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SOME INEQUALITIES OF ČEBYŠEV TYPE FOR

FUNCTIONS OF OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR

Abstract. Some operator inequalities for synchronous functions that
are related to the Čebyšev inequality for sequences of real numbers are
given. Natural examples for pairs of functions that have the same mono-
tonicity on an interval are presented as well.

1. Introduction

For p = (p1, . . . , pn) ,a = (a1, . . . , an) and b = (b1, . . . , bn) n–tuples of
real numbers, consider the Čebyšev functional

Tn (p; a,b) := Pn

n∑
i=1

piaibi −
n∑
i=1

piai ·
n∑
i=1

pibi, (1.1)

where Pn :=
∑n

i=1 pi.

In 1882-1883, Čebyšev [1] and [2] proved that, if a and b are monotonic
in the same (opposite) sense and p is nonnegative, then

Tn (p; a,b) ≥ (≤) 0. (1.2)

The inequality (1.2) was mentioned by Hardy, Littlewood and Polya in their
book [7] in 1934 in the more general setting of synchronous sequences, i.e.,
if a,b are synchronous (asynchronous), this means that

(ai − aj) (bi − bj) ≥ (≤) 0 for each i, j ∈ {1, . . . , n} , (1.3)

then (1.2) holds true.
For general real weights p, Mitrinović and Pečarić has shown in [8] that

the inequality (1.2) holds true if

0 ≤ Pk ≤ Pn for k ∈ {1, . . . , n− 1} , (1.4)

and a,b are monotonic in the same (opposite) sense.
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We say that the functions f, g : [a, b] −→ R are synchronous (asynchro-
nous) on the interval [a, b] if they satisfy the following condition:

(f (t)− f (s)) (g (t)− g (s)) ≥ (≤) 0 for each t, s ∈ [a, b] .

It is obvious that, if f, g are monotonic and have the same monotonicity
on the interval [a, b] , then they are synchronous on [a, b] while if they have
opposite monotonicity, they are asynchronous.

For some extensions of the discrete Čebyšev inequality for synchronous
(asynchronous) sequences of vectors in an inner product space, see [4] and
[5].

The following result provides an inequality of Čebyšev type for functions
of one selfadjoint operator:

Let A be a selfadjoint operator on the Hilbert space (H, 〈·, ·〉) with Sp (A)
⊆ [m,M ] for some real numbers m < M. If f, g : [m,M ] −→ R are continu-
ous and synchronous (asynchronous) on [m,M ] , then [3]

〈f (A) g (A)x, x〉 ≥ (≤) 〈f (A)x, x〉 · 〈g (A)x, x〉 (1.5)

for any x ∈ H with ‖x‖ = 1.
As a particular case of interest we notice that if A is a positive selfadjoint

operator on H, then 〈
Ap+qx, x

〉
≥ 〈Apx, x〉 · 〈Aqx, x〉 (1.6)

for any x ∈ H with ‖x‖ = 1 and p, q > 0.
Motivated by the above results, we introduce in the present paper the

concept of operator synchronous (asynchronous) functions and provide some
fundamental Čebyšev type inequalities. Applications for some elementary
functions of interest are also provided.

2. Operator synchronous functions

It is known, see for instance [9, p. 356-358], that if A and B are two
commuting bounded selfadjoint operators on the complex Hilbert space H,
then there exists a bounded selfadjoint operator S on H and two bounded
functions ϕ and ψ such that A = ϕ (S) and B = ψ (S) . Moreover, if {Eλ} is
the spectral family over the closed interval [0, 1] for the selfadjoint operator

S, then S =
∫ 1

0− λdEλ, where the integral is taken in the Riemann–Stieltjes

sense, the functions ϕ and ψ are summable with respect with {Eλ} on [0, 1]
and

A = ϕ (S) =

∫ 1

0−
ϕ (λ) dEλ and B = ψ (S) =

∫ 1

0−
ψ (λ) dEλ. (2.1)

Now, if A and B are as above with Sp (A) , Sp (B) ⊆ J an interval of
real numbers, then for any continuous functions f, g : J → C we have the



SOME INEQUALITIES OF ČEBYŠEV TYPE 223

representations

f (A) =

∫ 1

0−
(f ◦ ϕ) (λ) dEλ and g (B) =

∫ 1

0−
(g ◦ ψ) (λ) dEλ. (2.2)

Definition 1. We say that the continuous functions f, g : J → R are op-
erator synchronous (asynchronous) on J, if for any A and B two commut-
ing bounded selfadjoint operators on the complex Hilbert space H with
Sp (A) , Sp (B) ⊆ J we have

(f (A)− f (B)) (g (A)− g (B)) ≥ (≤) 0 (2.3)

in the operator order.

