpha)} \right]$$
$$= \frac{1 + \sum_{k=1}^n a_k z^{k+1} + \frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^\infty a_k z^{k+1}}{1 + \sum_{k=1}^n a_k z^{k+1}}$$
$$= \frac{1 + A(z)}{1 + B(z)}.$$

Set $\frac{1+A(z)}{1+B(z)} = \frac{1+w(z)}{1-w(z)}$, so that $w(z) = \frac{A(z)-B(z)}{2+A(z)+B(z)}$. Then $\frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=1}^{\infty} a_k z^{k+1}$

$$w(z) = \frac{1}{2 + 2\sum_{k=1}^{n} a_k z^{k+1} + \frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}}$$

and

$$|w(z)| \leq \frac{\frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k}{2-2\sum_{k=1}^n a_k - \frac{\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^\infty a_k}.$$

Now $|w(z)| \leq 1$ if and only if

$$2\left(\frac{\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\right)\sum_{k=n+1}^{\infty}a_{k}\leq 2-2\sum_{k=1}^{n}a_{k},$$

which is equivalent to

$$\sum_{k=1}^{n} a_k + \left(\frac{\delta_{n+1}(\lambda, \beta, \alpha)}{1 - \alpha}\right) \sum_{k=n+1}^{\infty} a_k \le 1.$$
(2.3)

It suffices to show that the left hand side of (2.3) is bounded above by $\sum_{k=1}^{\infty} \left(\frac{\delta_k (\lambda, \beta, \alpha)}{1 - \alpha} \right) a_k$, which is equivalent to

$$\sum_{k=1}^{n} \frac{\delta_k \left(\lambda, \beta, \alpha\right) - \left(1 - \alpha\right)}{1 - \alpha} a_k + \sum_{k=n+1}^{\infty} \frac{\delta_k \left(\lambda, \beta, \alpha\right) - \delta_{n+1} \left(\lambda, \beta, \alpha\right)}{1 - \alpha} a_k \ge 0.$$

To see that the function f given by (2.2) gives the sharp result, we observe for $z = re^{\pi i / (n+2)}$ that

$$\frac{f(z)}{f_n(z)} = 1 + \frac{1 - \alpha}{\delta_{n+1}(\lambda, \beta, \alpha)} z^{n+2}$$

$$\rightarrow 1 - \frac{1 - \alpha}{\delta_{n+1}(\lambda, \beta, \alpha)}$$

$$= \frac{\delta_{n+1}(\lambda, \beta, \alpha) - (1 - \alpha)}{\delta_{n+1}(\lambda, \beta, \alpha)} \text{ when } r \rightarrow 1^-$$

Therefore the proof of Theorem 1 is completed.

Theorem 2. If f of the form (1.1) satisfies condition (1.14), then

$$\operatorname{Re}\left\{\frac{f(z)}{f_n(z)}\right\} \ge \frac{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right) - (1-\alpha)}{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right)} \quad (z \in U)\,.$$
(2.4)

The result is sharp for every n, with extremal function

$$f(z) = \frac{1}{z} + \frac{1 - \alpha}{(n+1)\,\delta_{n+1}\,(\lambda,\beta,\alpha)} z^{n+1} \quad (n \ge 1)\,. \tag{2.5}$$

Proof. We may write

$$\frac{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha} \left[\frac{f\left(z\right)}{f_{n}\left(z\right)} - \frac{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right) - (1-\alpha)}{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right)}\right]$$
$$= \frac{1+\sum_{k=1}^{n}a_{k}z^{k+1} + \frac{(n+1)\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\sum_{k=n+1}^{\infty}a_{k}z^{k+1}}{1+\sum_{k=1}^{n}a_{k}z^{k+1}}$$
$$= \frac{1+w\left(z\right)}{1-w\left(z\right)}$$

where

166

$$w\left(z\right) = \frac{\frac{(n+1)\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}}{2 + 2\sum_{k=1}^{n} a_k z^{k+1} + \frac{(n+1)\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha} \sum_{k=n+1}^{\infty} a_k z^{k+1}}.$$

