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SOME REMARKS ON GENERALIZED METRIC SPACES

OF BRANCIARI

POOM KUMAM AND NGUYEN VAN DUNG

Abstract. In this paper, we prove some properties of a generalized
metric space in the sense of Branciari in [1]. As applications, we correct
some confusion about this space in the literature. Examples are given
to illustrate the results.

1. Introduction and preliminaries

In 2000, Branciari [1] introduced the following notion of an n-generalized
metric space.

Definition 1.1 ([1], Definition 2.1). Let X be a non-empty set and d :
X ×X −→ [0,+∞) be a map that satisfy the following

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) d(x, y) ≤ d(x, u1) + d(u1, u2) + . . .+ d(un, y) for all x, y ∈ X and all

distinct points u1, . . . , un ∈ X each of them different from x and y.

Then d is called an n-generalized metric on X and (X, d) is called an n-
generalized metric space, or for short, n-g.m.s. A sequence {xn} is called
convergent to x in (X, d) if limn→∞ d(xn, x) = 0. A sequence {xn} is called
Cauchy if limn,m→∞ d(xn, xm) = 0. The n-generalized metric space (X, d)
is called complete if every Cauchy sequence is a convergent sequence.

If n = 2, an n-generalized metric space is called a generalized metric space,
or for short, g.m.s, see [1, Definition 1.1].

The notion of the generalized metric space in the sense of Branciari was
investigated by some authors and many fixed point theorems in such space
were stated, see [9], [10] and references therein. In [1], Branciari claimed the
following result without proof.

2010 Mathematics Subject Classification. Primary 46A16, 54H25; Secondary 54D99,
54E99.

Key words and phrases. Generalized metric space, fixed point.



210 POOM KUMAM AND NGUYEN VAN DUNG

Proposition 1.2 ([1]).

(1) A generalized metric space is a topological space with neighborhood
basis given by C =

{
B(x, r) : x ∈ X, r > 0

}
where B(x, r) = {y ∈

X : d(x, y) < r} is the ball of center x and radius r.
(2) A generalized metric d is continuous in each of its variables.
(3) A generalized metric space is a Hausdorff space.

In [15], an example was given to show that Proposition 1.2 is not true in
general, also see [9, Example 1.2].

Example 1.3 ([15], Example 1.1). Let A = {0, 2}, B =
{

1
n : n ∈ N

}
and

X = A ∪B. Define d : X ×X −→ R as follows:

d(x, y) =

 0 if x = y
1 if x 6= y and {x, y} ⊂ A or {x, y} ⊂ B
= d(y, x) = y if x ∈ A, y ∈ B.

Then we have

(1) (X, d) is a complete, generalized metric space.
(2) limn→∞

1
n = 0 and limn→∞

1
n = 2.

(3) The sequence
{

1
n

}
is not a Cauchy sequence.

(4) There does not exist r > 0 such that B(0, r) ∩B(2, r) = ∅.
(5) 0 ∈ B

(
1
3 ,

2
3

)
but there does not exist r > 0 such that B(0, r) ⊂

B
(
1
3 ,

2
3

)
.

(6) d is not continuous.

Note that, for a given generalized metric space (X, d), we have the topol-
ogy Td induced by the convergence on (X, d), that is, (X, Td) is a sequential
space in the sense of Franklin [8].

Definition 1.4 ([8]). Let X be a topological space.

(1) A subset U of X is called sequentially open if each sequence {xn}
in X converging to a point x in U is eventually in U , that is, there
exists n0 such that xn ∈ U for all n ≥ n0.

(2) A subset F of X is called sequentially closed if no sequence in F
converges to a point not in F .

(3) X is called a sequential space if each sequentially open subset of X
is open, equivalently, each sequentially closed subset of X is closed.

In a natural way, a generalized metric space (X, d) is always understood
to be the topological space (X, Td).

One usual method of generating a topology is to use a neighborhood
system as follows:

Proposition 1.5 ([6], Proposition 1.2.1). Suppose we are given a set X and
a family B of subsets of X which has the properties:
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(B1) For any U1, U2 ∈ B and every x ∈ U1 ∩ U2, there exists U ∈ B such
that x ∈ U ⊂ U1 ∩ U2.

(B2) For every x ∈ X, there exists U ∈ B such that x ∈ U .

Let O be the family of all subsets of X that are unions of subfamilies of
B. The family O is a topology on X and the family B is a base for the
topological space (X,O).