In what follows, unless specified, H will be a complex Hilbert space.

Theorem 1. The continuous functions f, g : J → R are synchronous (asyn-
chronous) on J if and only if they are operator synchronous (asynchronous)
on J.

Proof. (=⇒) Let A and B two commuting bounded selfadjoint operators on
the Hilbert space H with Sp (A) , Sp (B) ⊆ J . Then we have the represen-
tations (2.1) and (2.2).

Now, if f, g : J → R are synchronous on J, then

0 ≤ (f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ)))

for λ, µ ∈ [0, 1] where the functions ϕ and ψ are the functions from (2.1).
Therefore

0 ≤
∫ 1

0−

∫ 1

0−
(f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ))) dEλdEµ

=

∫ 1

0−

∫ 1

0−
[f (ϕ (λ)) g (ϕ (λ)) + f (ψ (µ)) g (ψ (µ))

− g (ϕ (λ)) f (ψ (µ))− f (ϕ (λ)) g (ψ (µ))] dEλdEµ

=

∫ 1

0−
f (ϕ (λ)) g (ϕ (λ)) dEλ

∫ 1

0−
dEµ

+

∫ 1

0−
dEλ

∫ 1

0−
f (ψ (µ)) g (ψ (µ)) dEµ

−
∫ 1

0−
g (ϕ (λ)) dEλ

∫ 1

0−
f (ψ (µ)) dEµ

−
∫ 1

0−
f (ϕ (λ)) dEλ

∫ 1

0−
g (ψ (µ)) dEµ

= f (A) g (A) + f (B) g (B)− g (A) f (B)− f (A) g (B)

= (f (A)− f (B)) (g (A)− g (B)) (2.4)
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since, obviously, by the commutativity of A with B we have f (B) g (A) =
g (A) f (B) .

(⇐=) If the inequality (2.3) holds for any A and B two commuting boun-
ded selfadjoint operators on the Hilbert space H with Sp (A) , Sp (B) ⊆ J,
then by choosing A = s1H and B = t1H with s, t ∈ J we deduce that
(f (s)− f (t)) (g (s)− g (t)) ≥ (≤) 0 which concludes the proof. �

Corollary 1. If the continuous functions f, g : J → R have the same mono-
tonicity on J then for any A and B two commuting bounded selfadjoint
operators on the Hilbert space H with Sp (A) , Sp (B) ⊆ J we have

f (A) g (A) + f (B) g (B) ≥ g (A) f (B) + f (A) g (B) (2.5)

in the operator order.

Remark 1. We observe that the above inequality (2.5) can provide numer-
ous inequalities of interest for two commuting selfadjoint operators.

For instance, if A and B are positive commuting operators on H then for
any p, q > 0 we have

Ap+q +Bp+q ≥ BpAq +ApBq. (2.6)

If the commuting operators A and B are positive definite on H, then also

A ln (A) +B ln (B) ≥ B ln (A) +A ln (B) .

Also, if A and B are commuting operators on H with 0 ≤ A,B ≤ π
2 1H ,

then

sin (A) cos (A) + sin (B) cos (B) ≤ sin (B) cos (A) + sin (A) cos (B) . (2.7)

Corollary 2. If the continuous functions f, g : J → R are synchronous on
J, then for any A a bounded selfadjoint operator on the Hilbert space H with
Sp (A) ⊆ J we have

〈f (A) g (A) y, y〉 − 〈f (A) y, y〉 〈g (A) y, y〉
≥ [〈g (A) y, y〉 − g (〈Ax, x〉)] [f (〈Ax, x〉)− 〈f (A) y, y〉] (2.8)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
In particular, we have

〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉
≥ [〈g (A)x, x〉 − g (〈Ax, x〉)] [f (〈Ax, x〉)− 〈f (A)x, x〉] (2.9)

for any x ∈ H with ‖x‖ = 1.
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Proof. Since f, g : J → R are operator synchronous on J, then by choosing
B = 〈Ax, x〉 1H with a given x ∈ H with ‖x‖ = 1, we have in the operator
order the inequality

f (A) g (A) + f (〈Ax, x〉) g (〈Ax, x〉) 1H

≥ f (〈Ax, x〉) g (A) + g (〈Ax, x〉) f (A) . (2.10)