Now

$$|w\left(z\right)| \leq \frac{\frac{(n+1)\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\sum_{k=n+1}^{\infty}a_{k}}{2-2\sum_{k=1}^{n}a_{k}-\frac{(n+1)\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\sum_{k=n+1}^{\infty}a_{k}}.$$

if

$$\sum_{k=1}^{n} a_k + \left(\frac{(n+1)\,\delta_{n+1}\,(\lambda,\beta,\alpha)}{1-\alpha}\right) \sum_{k=n+1}^{\infty} a_k \le 1.$$
(2.6)

The left hand side of (2.6) is bounded above by

$$\sum_{k=1}^{\infty} \left(\frac{k \delta_k \left(\lambda, \beta, \alpha \right)}{1 - \alpha} \right) a_k,$$

if

$$\frac{1}{1-\alpha} \left\{ \sum_{k=1}^{n} \left[k\delta_k \left(\lambda, \beta, \alpha \right) - (1-\alpha) \right] a_k + \sum_{k=n+1}^{\infty} \left[k\delta_k \left(\lambda, \beta, \alpha \right) - (n+1) \, \delta_{n+1} \left(\lambda, \beta, \alpha \right) \right] a_k \right\} \ge 0$$

and the proof of Theorem 2 is completed. \Box

and the proof of Theorem 2 is completed.

We next determine bounds for $\operatorname{Re}\left\{\frac{f_n(z)}{f(z)}\right\}$.

Theorem 3. (a) If f of the form (1.1) satisfies condition (1.13), then

$$\operatorname{Re}\left\{\frac{f_{n}\left(z\right)}{f\left(z\right)}\right\} \geq \frac{\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{\left(1-\alpha\right)+\delta_{n+1}\left(\lambda,\beta,\alpha\right)} \quad \left(z\in U\right).$$

$$(2.7)$$

(b) If f of the form (1.1) satisfies condition (1.14), then

$$\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\} \geq \frac{(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{(1-\alpha)-(n+1)\,\delta_{n+1}\left(\lambda,\beta,\alpha\right)} \quad (z\in U)\,.$$
(2.8)

Equalities hold in (a) and (b) for the functions given by (2.2) and (2.5), respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write

$$\frac{(1-\alpha)+\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\left[\frac{f_n\left(z\right)}{f\left(z\right)}-\frac{\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{(1-\alpha)+\delta_{n+1}\left(\lambda,\beta,\alpha\right)}\right]$$
$$=\frac{1+\sum\limits_{k=1}^n a_k z^{k+1}-\frac{\delta_{n+1}\left(\lambda,\beta,\alpha\right)}{1-\alpha}\sum\limits_{k=n+1}^\infty a_k z^{k+1}}{1+\sum\limits_{k=1}^\infty a_k z^{k+1}}$$
$$=\frac{1+w\left(z\right)}{1-w\left(z\right)},$$

where

$$|w\left(z\right)| \leq \frac{\frac{(1-\alpha)+\delta_{n+1}(\lambda,\beta,\alpha)}{1-\alpha}\sum_{k=n+1}^{\infty}a_{k}}{2-2\sum_{k=1}^{n}a_{k}-\frac{\delta_{n+1}(\lambda,\beta,\alpha)-(1-\alpha)}{1-\alpha}\sum_{k=n+1}^{\infty}a_{k}} \leq 1.$$

This last inequality is equivalent to

$$\sum_{k=1}^{n} a_k + \left(\frac{\delta_{n+1}\left(\lambda, \beta, \alpha\right)}{1-\alpha}\right) \sum_{k=n+1}^{\infty} a_k \le 1.$$
(2.9)

Since the left hand side of (2.9) is bounded above by

$$\sum_{k=1}^{\infty} \left(\frac{\delta_k \left(\lambda, \beta, \alpha \right)}{1 - \alpha} \right) a_k,$$

the proof is completed.

We next turn to ratios involving derivatives. The proof of Theorem 4 below follows the pattern of those in Theorem 1 and (a) of Theorem 3 and so the details may be omitted.

