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EXISTENCE OF THREE SOLUTIONS FOR A

QUASILINEAR ELLIPTIC EQUATION INVOLVING THE

p(x)–LAPLACE OPERATOR

RABIL AYAZOGLU (MASHIYEV) AND MUSTAFA AVCI

Abstract. In this paper, some existence results are obtained by us-
ing a three critical point theorem based on variational principle. In
that context, we verify that a quasilinear elliptic equation involving the
p(x)-Laplace operator has at least three weak solutions under Neumann
boundary condition.

1. Introduction and preliminaries

In the present paper, we study the existence of solutions of the p(x)-
Laplacian Neumann problem{

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = f(x, u) + λg(x, u) in Ω,
∂u
∂ν = 0 on ∂Ω,

(Pλ)

where Ω ⊂ RN (2 ≤ p(x) < N) is a bounded domain with smooth boundary
∂Ω, λ ∈ R, ν is the outward unit normal to ∂Ω and f, g : Ω × R → R are
Carathéodory functions which satisfy some given conditions.

The main argument used here is a three critical point theorem due to
Bonanno [1]. However, this type of results were initially introduced by
Ricceri (see [13− 15]). On the other hand, Neumann problems of (Pλ)-type
have been broadly investigated in recent years by many authors considering
different conditions and using various methods. For example, in [12, 18],
the authors studied the p(x)-Laplacian Neumann problems of the following
type {

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = λf(x, u) in Ω,

∂u
∂ν = 0 on ∂Ω,
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where Ω ∈ RN (N ≥ 3) is a bounded domain with a smooth boundary, λ > 0
is a real number, p is a continuous function on Ω with infy∈Ω p (y) > N and
f : Ω× R → R is a continuous function, ν the outward unit normal to ∂Ω.

In [10], the author considered the following p(x)-Laplacian equations un-
der the different kinds of boundary conditions{

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = λ ((f(x, u) + µg(x, u )) in Ω,

∂u
∂ν = on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary, µ, λ
are constants and λ > 0 and ν is the outward unit normal to ∂Ω.

Moreover, in [17], the authors studied problem (Pλ) for the case p(x) =
p = const and consider the Dirichlet boundary conditions where the nonlin-
earities f and g obey some different conditions.

The p (x)-Laplace operator −∆p(x)u := div(|∇u|p(x)−2∇u) is a natural

generalization of the p-Laplace operator −∆pu := −div(|∇u|p−2∇u) where
p > 1 is a real constant. The main difference between them is that the
p-Laplacian operator is (p− 1)-homogenous, that is, ∆p(µu) = µp−1∆pu for
every µ > 0, but the p (x)-Laplacian operator, when p (x) is not constant, is
not homogeneous. This causes many problems, some classical theories and
methods, such as the Lagrange multiplier theorem and the theory of Sobolev
spaces, are not applicable.

The study of differential equations and variational problems involving
p (x)-growth conditions, has attracted a special interest because of the fact
that there are some physical phenomena which can be modelled by such kind
of equations, such as elastic mechanics, electrorheological fluids (sometimes
referred to as ‘smart fluids’), image processing. For more information we
refer to [2, 3, 7, 9, 11, 16, 19− 21]. In that context, it is accepted that the
most convenient spaces for the mathematical modelling of such physical
problems are variable exponent Lebesgue and Sobolev spaces.

In the sequel, we recall some basic properties of the variable exponent
Lebesgue Lp(x) (Ω) and Sobolev spaces W 1,p(x), where Ω ⊂ RN is a bounded
domain. In that context, we refer to [5, 8] for further reading.

Set C+

(
Ω
)

=
{
h : h ∈ C

(
Ω
)
, h(x) > 1

}
for all x ∈ Ω, and define

h− = min
x∈Ω

h (x) and h+ = max
x∈Ω

h (x) , ∀h ∈ C+

(
Ω
)
.

For any p ∈ C+

(
Ω
)
, we define the variable exponent Lebesgue space Lp(x) (Ω)

by

Lp(x) (Ω) =

{
u : Ω→ R is measurable:

∫
Ω
|u (x)|p(x) dx <∞

}
,
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The modular of Lp(x) (Ω) which is the mapping ρ : Lp(x) (Ω)→ R is defined
by

ρ (u) =

∫
Ω
|u|p(x) dx.

