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EXTENDING THE STIELTJES TRANSFORM

DENNIS NEMZER

Abstract. The classical Stieltjes transform is extended to a subspace
of Boehmians. The transform is shown to be an analytic function in the
half-plane Re z > 0. Some Abelian type theorems are established.

1. Introduction

The Stieltjes transform was first introduced by T.S. Stieltjes [15] in con-
nection to the moment problem for a semi-infinite interval. Since then it
has been investigated and found to be useful in many different areas such
as continued fractions, probability, and signal processing, to name a few.

Several authors (see [1]) have extended the classical Stieltjes transform
onto spaces of generalized functions.

The space of generalized functions known as Boehmians, whose construc-
tion is algebraic, has been used to extend integral transforms such as Fourier,
Laplace, Hilbert, and Hankel. Roopkumar [13] has extended the Stielt-
jes transform onto a space of Boehmians. However, the transform is a
Boehmian, not a function.

In this note, we extend the Stieltjes transform onto a subspace of Boehmi-
ans by iteration of the Laplace transform. In this case, the transform is an
analytic function in the half-plane Re z > 0. This allows, in a natural way,
to establish some Abelian type theorems.

This article is organized as follows. Section 2 contains notation and the
construction of the space of Boehmians. Section 3 is concerned with the
Stieltjes transform for Boehmians. First, a brief review of the Laplace trans-
form for Boehmians is given. Then, the Stieltjes transform for Boehmians
is defined and some of its properties are established. The inversion for the
Stieltjes transform is discussed in Section 4. In Section 5, an initial value,
as well as a final value, theorem for the Stieltjes transform is established. In
the last section, Section 6, some open problems are presented.
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2. Preliminaries

Let C(R) denote the space of all continuous complex-valued functions on
the real line R, and let C∞(R) be the subspace of C(R) of all infinitely
differentiable functions.

A sequence of smooth nonnegative functions {ϕn} is called a delta se-
quence provided:

(i)
∫∞
−∞ ϕn(t)dt = 1 for n = 1, 2, . . . ,

(ii) supp ϕn ⊂ (−εn, εn), εn → 0 as n→∞ (εn > 0).

A pair of sequences (fn, ϕn) is called a quotient of sequences if fn ∈
C∞(R) for n ∈ N, {ϕn} is a delta sequence, and fm ∗ ϕk = fk ∗ ϕm for all
k,m ∈ N, where ∗ denotes convolution:

(f ∗ ϕ)(t) =

∫ ∞
−∞

f(t− σ)ϕ(σ) dσ.

Two quotients of sequences (fn, ϕn) and (gn, ψn) are said to be equivalent
if fk∗ψm = gm∗ϕk for all k,m ∈ N. A straightforward calculation shows that
this is an equivalence relation. The equivalence classes are called Boehmians.
The space of all Boehmians will be denoted by β(R) and a typical element

of β(R) will be written as W =
[
fn
ϕn

]
.

The operations of addition, scalar multiplication, shifting, and differenti-
ation are defined as follows:[

fn
ϕn

]
+

[
gn
ψn

]
=

[
fn ∗ ψn + gn ∗ ϕn

ϕn ∗ ψn

]
,

α

[
fn
ϕn

]
=

[
αfn
ϕn

]
,where α ∈ C,

τa

[
fn
ϕn

]
=

[
τafn
ϕn

]
,where (τaf)(t) = f(t− a),

D

[
fn
ϕn

]
=

[
fn ∗ ϕ′n
ϕn ∗ ϕn

]
.

Define the map ι : C(R)→ β(R) by

ι(f) =

[
f ∗ ϕn
ϕn

]
, (2.1)

where {ϕn} is any fixed delta sequence.
It is not difficult to show that the mapping ι is an injection which preserves

the algebraic properties of C(R). Thus, C(R) can be identified with a proper
subspace of β(R). Likewise, the space of Schwartz distributions D′(R) [16]
can be identified with a proper subspace of β(R). Using this identification,
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the Dirac measure δ corresponds to the Boehmian
[
ϕn
ϕn

]
, where {ϕn} is any

delta sequence.