We see that the family B of all finite intersections of the family C in Propo-
sition 1.2 satisfies conditions (B1)-(B2). Then, by using Proposition 1.5, B
is a basis of certain topology T d on X. Recall that, for a metric space, Td
and T d are coincident. But for a generalized metric space, Td and T d may
not be coincident. In Example 1.3 and [9, Example 1.2], the authors used
neighborhoods in (X, T d) to prove the non-Hausdorff property of (X, Td).
Obviously this is a confused state of affairs.

In this paper, we prove some properties of a generalized metric space
(X, d) dependent on certain topologies on the set X. As applications, we
correct the mentioned confusion about generalized metric spaces. Examples
are given to illustrate the results.

2. Main results

The relationship between Td and T d is as follows. Note that every ball
B(x, r), r > 0, is an open subset of (X, T d).

Proposition 2.1. Let (X, d) be a generalized metric space. Then we have
Td ⊂ T d.

Proof. Let U ∈ Td. Suppose to the contrary that U 6∈ T d. Then there
exists x ∈ U such that B

(
x, 1n

)
6⊂ U for all n ∈ N. This implies that for

each n ∈ N, there exists xn ∈ B
(
x, 1n

)
and xn 6∈ U . Since d(xn, x) < 1

n
for all n ∈ N, limn→∞ d(xn, x) = 0. This proves that limn→∞ xn = x in
(X, Td). Therefore there exists n0 such that xn ∈ U for all n ≥ n0. This is
a contradiction of the fact that xn 6∈ U for all n ∈ N. �

The following example shows that inclusion in Proposition 2.1 can not be
reversed.

Example 2.2. There exists a generalized metric space (X, d) such that
T d 6⊂ Td.

Proof. Let (X, d) be the generalized metric space in Example 1.3. We have
limn→∞ d

(
1
n , 0
)

= limn→∞
1
n = 0. Then limn→∞

1
n = 0 in (X, Td). We also

have B
(
1
3 ,

2
3

)
=
{
x ∈ X : d

(
1
3 , x
)
< 2

3

}
=
{

0, 2, 13
}
. Then B

(
1
3 ,

2
3

)
is a

neighborhood of 0 in (X, T d). Since
{

1
n

}
is not eventually in B

(
1
3 ,

2
3

)
,
{

1
n

}
is not convergent to 0 in (X, T d). Therefore, T d 6⊂ Td. �
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For the generalized metric spaces (X, dX) and (Y, dY ), we always consider
X × Y to be the product space with respect to the mentioned topologies on
X and Y . Recall that, for a metric space (X, d), the formula

D
(
(x1, y1), (x2, y2)

)
= d(x1, x2) + d(y1, y2), x1, x2, y1, y2 ∈ X

yields a metric on X ×X. The following example shows that (in general),
this is no longer true for a generalized metric space (X, d).

Example 2.3. There exists a generalized metric space (X, d) such that

D
(
(x1, y1), (x2, y2)

)
= d(x1, x2) + d(y1, y2)

for all x1, x2, y1, y2 ∈ X, is not a generalized metric on X ×X.

Proof. Let (X, d) be the generalized metric space in [9, Example 1.2]. We
have

D
(
(1, 1), (2, 2)

)
> D

(
(1, 1),

(
1, 1− 1

3

))
+D

((
1, 1− 1

3

)
,
(
2, 1− 1

3

))
+D

((
2, 1− 1

3

)
, (2, 2)

)
.

Then D is not a generalized metric on X ×X. �

We state some relationships between a generalized metric and certain
metric as follows.

Proposition 2.4. Let (X, d) be a generalized metric space. If (X, Td) has
no isolated point and d is a sequentially continuous function of its variables
on (X, Td)× (X, Td), then d is a metric on X.

Proof. For each x ∈ X, since (X, Td) has no isolated point, we have x ∈
X − {x} where X − {x} is the closure of X − {x} in (X, Td). For each
sequence {xn} ⊂ X − {x} and limn→∞ xn = y in (X, Td), if y 6= x, then
y ∈ X−{x}. It implies that X−{x} is sequentially closed in the sequential
space (X, Td). Then X − {x} is closed in (X, Td). Therefore, {x} is open in
(X, Td), that is, x is an isolated point of (X, Td). It is a contradiction. Then
there exists a sequence {xn} ⊂ X − {x} that lim

n→∞
xn = x in (X, Td).