We define a norm, the so-called Luxemburg norm, on Lp(x) (Ω) by the for-
mula

|u|p(x) = inf

{
η > 0 :

∫
Ω

∣∣∣∣u (x)

η

∣∣∣∣p(x)

dx ≤ 1

}
,

and then (Lp(x) (Ω) , |·|p(x)) becomes a Banach space.

Also define the variable exponent Sobolev space W 1,p(x) (Ω) by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)},
with the norm

‖u‖ := ‖u‖1,p(x) = |u|p(x) + |∇u|p(x).

Moreover, it is well known that if 1 < p− ≤ p+ < ∞, then spaces
Lp(x) (Ω) and W 1,p(x) (Ω) are separable and reflexive Banach spaces (see,
e.g., [5, 8]).

We note that we can use the following equivalent norm on W 1,p(x) (Ω):

‖u‖ = inf

{
η > 0 :

∫
Ω

(∣∣∣∣∇u (x)

η

∣∣∣∣p(x)

+

∣∣∣∣u (x)

η

∣∣∣∣p(x)
)
dx ≤ 1

}
.

The modular of W 1,p(x) (Ω) which is the mapping ρp(x) : W 1,p(x) (Ω)→ R
is defined by

ρp(x) (u) =

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx.

Proposition 1.1. [5, 8] If u, un ∈ Lp(x) (Ω) (n = 1, 2, . . . ), we have

( i) |u|p(x) < 1 (= 1;> 1)⇔ ρ (u) < 1 (= 1;> 1) ;

(ii) |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρ (u) ≤ |u|p
+

p(x); |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤

ρ (u) ≤ |u|p
−

p(x);

(iii) limn→∞ |un|p(x) = 0 ⇔ limn→∞ ρ(un) = 0; limn→∞ |un|p(x) = ∞ ⇔
limn→∞ ρ(un) =∞.

Proposition 1.2. [5, 8] Let u, un ∈W 1,p(x) (Ω).

(i) limn→∞ ‖un − u‖ = 0;
(ii) limn→∞ ρp(x)(un − u) = 0;
(iii) un → u in measure in Ω and limn→∞ ρp(x)(un) = ρp(x) (u) .
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Proposition 1.3. [5, 8] Let u, un ∈W 1,p(x) (Ω).

(i) ‖u‖ < 1 (= 1;> 1)⇔ ρp(x) (u) < 1 (= 1;> 1) ;

(ii) ‖u‖ > 1 =⇒ ‖u‖p
−
≤ ρp(x) (u) ≤ ‖u‖p

+

; ‖u‖ < 1 =⇒ ‖u‖p
+

≤
ρp(x) (u) ≤ ‖u‖p

−
;

(iii) limn→∞ ‖un‖ = 0 ⇔ limn→∞ ρp(x)(un) = 0; limn→∞ ‖un‖ = ∞ ⇔
limn→∞ ρp(x)(un) =∞.

The main results of the present paper are based on the following theorem
obtained by G. Bonanno in [1].

Theorem A. Let X be a separable and reflexive real Banach space, and
let Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals.
Assume that Φ is sequentially weakly lower semicontinuous and even, that
Ψ is sequentially weakly continuous and odd, and that, for some a > 0
and for each λ ∈ [−a, a], the functional Φ + λΨ satisfies the Palais–Smale
condition and

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞.

Finally, assume that there exists k > 0 such that

inf
x∈X

Φ(x) < inf
|Ψ(x)|<k

Φ(x).

Then, for every a > 0 there exists an open interval Λ ⊂ [−a; a] and a
positive σ real number, such that, for each λ ∈ Λ, the equation

Φ′(x) + λΨ′(x) = 0

admits at least three solutions in X whose norms are less than σ.

2. Main results

In order to apply Theorem A, we define the functionals Φ,Ψ : W 1,p(x) (Ω)
→ R by

Ψ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
Ω
F (x, u)dx,

Φ(u) = −
∫

Ω
G(x, u)dx,

where

F (x, u) =

∫ u

0
f(x, t)dt and G(x, u) =

∫ u

0
g(x, t)dt.