Definition 2.1. Let Wn,W ∈ β(R) for n = 1, 2, . . . . We say that the
sequence {Wn} is δ–convergent to W if there exists a delta sequence {ϕn}
such that for each k and n, Wn ∗ ϕk ∈ C(R), and for each k,Wn ∗ ϕk →
W ∗ ϕk uniformly on compact sets as n → ∞. This will be denoted by
δ - lim

n→∞
Wn = W .

Definition 2.2. A Boehmian W is said to vanish on an open set Ω ⊂ R ,
denoted W (t) = 0 on Ω , provided that there exists a delta sequence {ϕn}
such that W ∗ ϕn ∈ C(R), n ∈ N, and W ∗ ϕn → 0 uniformly on compact
subsets of Ω as n→∞.

The support of the Boehmian W is the complement of the largest open
set on which W vanishes. W ∈ β+(R) provided that supp W ⊆ [0,∞).
βc(R) denotes the space of all Boehmians with compact support. If W =[
fn
ϕn

]
∈ βc(R) , and O ⊂ R is an open set such that supp W ⊂ O , then

supp fn ⊂ O for all but a finite number of n’s.
The subspace of βc(R) whose elements are supported on [0,∞) is denoted

by β+
c (R). That is,

β+
c (R) = βc(R) ∩ β+(R).

3. Stieltjes transform

The Stieltjes transform of index r of a suitably restricted function f is
given by

Srzf =

∫ ∞
0

f(t)dt

(z + t)r+1
, z ∈ C\(−∞, 0]. (3.1)

Let T ∈ J ′(r), r > −1. That is, T ∈ D′(R) such that T = Dkf , where
k ∈ N, D is the differentiation operator in D′(R), f ∈ L1

loc(R), supp f ⊆
[a,∞) for some a ≥ 0, and f(t)t−r−k+α is bounded as t → ∞ (for some
α > 0). Then, the Stieltjes transform of T , which is an analytic function in
the region C\(−∞, 0], is given by SrzT = 〈Tt, (z+t)−r−1〉, for z ∈ C\(−∞, 0].
Several authors ([3, 7, 9, 11, 12]) have used the space J ′(r) to investigate
the Stieltjes transform for distributions.

In this section we consider the space of Boehmians Br(R) which is a
subspace of β+(R) and contains J ′(r) as a proper subspace. By using what
has been developed previously for the Laplace transform for Boehmians [8],
the Stieltjes transform Λr(·) is defined on the space Br(R) by iteration of

the Laplace transform. For r > −1 and W ∈ Br(R), ΛrzW is an analytic
function in the half-plane Re z > 0. Before defining the Stieltjes transform
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for a Boehmian, we give a brief introduction for the Laplace transform of a
Boehmian.

Definition 3.1. LetW ∈ β+(R), f ∈ L1
loc(R) (the space of locally integrable

functions), and k ∈ N. Then, W (t) = Dkf(t) on (a, b), provided there exists
a delta sequence {ϕn} such that W ∗ϕn ∈ C(R) (n ∈ N) and W ∗ϕn−Dkf ∗
ϕn → 0 uniformly on compact subsets of (a, b) as n→∞.

A Boehmian W is in Br(R) provided W ∈ β+(R) and W (t) = Dkf(t)
as t → ∞ for some k ∈ N, where f ∈ L1

loc(R) such that supp f ⊆ [a,∞)

(some a ≥ 0) and f(t)t−r−k+α is bounded as t → ∞ for some α > 0. That
is, W = V + Dkf , where supp V ⊆ [0, a], and supp f ⊆ [a,∞) such that
f(t)t−r−k+α is bounded as t→∞.

The Laplace transform of a Boehmian W =
[
fn
ϕn

]
∈ Br(R) is given by

Ŵ (z) = lim
n→∞

f̂n(z) = lim
n→∞

∫ ∞
−∞

e−ztfn(t)dt, Re z > 0. (3.2)

Remarks 3.2.

1. The Laplace transform operator on Br(R) has many of the same
properties as the classical Laplace transform (see [8]).

2. The Laplace transform for a Boehmian W is independent of the
representative.

3. Ŵ is an analytic function in the half-plane Re z > 0. Moreover, for

each ε > 0, Ŵ (t) = O(eεt) as t → ∞. If W ∈ β+
c (R) such that

suppW ⊆ [0, σ], then Ŵ is an entire function of exponential type at
most σ.