For each x 6= y 6= z ∈ X, choosing zn ∈ X − {z} for all n ∈ N such that
limn→∞ zn = z in (X, Td). We may assume that zn ∈ X − {x, y, z} for all
n ∈ N. Therefore,

d(x, y) ≤ d(x, z) + d(z, zn) + d(zn, y). (2.1)

Taking the limit as n → ∞ in (2.1) and using the assumption that d is
sequentially continuous in its variables on (X, Td)×(X, Td), we get d(x, y) ≤
d(x, z) + d(z, y). This proves that d is a metric on X. �
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Proposition 2.5. Let (X, d) be a generalized metric space. For each x, y ∈
X, put

ρd(x, y) =


0 if x = y

inf
{

max {d(x, u1), d(u1, u2), . . . , d(un, y)} :

u1, . . . , un ∈ X,n ∈ N
}

if x 6= y.

Then we have

(1) ρd is a metric on X.
(2) If lim

n→∞
xn = x in (X, d), then lim

n→∞
xn = x in (X, ρd).

Proof. 1. For all x, y, z ∈ X, we have ρd(x, y) ≥ 0, ρd(x, y) = ρd(y, x) and
ρd(x, y) = 0 if and only if x = y.

For each ε > 0, there exist u1, . . . , un ∈ X and v1, . . . , vm ∈ X such that

max {d(x, u1), d(u1, u2), . . . , d(un, y)} < ρd(x, y) +
ε

2

max {d(y, v1), d(v1, v2), . . . , d(vm, z)} < ρd(y, z) +
ε

2
.

Then we have

ρd(x, z) ≤ max {d(x, u1), d(u1, u2),

. . . , d(un, y), d(y, v1), d(v1, v2), . . . , d(vm, z)}
≤ max {d(x, u1), d(u1, u2),

. . . , d(un, y)}+ max {d(y, v1), d(v1, v2), . . . , d(vm, z)}

≤ ρd(x, y) +
ε

2
+ ρd(y, z) +

ε

2
= ρd(x, y) + ρd(y, z) + ε.

Therefore, ρd(x, z) ≤ ρd(x, y) + ρd(y, z) + ε for all ε > 0. This proves that

ρd(x, z) ≤ ρd(x, y) + ρd(y, z).

By the above, ρd is a metric on X.
2. Let limn→∞ xn = x in (X, d). Then limn→∞ d(xn, x) = 0. If there

exists n0 such that xn = x for all n ≥ n0, then limn→∞ xn = x in (X, ρd).
So, we may assume that xn 6= x for all n ∈ N. It implies that

0 ≤ ρd(xn, x)

= inf
{

max {d(xn, u1), d(u1, u2), . . . , d(um, x)} : u1, . . . , um ∈ X,m ∈ N
}

≤ d(xn, x) (2.2)

for all n ∈ N. Taking the limit as n→∞ in (2.2), we get limn→∞ ρd(xn, x) =
0. This proves that limn→∞ xn = x in (X, ρd). �
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Using [6, Proposition 2.2.4] and [6, Theorem 4.2.1], we get the following
corollary from Proposition 2.4.

Corollary 2.6. Let (X, d) be a generalized metric space. If d is sequentially
continuous in its variables on (X, Td)× (X, Td), then we have

(1) (X, Td) = Y
⊕
Z, where Y is metrizable and Z is discrete. In par-

ticular, (X, Td) is metrizable.
(2) {xn} is Cauchy in the generalized metric space (X, d) if and only if
{xn} is Cauchy in the metrizable space (X, Td).

(3) The generalized metric space (X, d) is complete if and only if the
metrizable space (X, Td) is complete.

Proof. (1) Denote Y = {x : x is an isolated point of (X, Td)} and

Z = {x : x is not an isolated point of (X, Td)}.
Then X = Y ∪ Z and Y,Z are two disjoint open subsets of (X, Td). By [6,
Proposition 2.2.4], we have X = Y

⊕
Z, where Y is metrizable by Proposi-

tion 2.4 and Z is discrete. Note that Z is also a metrizable space with the
discrete metric, then (X, Td) is metrizable by [6, Theorem 4.2.1].

(2) We have that {xn} is Cauchy in the generalized metric space (X, d)
if and only if limn,m→∞ d(xn, xm) = 0. It is equivalent to either {xn}
is eventually in Y or {xn} is eventually in Z, with respect to Td, and
limn,m→∞ d(xn, xm) = 0. Note that the metric on Y is the restriction of
the generalized metric d on Y and the metric on Z is the discrete metric,
then the above is equivalent to that {xn} is Cauchy in the metrizable space
(X, Td).