Then energy functional associated to the problem (Pλ) is Jλ(u) = Ψ(u) +
λΦ(u). Arguments similar to those used in the proof of Proposition 3.1 in
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[11] imply that Φ,Ψ ∈ C1(W 1,p(x) (Ω) ,R) with the derivatives given by〈
Ψ′(u), ϕ

〉
=

∫
Ω
|∇u|p(x)−2∇u∇ϕdx+

∫
Ω
|u|p(x)−2 uϕdx−

∫
Ω
f(x, u)ϕdx,

〈
Φ′(u), ϕ

〉
= −

∫
Ω
g(x, u)ϕdx

for any u, ϕ ∈W 1,p(x) (Ω) .

Let u ∈W 1,p(x) (Ω) is a weak solution of (Pλ) if∫
Ω
|∇u|p(x)−2∇u∇ϕdx+

∫
Ω
|u|p(x)−2 uϕdx−

∫
Ω

[f(x, u) + λg (x, u)]ϕdx = 0

for every ϕ ∈ W 1,p(x) (Ω). So, the weak solution of the problem (Pλ) are
precisely critical points of the energy functional

Jλ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) + |u|p(x)

)
dx−

∫
Ω
F (x, u)dx− λ

∫
Ω
G(x, u)dx.

Now, we state our main results.
Through the present paper, if not otherwise stated, we assume that

f, g : Ω × R → R are Carathéodory functions which satisfy the following
conditions:

(f1) There exist constants c1, c2 > 0 such that

|f(x, t)| , |g(x, t)| ≤ c1 + c2 |t|q(x)−1 for a.e. x ∈ Ω and for all t ∈ R,

where q ∈ C+

(
Ω
)

and q(x) < p(x) < p∗(x) = Np(x)
N−p(x) for a.e. x ∈ Ω.

(f2) h, s ∈ C+

(
Ω
)

satisfies the following conditions

1

p(x)
+
q(x)

s(x)
= 1 for a.e. x ∈ Ω,

and
1

p(x)
+

p−

h(x)
= 1 for a.e. x ∈ Ω,

where s− ∈ (p+, h+) and h(x) < p∗(x).
(f3) There exist θ > p+ and t∗ > 0 such that

|t| ≥ t∗ =⇒ 0 < θF (x, t) ≤ tf (x, t) for a.e. x ∈ Ω.

(f4)

i) f(x, t) = o
(
|t|p
−−1

)
as t→ 0 uniformly for x ∈ Ω,
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ii) g(x, t) = o
(
|t|p
−−1

)
as t→ 0 uniformly for x ∈ Ω.

(f5) f(x, ·) is odd and g(x, ·) is even for all x ∈ Ω.

Theorem 2.1. Let f, g : Ω × R → R be two Carathéodory functions satis-
fying the conditions (f1)− (f5). Then, for every a > 0, there exists an open
interval Λ ⊂ [−a, a] and a positive real number σ, such that for every λ ∈ Λ,
Neumann problem (Pλ) admits at least three solutions whose norms are less
than σ.

Proof. From (f1) and (f4), given ε > 0 there exists a positive constant Cε,
independent of t, such that

|F (x, t)| , |G(x, t)| ≤ ε |t|p
−

+ Cε |t|q(x) for all (x, t) ∈ Ω× R. (2.1)

So the functional Ψ is continuously Gâteaux differentiable functional and
sequentially weakly continuous in W 1,p(x) (Ω)(see [10]). Also, by (f1) we

know the functional Φ is sequentially weakly continuous in W 1,p(x) (Ω) (see
[6]).

Since p(x) < p∗(x) and q(x) < p∗(x), then W 1,p(x) (Ω) ↪→ Lq(x) (Ω) and

W 1,p(x) (Ω) ↪→ Lp
+

(Ω) ↪→ Lp
−

(Ω) (see [4]), with a continuous and compact
embedding, what implies the existence of c3, c4 > 0

|u|q(x) ≤ c3 ‖u‖ for all u ∈W 1,p(x) (Ω) . (2.2)

and

|u|p− ≤ |u|p+ ≤ c4 ‖u‖ for all u ∈W 1,p(x) (Ω) . (2.3)

By Proposition 1.1, Proposition 1.3, (2.2) and (2.3) we deduce that∫
Ω
G(x, u)dx ≤ ε

∫
Ω
|u|p

−
dx+ Cε

∫
Ω
|u|q(x) dx

≤ ε |u|p
−

Lp− + Cε max
(
|u|q

−

q(x) , |u|
q+

q(x)

)
≤ εc4 ‖u‖p

−
+ c3Cε max

{
‖u‖q

−
, ‖u‖q

+
}
.