4. Let W ∈ J ′(r) . Since J ′(r) ⊂ Br(R), the Laplace transform of
W exists as an element of J ′(r) and as an element of Br(R). The
Laplace transform is consistent on J ′(r). That is, these two notions
agree on J ′(r).

The Stieltjes transform for W =
[
fn
ϕn

]
∈ Br(R) and r > −1 is given by

ΛrzW =
1

Γ(r + 1)

∫ ∞
0

e−zttrŴ (t)dt, Re z > 0, (3.3)

where Γ is the gamma function.

Remark 3.3. For r > −1, Λr(·) is a linear injective mapping from Br(R)

into the space of analytic functions in the half-plane Re z > 0. Throughout
the sequel, unless otherwise stated, r > −1.

Now, J ′(r) ⊂ Br(R). Therefore, each element of J ′(r) has a Stieltjes
transform as an element of J ′(r) and also as an element of Br(R). The two
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agree in the half-plane Re z > 0. That is, the following diagram commutes,
where A denotes the space of analytic functions in the half-plane Re z > 0.

-

@
@
@
@
@R

�
�

�
�
�	

ι

Sr(·) Λr(·)

A

J ′(r) Br(R)

Λr(·) ◦ ι = Sr(·)

Theorem 3.4. Let W ∈ Br(R). Then, for r > −1, ΛrzW is analytic in the
half-plane Re z > 0.

Proof. Since W ∈ Br(R), there exist k ∈ N, V ∈ β+
c (R), and f ∈ L1

loc(R)

with f(t)t−r−k+α bounded as t→∞ (some α > 0) such that

W = V +Dkf.

Therefore, there exist positive constants A and B such that

|f̂(t)| ≤ A+Bt−r−k−1+α, t > 0.

Thus,

tr(Dkf)∧(t) = tr+kf̂(t) ∈ L1
loc(R+)

and, for each ε > 0,

tr(Dkf)∧(t) = O(eεt) as t→∞.

Now, since V ∈ β+
c (R), V̂ is entire, and for each ε > 0,

V̂ (t) = O(eεt) as t→∞.
Thus,

trV̂ (t) ∈ L1
loc(R+)

and, for each ε > 0,

trV̂ (t) = O(eεt) as t→∞.
Therefore,

ΛrzW =
1

Γ(r + 1)

∫ ∞
0

e−zttrŴ (t)dt

=
1

Γ(r + 1)

∫ ∞
0

e−zttr(V̂ (t) + (Dkf)∧(t)) dt
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is analytic in the half-plane Re z > 0. �

We now show that for W ∈ Br(R), ΛrzW can be analytically extended to
a region containing the half-plane Re z > 0.

For σ ≥ 0, B̃σ(0) = {z ∈ C : |z| ≤ σ, Re z ≤ 0} and Aσ = B̃σ(0) ∪
(−∞, 0).

Theorem 3.5. Let V ∈ βc(R) such that suppV ⊆ [0, σ]. Then, ΛrzV can be
analytically extended to the region C\Aσ.

Proof. Let V ∈ βc(R) such that suppV ⊆ [0, σ]. Then, V̂ is an entire func-
tion of exponential type at most σ . Let

V̂ (z) =

∞∑
n=0

cnz
n, z ∈ C.

Then,

lim
n→∞

n|cn|1/n = eσ (see [5]).

It follows that

lim
n→∞

|cnΓ(n+ r + 1)|1/n = σ.

Therefore,

1

Γ(r + 1)

∞∑
n=0

cnΓ(n+ r + 1)

zn+r+1

represents an analytic function in the region Ω\(−∞, 0), where Ω = {z ∈
C : |z| > σ}.

Since ΛrzV is analytic in the region Re z > 0 and ΛrzV = 1
Γ(r+1)

∑∞
n=0

cnΓ(n+r+1)
zn+r+1 in the region {z ∈ Ω : Re z > 0} , it follows that ΛrzV can be

analytically extended to the region C\Aσ. �

Corollary 3.6. Let V ∈ βc(R) such that suppV = {0}. Then, ΛrzV can be
analytically extended to the region C\(−∞, 0]. Moreover,

ΛrzV =
1

Γ(r + 1)

∞∑
n=0

cn
zn+r+1

, z ∈ C\(−∞, 0],

where cn = V̂ (n)(0)
n! Γ(n+ r + 1), n = 0, 1, 2, . . . .