(3) It is a direct consequence of (1) and (2). �

Remark 2.7.

(1) A discrete metric space is a counter-example showing that the con-
verse of Proposition 2.4 is false.

(2) Let (X, d) be an n-generalized metric space where d is sequentially
continuous in its variables on (X, Td) × (X, Td). As in the proofs
of Proposition 2.4 and Corollary 2.6, we see that each n-generalized
metric space (X, d) reduces to either a discrete space or a metric
space with the same Cauchy sequences and same completeness.

The following proposition presents the Hausdorff property of a generalized
metric space.

Proposition 2.8. Let (X, d) be a generalized metric space. Then we have

(1) If d is sequentially continuous in its variables on (X, Td) × (X, Td),
then (X, Td) is Hausdorff.

(2) (X, T d) is Hausdorff.
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Proof. (1) It is a direct consequence of Corollary 2.6.

(2) For each x 6= y ∈ X, we have d(x, y) > 0. Put r = d(x,y)
2 and

U = B(x, r), V = B(y, r). Then U is a neighborhood of x and V is a
neighborhood of y in (X, T d) and U ∩ V = ∅. This proves that (X, T d) is a
Hausdorff space. �

The following example shows that the converse of Proposition 2.8.(1) is
false.

Example 2.9. There exists a Hausdorff, generalized metric space (X, d)
such that d is not sequentially continuous in its variables on (X, Td)×(X, Td).

Proof. Let X = {2} ∪
{

1
n : n ∈ N

}
. Define d : X ×X −→ R as follows:

d(x, y) =


0 if x = y
1 if x = 1

n 6= y = 1
m ;n,m ∈ N

= d(y, x) = y if x = 2, y = 1
n ;n ∈ N.

Then (X, d) is a generalized metric space. We have limn→∞ d
(
1
n , 2
)

=

limn→∞
1
n = 0. Then limn→∞

1
n = 2 in (X, Td). Moreover, if limm→∞ xm =

1
n for some n ∈ N in (X, Td), then limm→∞ d

(
xm,

1
n

)
= 0. Then there exists

m0 such that xm = 1
n for all m ≥ m0.

By the above, we have Um = {2} ∪
{

1
n : n ≥ m

}
is a neighborhood of 2

in (X, Td) for all m ∈ N and Vn =
{

1
n

}
is a neighborhood of 1

n in (X, Td) for
all n ∈ N. Since Un+1 ∩ Vn = ∅ for all n ∈ N and Vn ∩ Vm = ∅ for all n 6= m,
we see that (X, Td) is Hausdorff.

Since limn→∞
1
n = 2 in (X, Td) and limn→∞ d

(
1
2 ,

1
n

)
= limn→∞ 1 = 1 6=

d
(
1
2 , 2
)

= 1
2 , we see that d is not sequentially continuous in its variables on

(X, Td)× (X, Td). �

An equivalent condition for a generalized metric d to be sequentially con-
tinuous in its variables on (X, Td)× (X, Td) is as follows.

Proposition 2.10. Let (X, d) be a generalized metric space. Then d is
sequentially continuous in its variables on (X, Td) × (X, Td) if and only if
every convergent sequence on (X, Td) is a Cauchy sequence on (X, d).

Proof. Necessity. Let {xn} be a convergent sequence in (X, Td). By using
again notations in the proof of Corollary 2.6, we see that either {xn} is
eventually in Y or {xn} is eventually in Z, with respect to Td.

If {xn} is eventually in Y , then {xn} is a Cauchy sequence in Y because
Y is a metric space. Note that the metric on Y is the restriction of d on Y ,
then {xn} is a Cauchy sequence in (X, d).

If {xn} is eventually in Z, then there exists n0 such that xn = x for all
n ≥ n0 because Z is discrete. Then {xn} is also a Cauchy sequence in (X, d).
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By the above, {xn} is a Cauchy sequence in (X, d).
Sufficiency. For each x, y ∈ X and limn→∞ xn = x in (X, Td), we will

prove that limn→∞ d(xn, y) = d(x, y).
If x = y, then limn→∞ d(xn, y) = limn→∞ d(xn, x) = 0 = d(x, x) =

d(x, y).
If there exists n0 such that xn = x for all n ≥ n0, then limn→∞ d(xn, y) =

d(x, y).
So, we may assume that xn 6= xm 6= x 6= y for all n,m ∈ N. Then

d(xn, y) ≤ d(xn, xm) + d(xm, x) + d(x, y), d(x, y)

≤ d(x, xm) + d(xm, xn) + d(xn, y).