And similarly, we have∫
Ω
F (x, u)dx ≤ εc4 ‖u‖p

−
+ c3Cε max

{
‖u‖q

−
, ‖u‖q

+
}
.
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For λ ∈ R, from ‖u‖ > 1, we deduce that

Jλ(u) = Ψ(u) + λΦ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) + |u|p(x)

)
dx

−
∫

Ω
F (x, u)dx− λ

∫
Ω
G(x, u)dx

≥ 1

p+
‖u‖p

−
− 2εc4 ‖u‖p

−
− 2 (c3Cε + |λ|) ‖u‖q+ .

Choosing ε = 1
4c4p+

, we get

Jλ(u) ≥ 1

2p+
‖u‖p

−
− 2 (c3Cε + |λ|) ‖u‖q+ .

Since p− > q+, it follows that

Ψ(u) + λΦ(u)→∞ as ‖u‖ → ∞, (2.4)

i.e., Ψ(u) + λΦ(u) coercive on W 1,p(x) (Ω).
Now, we prove that Jλ satisfies the Palais-Smale (PS) condition. Suppose

{un} is a (PS) sequence of Jλ, that is, there exists C > 0 such that

Jλ(un)→ C, J ′λ(un)→ 0 as n→∞.

Assume that ‖un‖ → ∞ as n → ∞. But this contradicts with Jλ(un) → C
since (2.4) holds. Thus, {un} must be bounded. We may assume that there

exists u0 ∈W 1,p(x) (Ω) satisfying

un ⇀ u0 in W 1,p(x) (Ω) , un → u0 in Lq(x) (Ω) (by (2.2)) ,

un(x)→ u0(x) a.e. on Ω.

Observe that〈
J ′λ(un), un − u0

〉
=

∫
Ω

(
|∇un|p(x)−2∇un∇ (un − u0)

− |un|p(x)−2 un (un − u0)
)
dx

−
∫

Ω
f(x, un) (un − u0) dx− λ

∫
Ω
g (x, un) (un − u0) dx. (2.5)

We already know that〈
J ′λ(un), un − u0

〉
→ 0 as n→∞. (2.6)

By (f1) we have ∫
Ω
f(x, un) (un − u0) dx→ 0 as n→∞
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and ∫
Ω
g (x, un) (un − u0) dx→ 0 as n→∞.

Using this, (2.5) and (2.6) we obtain∫
Ω

(
|∇un|p(x)−2∇un∇ (un − u0)− |un|p(x)−2 un (un − u0)

)
dx→ 0

as n → ∞. This together with the convergence of un ⇀ u0 in W 1,p(x) (Ω),
implies that

un → u0 in W 1,p(x) (Ω) as n→∞.
Hence, Jλ satisfies the (PS) condition.

Next, we want to prove that

inf
u∈W 1,p(x)(Ω)

Ψ(u) < 0. (2.7)

From (f3) one easy deduces that

F (x, t) ≥ F (x, t∗)

tθ∗
tθ,

for x ∈ Ω and all t ≥ t∗. Thus, there are ε > 1 and nonnegative u ∈
W

1,p(x)
0 (Ω) such that {x ∈ Ω : u(x) ≥ t∗}, then we have∫

Ω
F (x, εu)dx ≥

∫
{εu≥t∗}

F (x, εu)dx ≥ εθ

tθ∗

∫
{εu≥t∗}

F (x, t∗)u
θdx

≥ εθ

tθ∗

∫
{u≥t∗}

F (x, t∗)u
θdx ≥ εθ

∫
{u≥t∗}

F (x, t∗)dx > 0

(recall F ≥ 0 and F (., t∗) > 0 almost everywhere). Then by Proposition 1.3
for all (x, t) ∈ Ω× R, we have

Ψ (εu) =

∫
Ω

|∇ (εu)|p(x) + |εu|p(x)

p(x)
dx−

∫
Ω
F (x, εu)dx

≤
∫

Ω

|∇ (εu)|p(x) + |εu|p(x)

p(x)
dx−

∫
Ω
F (x, εu)dx

≤ εp
+

p−
‖u‖p

+

− εθ
∫
{u≥t∗}

F (x, t∗)dx

≤ εp
+

p−
‖u‖p

+

− εθ
∫
{u≥t∗}

F (x, t∗)dx.