Remarks 3.7.

1. In the previous theorem and corollary, if r ∈ N∪ {0}, then ΛrzV can

be analytically extended to the region C\B̃σ(0).
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2. For V ∈ βc(R) (W ∈ Br(R)),ΛrzV (ΛrzW ) will denote the Stieltjes
transform of V (W ) as well as its extension. This should not cause
any confusion.

The following example illustrates that the containment J ′(r) ⊂ Br(R) is
proper.

Example 3.8. Let W = δ- limn→∞
∑n

k=0
Dkδ
(k!)2

(for the convergence of the

series, see [10]). Then, W ∈ Br(R)\J ′(r) , and using the fact that suppW =

{0} and Ŵ (t) =
∑∞

n=0
tn

(n!)2
, we obtain

ΛrzW =
∞∑
n=0

(r + 1)n
(n!)2zn+r+1

, z ∈ C\(−∞, 0],

where (r+ 1)n = (r+ 1)(r+ 2) . . . (r+ n). In particular, if r = k ∈ N∪ {0},
then

ΛkzW =
(−1)k

k!

dk

dzk

(
1

z
exp

(
1

z

))
, z ∈ C\{0}.

LetW ∈ Br(R). Then, W = V+Dkf with V ∈ βc(R), f ∈ L1
loc(R), suppV

⊆ [0, σ], supp f ⊆ [σ,∞), and f(t)t−r−k+γ bounded as t → ∞ (for some
γ > 0). Hence,

ΛrzW = ΛrzV + ΛrzD
kf in the half-plane Re z > 0.

Since, in the half-plane Re z > 0, the Stieltjes transform of Dkf as an
element of Br(R) agrees with the Stieltjes transform of Dkf as an element
of J ′(r) , ΛrzD

kf has an analytic extension to the region C\(−∞, 0].
So, by Theorem 3.5 and the above, we obtain the following theorem.

Theorem 3.9. Let W ∈ Br(R). Then there exists σ ≥ 0 such that ΛrzW
can be analytically extended to the region C\Aσ.

The product of t and a Boehmian W =
[
fn
ϕn

]
is defined by

t

[
fn
ϕn

]
=

[
(tfn) ∗ ϕn − fn ∗ (tϕn)

ϕn ∗ ϕn

]
. (3.4)

For n ∈ N, tnW is defined by induction. This definition is consistent with
the product of tn and a function or distribution.

Properties 3.10. Let W ∈ Br(R). Then for r > −1 and Re z > 0,

1. ΛrzτcW = Λrz+cW, c > 0.

2. ΛrzD
mW = Γ(r+m+1)

Γ(r+1) Λr+mz W, m = 1, 2, . . . .

3. dm

dzm ΛrzW = (−1)mΓ(r+m+1)
Γ(r+1) Λr+mz W = (−1)mΛrzD

mW, m = 1, 2, . . . .
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4. Λr+nz (tnW ) =
∑n

k=0(−1)k
(
n
k

)
zkΛr+kz W, n = 1, 2, . . . .

The proofs of properties 1-3 follow directly from the properties of the
Laplace transform.

Property 4: If W ∈ Br(R), it follows that tW ∈ Br+1(R), and using the
properties of the Laplace transform, for r > −1 and Re z > 0,

Λr+1
z (tW ) = ΛrzW − zΛr+1

z W.

By using an inductive argument, for n ∈ N, tnW ∈ Br+n(R) and

Λr+nz (tnW ) =
n∑
k=0

(−1)k
(
n

k

)
zkΛr+kz W, Re z > 0.

4. Inversion

We are now going to discuss inversion of the Stieltjes transform. But first,
we prove an inversion formula for the Laplace transform.

Theorem 4.1. Let W ∈ Br(R) and γ > 0. Then,

W = δ- lim
n→∞

1

2πi

∫ γ+in

γ−in
ezt Ŵ (z) dz.

Proof. W = V +Dkf , where V =
[
hn
ψn

]
∈ β+

c (R), supphn ⊂ [−a, a] (n ∈ N)

for some a > 0, and f has properties as previously stated.