Theorem 4. If f of the form (1.1) satisfies condition (1.13), then

$$(a) \operatorname{Re}\left\{\frac{f'(z)}{f'_{n}(z)}\right\} \geq \frac{\delta_{n+1}(\lambda,\beta,\alpha) + (n+1)(1-\alpha)}{\delta_{n+1}(\lambda,\beta,\alpha)} \quad (z \in U),$$
$$(b) \operatorname{Re}\left\{\frac{f'_{n}(z)}{f'(z)}\right\} \geq \frac{\delta_{n+1}(\lambda,\beta,\alpha)}{\delta_{n+1}(\lambda,\beta,\alpha) - (n+1)(1-\alpha)} \quad (z \in U; \alpha \neq 0,)$$

The extremal function for the case (a) is given by (2.2) and the extremal function for the case (b) is given by (2.2) with $\alpha \neq 0$.

Remark 1. Putting $\beta = 0$ and $\lambda = 0$ in Theorem 2, we obtain the following corollary:

Corollary 2. If f of the form (1.1) satisfies condition (1.13) (with $\beta = 0$ and $\lambda = 0$), that is $f \in \Sigma^*(\alpha)$, then

$$(a) \operatorname{Re}\left\{\frac{f'(z)}{f'_{n}(z)}\right\} \geq \frac{2(n+1)-n\alpha}{n+1+\alpha} \quad (z \in U),$$
$$(b) \operatorname{Re}\left\{\frac{f'_{n}(z)}{f'(z)}\right\} \geq \frac{n+1+\alpha}{\alpha(n+2)} \quad (z \in U; \alpha \neq 0).$$

The extremal function for the case (a) is given by (2.2) (with $\beta = 0$ and $\lambda = 0$) and the extremal function for the case (b) is given by (2.2). (with $\beta = 0, \lambda = 0$ and $\alpha \neq 0$).

Remark 2. We note that Corollary 2 corrects the result obtained by Cho and Owa [5, Theorem 4].

Theorem 5. If f of the form (1.1) satisfies condition (1.14), then

$$(a) \operatorname{Re}\left\{\frac{f'(z)}{f'_{n}(z)}\right\} \geq \frac{\delta_{n+1}(\lambda,\beta,\alpha) - (1-\alpha)}{\delta_{n+1}(\lambda,\beta,\alpha)} \qquad (z \in U).$$
$$(b) \operatorname{Re}\left\{\frac{f'_{n}(z)}{f'(z)}\right\} \geq \frac{\delta_{n+1}(\lambda,\beta,\alpha)}{(1-\alpha) + \delta_{n+1}(\lambda,\beta,\alpha)} \qquad (z \in U).$$

In both cases, the extremal function is given by (2.5).

Proof. It is well known that $f \in \Sigma_k^*(\alpha) \iff -zf' \in \Sigma^*(\alpha)$. In particular, f satisfies condition (1.14) if and only if -zf' satisfies condition (1.13). Thus, (a) is an immediate consequence of Theorem 1 and (b) follows directly from (a) of Theorem 3.

Remark 3. Puting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Cho and Owa [5].

Remark 4. Puting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Aouf and Silverman [2 with p = 1].

Remark 5. Puting $\beta = 0$ and $\lambda = 0$, in the above results, we get the results obtained by Aouf and Mostafa [1 with p = B = 1 and $A = 2\alpha - 1, 0 \le \alpha < 1$].

References

- M. K. Aouf and A.O.Mostafa, On partial sums of certain meromophic p-valent functions, Math. Comput. Modelling 50 (2009), 1325–1331.
- M. K. Aouf and H. Silverman, Partial sums of certain meromophic p-valent functions, J. Inequal. Pure Appl. Math., 7 (4) (2006), Art. 119, 1–7.
- [3] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II, Surv. Math. Appl., 3 (2008), 67–77.
- [4] W. G. Atshan and S. R. Kulkarni, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative I, J. Rajasthan Acad. Phys. Sci., 69 (2) (2007), 129–140.
- [5] N. E. Cho and S. Owa, Partial sums of certain meromorphic functions, J. Ineq. Pure and Appl. Math., 5 (2) (2004), Art. 30.
- [6] J. E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220–228.
- [7] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221–235.
- [8] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221–227.

(Received: March 13, 2014)

M. K. Aouf, A. O. Mostafa, A. Y. Lashin and B. M. Munassar Department of Mathematics Faculty of Science University of Mansoura Mansoura Egypt mkaouf127@yahoo.com adelaeg254@yahoo.com aylashin@yahoo.com bmunassar@yahoo.com