From the assumption on θ (see (f3)), it is obvious that θ > p+, so this
implies Ψ (εu)→ −∞ as ε→∞. Thus (2.7) holds.
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When ‖u‖ is small enough, by (2.1) we have

Ψ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) + |u|p(x)

)
dx− ε

∫
Ω
|u|p

−
dx− Cε

∫
Ω
|u|q(x) dx

≥ 1

p+
‖u‖p

+

− ε
∫

Ω
|u|p

−
dx− Cε

∫
Ω
|u|q(x) dx. (2.8)

Considering (f2) and applying Young’s inequality, we have

|u|p
−
≤ εc5 + Cε |u|h(x)

and
|u|q(x) ≤ εc6 + Cε |u|s(x) .

Since ‖u‖ < 1, we deduce∫
Ω
|u|q(x) dx ≤ εc7 + Cε

∫
Ω
|u|s(x) dx ≤ εc7 + Ĉε ‖u‖s

−
.

Replacing these in (2.8), it results that

Ψ(u) ≥ 1

p+
‖u‖p

+

− c8 ‖u‖s
−
− c9 ‖u‖h

−
− εc10

≥ 1

p+
‖u‖p

+

− c11 ‖u‖s
−
− εc10

=
1

p+
‖u‖p

+
(

1− c11 ‖u‖s
−−p+

)
− εc10.

Set

η = inf

(
1

2
,

(
1

2c11

) 1
s−−p+

)
.

For u ∈W 1,p(x) (Ω) with ‖u‖ = η, we have

Ψ(u) ≥ 1

2p+
‖u‖p

+

− εc10 ≥
1

4p+
ηp

+ − εc10.

Choose ε = ηp
+

8c10p+
, then we have

Ψ(u) ≥ 1

8p+
‖u‖p

+

> 0.

Hence, there exists k > 0 such that

inf
|Φ(u)|<k

Ψ(u) = 0.

So we have
inf

u∈W 1,p(x)(Ω)
Ψ(u) < inf

|Φ(u)|<k
Ψ(u).

The condition (f6) implies Ψ is even and Φ is odd. All the assumptions of
Theorem A are verified. Thus, for every a > 0 there exists an open interval
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Λ ⊂ [−a, a] and a positive real number σ, such that for every λ ∈ Λ, problem

(Pλ) admits at least three weak solutions in W 1,p(x) (Ω) whose norms are
less than σ. �

Theorem 2.2. Suppose that f and g satisfy assumptions (f1) − ( f3),
(f4) (ii), (f5), and that there exists a nonempty open set Ω1 ⊆ Ω such that
(f ′4)

lim inf
t→0

∫ t
0 f(x, t)dt

|t|p−
= +∞ uniformly for x ∈ Ω1.

Then, for every a > 0, there exists an open interval Λ ⊂ [−a, a] and a
positive real number σ, such that for every λ ∈ Λ, Neumann problem (Pλ)
admits at least three solutions whose norms are less than σ.

Proof. The proof is similar to the Theorem 2.1. So we only give a sketch of
it. By the Theorem 2.1, the functional Ψ, Φ are sequentially weakly lower
semicontinuous and continuously Gâteaux differentiable in W 1,p(x) (Ω), Ψ is
even and Φ is odd. For every λ ∈ R, the functional Ψ(u) + λΦ(u) satisfies
the (PS) condition and (2.4).

From (f ′4), we can find δ > 0 such that for any H > 0 one has

inf
x∈Ω1

∫ t

0
f(x, t)dt > H |t|p

−
for every 0 < |t| ≤ δ.

We choose a nonzero nonnegative function υ ∈ C∞0 (Ω) with infx∈Ω1 υ(x) >

0, put H > ‖υ‖p
−
/p−

∫
Ω |υ|

p− dx. Take a ε > 0 such that ε supx∈Ω1
υ(x) <

δ, and let u0 = ευ. Then, we obtain

ψ (ευ) ≤ 1

p−
‖ευ‖p

−
−
∫

Ω

(∫ ευ

0
f(x, η)dη

)
dx

≤ εp
−

p−
‖υ‖p

−
−Hεp−

∫
Ω
|υ|p

−
dx < 0.

So, we get

inf
u∈W 1,p(x)(Ω)

Ψ(u) < 0.

By the proof of Theorem 2.1, we know that there exists k > 0 such that

inf
u∈W 1,p(x)(Ω)

Ψ(u) < inf
|Φ(u)|<k

Ψ(u).