So, W =
[
fn
ϕn

]
, where fn = (hn+Dkf ∗ψn)∗ψn and ϕn = ψn ∗ψn, n ∈ N.

Moreover, for each n ∈ N, supp fn ⊂ [−b,∞) for some b > 0, fn ∈ C∞(R),
and |f ′′n(t)| ≤ pn(t) (t ∈ R), for some polynomial pn.

Thus, for each n ∈ N, there exists Mn > 0 such that

|f̂n(z)| ≤ Mn

|z|2
, for z = γ + iy, (4.1)

where y ∈ R and Mn is independent of y.
For n = 1, 2, . . ., let

gn(t) =
1

2πi

∫ γ+in

γ−in
ezt Ŵ (z) dz.

Thus, gn ∈ C(R) ⊂ β(R), n = 1, 2, . . . . Now, using Fubini’s theorem, for
each n and k we obtain

(gn ∗ ϕk)(t) =
1

2πi

∫ γ+in

γ−in
ezt Ŵ (z)ϕ̂k(z) dz =

1

2πi

∫ γ+in

γ−in
eztf̂k(z) dz.
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Using (4.1) and the classical inversion formula for the Laplace transform
[4], we obtain

1

2πi

∫ γ+in

γ−in
ezt f̂k(z) dz → fk uniformly on compact sets as n→∞.

Thus, δ- limn→∞
1

2πi

∫ γ+in
γ−in e

zt Ŵ (z) dz = W. �

Now, we turn to the inversion for the Stieltjes transform.

Since inversion formulae for the classical Laplace transform are well-
known, it is possible to invert the Stieltjes transform. Roughly speaking,
this can be accomplished by applying the classical inversion formula for the
Laplace transform [4] to the Stieltjes transform of W , followed by the inver-
sion formula for the Laplace transform of a Boehmian. More precisely, let
W ∈ Br(R), γ > 0, and Ũ(z) denote the analytic continuation of U(t) to

the half-plane Re z > 0, where U(t) = 1
2πi

∫ γ+i∞
γ−i∞ eztΛrzWdz. Then, for any

σ > 0,

W = δ- lim
n→∞

Γ(r + 1)

2πi

∫ σ+in

σ−in
ezt
Ũ(z)

zr
dz. (4.2)

5. Abelian theorems

In this section, we establish theorems which describe the behavior of the
Stieltjes transform of a Boehmian at the origin (infinity) in a wedge in
the half-plane Re z > 0 from the behavior of the Boehmian at the origin
(infinity) along the real line.

Let W ∈ β+(R) and ν 6= −1,−2, . . . . Then, W (t)
e∼ ξtν (ξ ∈ C) as

t→ 0+ (t→∞) provided there exist a < 0 and b > 0 (a > 0 and b =∞),

m ∈ N, g ∈ L1
loc(R) such that W (t) = Dmg(t) on (a, b) and g(t)

tm+ν → ξ
(ν+1)m

as t→ 0+ (t→∞).

Lemma 5.1. Let V ∈ β+
c (R) such that suppV ⊆ [a, b], where a > 0. Then,

for r > −1, ΛrzV is analytic in a neighborhood of the origin.

Proof. Let U = τ−aV. Then, U ∈ β+
c (R). So, by Remark 3.2 (3), for each

ε > 0, Û(t) = O(eεt) as t→∞. Using this and the fact that V̂ (t) = e−atÛ(t),

we see that for each ε > 0, V̂ (t) = O(e−(a−ε)t) as t → ∞. Therefore, for

r > −1, trV̂ (t) is locally integrable and for each ε > 0, trV̂ (t) = O(e−(a−ε)t)
as t→∞. Thus,

ΛrzV =
1

Γ(r + 1)

∫ ∞
0

e−zt tr V̂ (t) dt is analytic in the half-plane Re z > −a.

�
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Theorem 5.2. (Initial Value Theorem). Let W ∈ Br(R) and ν > −1. If

W (t)
e∼ ξtν as t→ 0+, then for r > ν,

lim
z→0

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzW

Γ(r − ν)Γ(ν + 1)
= ξ.