It implies that

d(xn, y)− d(x, y) ≤ d(xn, xm) + d(xm, x), d(x, y)− d(xn, y)

≤ d(x, xm) + d(xm, xn).

Therefore, we have

|d(xn, y)− d(x, y)| ≤ d(xn, xm) + d(xm, x) (2.3)

for all n ∈ N. Taking the limit as n→∞ in (2.3), note that {xn} is a Cauchy
sequence, we get limn→∞ |d(xn, y)−d(x, y)| = 0. That is, limn→∞ d(xn, y) =
d(x, y). �

The proof of Sufficiency of Proposition 2.10 gives the following result.

Corollary 2.11 ([11], Proposition 3). Let (X, d) be a generalized metric
space. If {xn} is a Cauchy sequence and limn→∞ xn = x in (X, Td), then
limn→∞ d(xn, y) = d(x, y) for all y ∈ X. In particular, limn→∞ xn 6= y in
(X, Td) if y 6= x.

Remark 2.12. Recently, the authors of [9] asserted that there were some
incorrect proofs in [1], [2], [3], [12] by using the ‘false’ Proposition 1.2. These
‘false properties’ of generalized metric spaces were first observed by Das
and Dey in [4], [5]. Also, these facts were observed by Samet in [13], by
Lakzian and Samet in [14], by Sarma et al. in [15]. A fact first noted
in [16], and then in [11] that the Hausdorff property in [15, Theorem 1.3] is
superfluous. By using Corollary 2.11, we also see that the Hausdorff property
in [14, Theorem 3.1], [14, Theorem 3.2], [7, Theorem 4], [7, Theorem 9], [7,
Theorem 11], [7, Theorem 13] are superfluous. Therefore, the comments
in [9] on the proofs in [1], [2], [3], [12] may be not fair, in the sense that
Corollary 2.11 is used implicitly.

Now we restate Example 1.3 as follows, also for [9, Example 1.2].

Example 2.13. Let (X, d) be the complete generalized metric space in
Example 1.3. Then we have
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(1) (X, T d) is discrete. In particular, (X, T d) is Hausdorff and
{

1
n

}
is

not convergent in (X, T d).
(2) limn→∞

1
n = 0 and limn→∞

1
n = 2 in (X, Td). In particular, (X, Td)

is not Hausdorff.
(3) The sequence

{
1
n

}
is not a Cauchy sequence in (X, d).

(4) The collection B =
{
B(x, r) : r > 0

}
does not form a neighborhood

basis at x in (X, T d).
(5) d is not a sequentially continuous function of its variables on (X, Td)×

(X, Td).
(6) d is continuous on (X, T d)× (X, T d).

Proof. For (3), see Example 1.3.(3); (4) is a direct consequence of Exam-
ple 1.3.(5) and (6) is a direct consequence of (1).

(1) We have B
(
0, 13
)
∩B

(
1
3 ,

2
3

)
= {0}, B

(
2, 13
)
∩B

(
1
3 ,

2
3

)
= {2}, B

(
1
n , r
)

={
1
n

}
if r < 1

n . It implies that (X, T d) is discrete.

(2) We see that limn→∞ d
(
1
n , 0
)

= limn→∞ d
(
1
n , 2
)

= limn→∞
1
n = 0.

Then limn→∞
1
n = 0 and limn→∞

1
n = 2 in (X, Td). Therefore, (X, Td) is not

Hausdorff by [6, Proposition 1.6.7].
(5) We have limn→∞

1
n = 0 in (X, Td) but limn→∞ d

(
1
n , 2
)

= limn→∞
1
n =

0 6= d(0, 2) = 1. Then d is not a sequentially continuous function of its
variables on (X, Td)× (X, Td). �

In [5], Das and Dey introduced the notion of a generalized normed linear
space as follows.

Definition 2.14 ([5]). Let X be a real or complex vector space over the
field K and ‖.‖ : X −→ R such that

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0 for all x ∈ X.
(2) ‖λ.x‖ = |λ|.‖x‖ for all x ∈ X and λ ∈ K.
(3) ‖x + z1 + . . . + zk + y‖ ≤ ‖x‖ + ‖z1‖ + . . . + ‖zk‖ + ‖y‖ for all

x, y, z1, . . . , zk 6= 0.