According to the Theorem A, for every a > 0, there exists an open interval
Λ ⊂ [−a, a] and a positive real number σ, such that for every λ ∈ Λ, problem
(Pλ) admits at least three solutions whose norms are less than σ. �
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Theorem 2.3. Suppose that f and g satisfy assumptions (f1) − ( f3),
(f4) (ii), (f5), and that there exists a nonempty open set Ω1 ⊆ Ω such that

(f ′′4 )

lim inf
t→0

∫ t
0 f(x, t)dt

|t|p(x)
> −∞, lim sup

t→0

∫ t
0 f(x, t)dt

|t|p−
= +∞ uniformly for x ∈ Ω1.

Then, for every a > 0, there exists an open interval Λ ⊂ [−a, a] and a
positive real number σ, such that for every λ ∈ Λ, Neumann problem (Pλ)
admits at least three solutions whose norms are less than σ.

Proof. The conclusion follows by applying both Theorems 2.1 and 2.2. Here
we only prove

inf
u∈W 1,p(x)(Ω)

Ψ(u) < 0. (2.9)

From condition (f ′′4 ), there exist L > 0, δ > 0 such that

inf
x∈Ω1

∫ t

0
f(x, t)dt > −L |t|p(x) ≥ − L |t|p

−
for every 0 < t ≤ δ. (2.10)

Let us consider a compact set Ω0 ⊂ Ω1, with |Ω0| = (L+ 1) |Ω1/Ω0| and a
nonzero nonnegative function υ ∈ C∞0 (Ω) such that

υ (x) ≡ 1 if x ∈ Ω0,

0 < υ (x) ≤ 1 if x ∈ Ω1/Ω0,

υ (x) ≡ 0 if x ∈ Ω/Ω1.

Then we have |υ| ≤ 1 and
∫

Ω1/Ω0
|υ|p

−
dx ≤ |Ω1/Ω0|. Thanks to the condi-

tion (f ′′4 ), there exists t′ ∈ R such that

inf
x∈Ω1

∫ t′

0
f(x, t)dt ≥ max

(
1,

∫
Ω |υ|

p− dx

|Ω1/Ω0|

)∣∣t′∣∣p− for every 0 <
∣∣t′∣∣ ≤ δ.

(2.11)
By (2.10) and (2.11), we get∫ t′υ

0
f(x, t)dt ≥ −L inf

x∈Ω1

∫ t′

0
f(x, t)dt for every 0 <

∣∣t′∣∣ ≤ δ. (2.12)
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Taking into account (2.11) and (2.12), we have

ψ
(
t′υ
)
≤ 1

p−
∥∥t′υ∥∥p− − ∫

Ω

(∫ t′υ

0
f(x, t)dt

)
dx

≤ |t
′|p
−

p−
‖υ‖p

−
− |Ω0| inf

x∈Ω1

∫ t′

0
f(x, t)dt−

∣∣∣∣Ω1

Ω0

∣∣∣∣ inf
x∈Ω1

∫ t′υ

0
f(x, t)dt

≤ |t
′|p
−

p−
‖υ‖p

−
− (L+ 1)

∣∣∣∣Ω1

Ω0

∣∣∣∣ inf
x∈Ω1

∫ t′

0
f(x, t)dt

+ L

∣∣∣∣Ω1

Ω0

∣∣∣∣ inf
x∈Ω1

∫ t′

0
f(x, t)dt

≤ |t
′|p
−

p−
‖υ‖p

−
−
∣∣∣∣Ω1

Ω0

∣∣∣∣ inf
x∈Ω1

∫ t′

0
f(x, t)dt

≤ |t
′|p
−

p−
‖υ‖p

−
−
∣∣t′∣∣p− ∫

Ω
|υ|p

−
dx

≤ |t
′|p
−

p−
‖υ‖p

−
−
∣∣t′∣∣p− ‖υ‖p− < 0,

and so (2.9) holds. Arguing as in Theorem 2.2, we have the same results. �

Remark 2.4. In particular, under the same assumptions, there exists a
sequence {λn} converging to 0 such that, for each n ∈ N, the problem

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2 u = f(x, u) + λng(x, u) in Ω,
∂u
∂ν = 0 on ∂Ω,

admits at least three weak solutions in W 1,p(x) (Ω).
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[11] M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate
problem arising in the theory of electrorheological fluids, Proc. R. Soc. A., 462 (2006),
2625–2641.
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