If we take this inequality for vectors y ∈ H with ‖y‖ = 1, then we get

〈f (A) g (A) y, y〉+ f (〈Ax, x〉) g (〈Ax, x〉)
≥ f (〈Ax, x〉) 〈g (A) y, y〉+ g (〈Ax, x〉) 〈f (A) y, y〉 (2.11)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
This inequality is equivalent with

〈f (A) g (A) y, y〉 − 〈f (A) y, y〉 〈g (A) y, y〉
≥ f (〈Ax, x〉) 〈g (A) y, y〉+ g (〈Ax, x〉) 〈f (A) y, y〉
− f (〈Ax, x〉) g (〈Ax, x〉)− 〈f (A) y, y〉 〈g (A) y, y〉
= [〈g (A) y, y〉 − g (〈Ax, x〉)] [f (〈Ax, x〉)− 〈f (A) y, y〉] (2.12)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1. �

Remark 2. The inequality (2.9) was obtained in a different way in [3]
where also has been noted that if the continuous functions f, g : J → R are
synchronous on J and one of them is convex while the other is concave, then
we have the improvement of the inequality (1.5)

〈f (A) g (A)x, x〉 − 〈f (A)x, x〉 〈g (A)x, x〉
≥ [〈g (A)x, x〉 − g (〈Ax, x〉)] [f (〈Ax, x〉)− 〈f (A)x, x〉] ≥ 0, (2.13)

for any x ∈ H with ‖x‖ = 1.
For some particular examples of interest see [3].

Theorem 2. Assume that the continuous functions f, g : J → R are syn-
chronous (asynchronous) on J. If (A1, . . . , An) and (B1, . . . , Bn) are two
n-tuples of selfadjoint operators with the spectra in J and such that Ak com-
mutes with Bj for any k, j ∈ {1, . . . , n} , then for any nonnegative n-tuples
of real numbers (p1, . . . , pn) and (q1, . . . , qn) we have

Qn

n∑
k=1

pkf (Ak) g (Ak) + Pn

n∑
j=1

qjf (Bj) g (Bj)

≥ (≤)

n∑
k=1

pkg (Ak)

n∑
j=1

qjf (Bj) +

n∑
k=1

pkf (Ak)

n∑
j=1

qjg (Bj) , (2.14)
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where Pn, Qn > 0.

Proof. Since f, g : J → R are operator synchronous (asynchronous) on J
and Ak commutes with Bj for any k, j ∈ {1, . . . , n} , then we have

f (Ak) g (Ak) + f (Bj) g (Bj) ≥ (≤) g (Ak) f (Bj) + f (Ak) g (Bj) (2.15)

for any k, j ∈ {1, . . . , n} .
Now, if we multiply the inequality (2.15) with pk and qj and sum over k

and j from 1 to n we deduce the desired result (2.14). �

Remark 3. We observe that, in general, it is not necessary for the terms
of the n-tuples (A1, . . . , An) two commute between them. The same applies
for (B1, . . . , Bn) .

The following particular case provides a Čebyšev type inequality for syn-
chronous (asynchronous) functions.

Corollary 3. Assume that the continuous functions f, g : J → R are syn-
chronous (asynchronous) on J. If (A1, . . . , An) is an n-tuples of selfadjoint
operators such that Ak commutes with Aj for any k, j ∈ {1, . . . , n} , then for
any nonnegative n-tuples of real numbers (p1, . . . , pn) we have

Pn

n∑
k=1

pkf (Ak) g (Ak) ≥ (≤)

n∑
k=1

pkf (Ak)

n∑
k=1

pkg (Ak) . (2.16)

Remark 4. If (A1, . . . , An) and (B1, . . . , Bn) are two n-tuples of posi-
tive selfadjoint operators such that Ak commutes with Bj for any k, j ∈
{1, . . . , n} , then for any nonnegative n-tuples of real numbers (p1, . . . , pn)
and (q1, . . . , qn) and for any p, q > 0 we have