Proof. There exist m, k ∈ N such that

W = Dmg + V +Dkf,

where V ∈ β+
c (R) and f, g ∈ L1

loc(R) with supp g ⊆ [a, b], suppV ⊆
[b, c], supp f ⊆ [c,∞) (a < 0 < b ≤ c), f(t)

tr+k−α
is bounded on [c,∞) (some

α > 0), and g(t)
tm+ν → ξ

(ν+1)m
as t→ 0+.

Thus,

zr−νΛrzW = zr−νΛrzD
mg + zr−νΛrzV + zr−νΛrzD

kf (5.1)

By using the Initial Value Theorem for functions (see [2], Theorem 1), it
follows that

lim
z→0

|argz|≤ψ<π/2

zr−ν Γ(r +m+ 1)Λr+mz g

Γ(r − ν)Γ(m+ ν + 1)
=

ξ

(ν + 1)m
(5.2)

Now, by (5.2) and

zr−ν Γ(r + 1)ΛrzD
mg

Γ(r − ν)Γ(ν + 1)
=
zr−ν Γ(r +m+ 1)Λr+mz g

Γ(r − ν)Γ(ν + 1)
,

we obtain

lim
z→0

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzD
mg

Γ(r − ν)Γ(ν + 1)
= ξ (5.3)

Now,

lim
z→0

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzD
kf

Γ(r − ν)Γ(ν + 1)
= 0 (see [3]) (5.4)

By the previous lemma, we obtain

lim
z→0

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzV

Γ(r − ν)Γ(ν + 1)
= 0 (5.5)

The desired result follows by combining (5.1), (5.3), (5.4), and (5.5). �

Theorem 5.3. (Final Value Theorem). Let W ∈ β+(R) and ν > −1. If

W (t)
e∼ ξtν as t→∞, then for r > ν,

lim
z→∞

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzW

Γ(r − ν)Γ(ν + 1)
= ξ.
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Proof. There exist m ∈ N, a ∈ R, and g ∈ L1
loc(R) such that W (t) = Dmg(t)

on (a,∞) and limt→∞
g(t)
tm+ν = ξ

(ν+1)m
. Thus,

W = V +Dmg, (5.6)

where V ∈ β+
c (R). Now,

lim
z→∞

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzD
mg

Γ(r − ν)Γ(ν + 1)
= ξ (see [3]). (5.7)

Since V ∈ β+
c (R) , there exist σ > 0 and cn ∈ C (n ∈ N) such that for

r > ν > −1 and Re z > σ,

zr−νΛrzV =
1

Γ(r + 1)zν+1

∞∑
n=0

cnΓ(n+ r + 1)

zn

(see proof of Theorem 3.5). Therefore,

lim
z→∞

|argz|≤ψ<π/2

zr−ν Γ(r + 1)ΛrzV

Γ(r − ν)Γ(ν + 1)
= 0. (5.8)

Thus, by (5.6), (5.7), and (5.8) the proof is complete. �

6. Open problems

1. Since the Stieltjes transform for a distribution is an analytic function
in the region C\(−∞, 0] [9], is it possible to improve Theorem 3.9?

Conjecture: Given W ∈ Br(R). The Stieltjes transform of W can
be analytically extended to C\(−∞, 0].

2. Is it possible to give a characterization for the range of the operator
Λr(·)? That is, is a Paley-Wiener type theorem possible?
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[12] S. Pilipović, B. Stanković, and A. Takači, Asymptotic Behaviour and Stieltjes Trans-
formation of Distributions, Taubner, Leipzig, 1990.

[13] R. Roopkumar, Stieltjes transform for Boehmians, Integral Transforms Spec. Func.,
18 (2007), 819–827.

[14] R. Roopkumar and E. R. Negrin, A unified extension of Stieltjes and Poisson trans-
forms, Integral Transforms Spec. Func., 22 (2011), 195–206.

[15] T. S. Stieltjes, Recherches sur les fractions continues, Annales de la Faculte des
Sciences de Toulouse, 8 (1894), 1–123.

[16] A. H. Zemanian, Distribution Theory and Transform Analysis, Dover Publications,
New York, 1987.

(Received: November 16, 2013) Department of Mathematics
California State University, Stanislaus
One University Circle
Turlock, CA 95382
U.S.A.
nemzer@comcast.net