Then the function ‖.‖ is called a generalized norm on X and (X, ‖.‖) is called
a generalized normed linear space. If (X, ‖.‖) is a generalized normed linear
space, then d(x, y) = ‖x − y‖ for all x, y ∈ X is a generalized metric on X
and d is called the generalized norm induced by ‖.‖. A generalized normed
linear space which is complete with respect to the induced generalized metric
is called a generalized Banach space.

The following proposition shows that every generalized norm is a norm.
Then, all results and open problems in [5] are redundant.

Proposition 2.15. If (X, ‖.‖) is a generalized normed linear space, then
the function ‖.‖ is a norm on X, that is, ‖x+y‖ ≤ ‖x‖+‖y‖ for all x, y ∈ X.
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Proof. If x = 0 or y = 0, then we have ‖x + y‖ ≤ ‖x‖ + ‖y‖. So we may
assume that x, y 6= 0. Then we have

‖x+ y‖ =
∥∥x+

1

2
y +

1

2
y
∥∥

≤ ‖x‖+
∥∥1

2
y
∥∥+

∥∥1

2
y
∥∥ = ‖x‖+

1

2
‖y‖+

1

2
‖y‖ = ‖x‖+ ‖y‖.

By the above, ‖.‖ is a norm on X. �

Acknowledgments. The first author would like to thank the King Mong-
kut’s University of Technology Thonburi (KMUTT) for financial support.
The second author would like to thank the Dong Thap Seminar on Mathe-
matical Analysis and its Applications for discussion about the paper.

References

[1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of gener-
alized metric spaces, Publ. Math. Debrecen, 57 (1–2) (2000), 31–37.

[2] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math.
Sci., 1 (2002), 29–33.

[3] P. Das and L. K. Dey, A fixed point theorem in a generalized metric space, Soochow
J. Math., 33 (2007), 33–29.

[4] P. Das and L. K. Dey, Fixed point of contractive mappings in generalized metric
spaces, Math. Slovaca, 59 (4) (2009), 499–504.

[5] P. Das and L. K. Dey, Porosity of certain classes of operators in generalized metric
spaces, Demonstratio Math., XLII (1) (2009), 163–174.

[6] R. Engelking, General Topology, Sigma series in pure mathematics, vol. 6, Helder-
mann Verlag, Berlin, 1988.

[7] I. M. Erhan, E. Karapinar, and T. Sekulic, Fixed points of (ψ, φ) contractions on
generalized metric spaces, Fixed Point Theory Appl., 2012:138 (2012), 1–10.

[8] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107–115.
[9] L. Kikina and K. Kikina, On fixed point of a Ljubomir Ciric quasi-contraction map-

ping in generalized metric spaces, Publ. Math. Debrecen, 83 (3) (2013), 1–6.
[10] L. Kikina and K. Kikina, A fixed point theorem in generalized metric spaces, Demon-

stratio Math., XLVI (1) (2013), 181–190.
[11] W. A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point

Theory Appl., 2013:129 (2013), 1–9.
[12] B. K. Lahiri and P. Das, Fixed point of a Ljubomir Ciric’s quasi-contraction mapping

in a generalized metric space, Publ. Math. Debrecen, 61 (3–4) (2002), 589–594.
[13] B. Samet, Discussion on “A fixed point theorem of Banach-Caccioppoli type on a class

of generalized metric spaces” by A. Branciari, Publ. Math. Debrecen, 76 (4) (2010),
493–494.

[14] H. Lakzian B. Samet, Fixed points for (ψ,ϕ)-weakly contractive mappings in gener-
alized metric spaces, Appl. Math. Lett., 25 (2012), 902–906.

[15] I. R. Sarma, J. M. Rao, and S. S. Rao, Contractions over generalized metric spaces,
J. Nonlinear Sci. Appl., 2 (3) (2009), 180–182.



REMARKS ON GENERALIZED METRIC SPACES OF BRANCIARI 219

[16] M. Turinici, Functional contractions in local Branciari metric spaces, ROMAI J., 8
(2) (2012), 189–199.

(Received: November 25, 2013) Poom Kumam
(Revised: January 27, 2014) Department of Mathematics

Faculty of Science
King Mongkut’s University of
Technology Thonburi (KMUTT)
Bang Mod, Thrung Khru
Bangkok 10140
Thailand
poom.kum@kmutt.ac.th

Nguyen Van Dung
Faculty of Mathematics and Information
Technology Teacher Education
Dong Thap University
Cao Lanh City, Dong Thap Province
Viet Nam
nvdung@dthu.edu.vn