Qn

n∑
k=1

pkA
p+q
k + Pn

n∑
j=1

qjB
p+q
j

≥
n∑
k=1

pkA
q
k

n∑
j=1

qjB
p
j +

n∑
k=1

pkA
p
k

n∑
j=1

qjB
q
j (2.17)

where Pn, Qn > 0.
In particular, if (A1, . . . , An) is an n-tuples of positive selfadjoint operators

such that Ak commutes with Aj for any k, j ∈ {1, . . . , n} , then for any
nonnegative n–tuples of real numbers (p1, . . . , pn) we have

Pn

n∑
k=1

pkA
p+q
k ≥

n∑
k=1

pkA
p
k

n∑
k=1

pkA
q
k, (2.18)

where p, q > 0.
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If (A1, . . . , An) is an n–tuples of positive definite selfadjoint operators
such that Ak commutes with Aj for any k, j ∈ {1, . . . , n} , then for any
nonnegative n-tuples of real numbers (p1, . . . , pn) we have

Pn

n∑
k=1

pkAk lnAk ≥
n∑
k=1

pkAk

n∑
k=1

pk lnAk. (2.19)

The above inequality (2.17) may be used to prove the following result
for functions of operators expressed by power series with nonnegative coef-
ficients.

Theorem 3. Let f (z) =
∑∞

n=0 anz
n and g (z) =

∑∞
n=0 bnz

n be two power
series with nonnegative coefficients and convergent on the open disk D (0, R)
with R > 0. If A and B are commuting positive operators and p, q, t, s > 0
such that t ‖A‖p , t ‖A‖q , t ‖A‖p+q < R and s ‖B‖p , s ‖B‖q , s ‖B‖p+q < R,
then we have the inequality

g (s) f
(
tAp+q

)
+f (t) g

(
sBp+q

)
≥ f (tAq) g (sBp)+f (tAp) g (sBq) . (2.20)

Proof. Since A and B are commuting positive operators, then Ak := Ak

commutes with Bj := Bj for any k, j ∈ {0, . . . , n} and writing the inequality

(2.17) for pk := akt
k and qj := bjs

j where k, j ∈ {0, . . . , n} , we have

n∑
j=0

bjs
j

n∑
k=0

akt
k
(
Ap+q

)k
+

n∑
k=0

akt
k

n∑
j=0

bjs
j
(
Bp+q

)j
≥

n∑
k=0

akt
k (Aq)k

n∑
j=0

bjs
j (Bp)j +

n∑
k=0

akt
k (Ap)k

n∑
j=0

bjs
j (Bq)j (2.21)

for any n ∈ N.
Since all the series whose partial sums are involved in the inequality (2.21)

are convergent, then by taking n→∞ in (2.21) we deduce the desired result
(2.20). �

Remark 5. We observe that the inequality (2.20) is an extension of the
power inequality (2.6).

For some similar results, see the recent paper [6].

Example 1. 1. If A and B are commuting positive operators with A,B <
1H , then we have the inequality

ln (1− s)−1 (1H − tAp+q)−1
+ (1− t)−1 ln

(
1H − sBp+q

)−1

≥ (1H − tAq)−1 ln (1H − sBp) + (1H − tAp)−1 ln (1H − sBq)−1 (2.22)

for any s, t ∈ (0, 1) .
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2. If A and B are commuting positive operators, then we have the in-
equality

sinh (s) cosh
(
tAp+q

)
+ cosh (t) sinh

(
sBp+q

)
≥ cosh (tAq) sinh (sBp) + cosh (tAp) sinh (sBq) (2.23)

for any s, t ∈ R.

We can consider the following functional

C(f,g) (A,B) := f (A) g (A) + f (B) g (B)− g (A) f (B)− f (A) g (B) (2.24)

defined for the pair of continuous functions (f, g) and the pair of commuting
selfadjoint operators (A,B) with Sp (A) , Sp (B) ⊆ J, a given interval of R.

Now, we can prove the following vector inequality:

Theorem 4. Let (f, g) be continuous and synchronous functions on the
interval J. Then for any pair of commuting selfadjoint operators (A,B) with
Sp (A) , Sp (B) ⊆ J and for any x ∈ H with ‖x‖ = 1, we have the inequality〈

C(f,g) (A,B)x, x
〉
≥ max {K1,K2,K3} ≥ 0 (2.25)

where

K1 :=
∣∣〈C(|f |,g) (A,B)x, x

〉∣∣ ,K2 :=
∣∣〈C(f,|g|) (A,B)x, x

〉∣∣
and

K3 :=
∣∣〈C(|f |,|g|) (A,B)x, x

〉∣∣ .
Proof. Let x ∈ H with ‖x‖ = 1. Utilising the identity (2.4) we have∫ 1

0−

∫ 1

0−
(f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ))) d 〈Eλx, x〉 d 〈Eµx, x〉

= 〈(f (A)− f (B)) (g (A)− g (B))x, x〉 , (2.26)

where the function h (λ) := 〈Eλx, x〉 and m (µ) := 〈Eµx, x〉 are right con-
tinuous and monotonic nondecreasing on [0, 1] and the integral is taken in
the Riemann-Stieltjes sense.

Since the functions (f, g) are synchronous on J then

(f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ)))

= |(f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ)))|
= |f (ϕ (λ))− f (ψ (µ))| |g (ϕ (λ))− g (ψ (µ))|
≥ ||f (ϕ (λ))| − |f (ψ (µ))|| |g (ϕ (λ))− g (ψ (µ))|
= |(|f (ϕ (λ))| − |f (ψ (µ))|) (g (ϕ (λ))− g (ψ (µ)))|

for any λ, µ ∈ [0, 1] .
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Integrating this inequality over the monotonic integrators h (λ) and m (µ)
we get∫ 1

0−

∫ 1

0−
(f (ϕ (λ))− f (ψ (µ))) (g (ϕ (λ))− g (ψ (µ))) d 〈Eλx, x〉 d 〈Eµx, x〉

≥
∫ 1

0−

∫ 1

0−
|(|f (ϕ (λ))| − |f (ψ (µ))|) (g (ϕ (λ))

−g (ψ (µ)))| d 〈Eλx, x〉 d 〈Eµx, x〉

≥
∣∣∣∣∫ 1

0−

∫ 1

0−
(|f (ϕ (λ))| − |f (ψ (µ))|) (g (ϕ (λ))

−g (ψ (µ))) d 〈Eλx, x〉 d 〈Eµx, x〉
∣∣∣∣

= |〈(|f (A)| − |f (B)|) (g (A)− g (B))x, x〉|
for any x ∈ H with ‖x‖ = 1.

The last equality above followed by the identity (2.26) applied for the
functions |f | and g that are continuous on J.

This proves the inequality for K1.
Similar inequalities can be obtained for K2 and K3. The details are how-

ever left to the reader. �

Remark 6. If we apply the above result for the synchronous functions
f (t) = tp with p > 0 and g (t) = ln t, then we get for any commuting
positive definite operators A and B the inequality

〈(Ap lnA+Bp lnB −Bp lnA−Ap lnB)x, x〉
≥ |〈(Ap |lnA|+Bp |lnB| −Bp |lnA| −Ap |lnB|)x, x〉| (2.27)

for any x ∈ H with ‖x‖ = 1.
If we take the synchronous functions f (t) = t2k+1, g (t) = t2m+1 with

k,m natural umbers, then we have for any commuting selfadjoint operators
A and B the inequality〈(

A2k+2m+2 +B2k+2m+2 −A2k+1B2m+1 −A2m+1B2k+1
)
x, x

〉
≥
∣∣∣〈(|A|2k+2m+2+|B|2k+2m+2−|A|2k+1|B|2m+1−|A|2m+1 |B|2k+1

)
x, x

〉∣∣∣
(2.28)

for any x ∈ H with ‖x‖ = 1.

The following integral inequality also holds:

Theorem 5. Let (f, g) be continuous and synchronous functions on the
interval [m,M ] and two integrable weights w, v : [0, 1] → [0,∞). Then for



230 S. S. DRAGOMIR

any pair of commuting selfadjoint operators (A,B) with Sp (A) , Sp (B) ⊆
[m,M ] we have∫ 1

0
v (t) dt

∫ 1

0
w (t) f (tA+ (1− t)B) g (tA+ (1− t)B) dt

+

∫ 1

0
w (t) dt

∫ 1

0
v (t) f (tA+ (1− t)B) g (tA+ (1− t)B) dt

≥
∫ 1

0
v (t) f (tA+ (1− t)B) dt

∫ 1

0
w (t) g (tA+ (1− t)B) dt

+

∫ 1

0
w (t) f (tA+ (1− t)B) dt

∫ 1

0
v (t) g (tA+ (1− t)B) dt (2.29)

and, in particular,∫ 1

0
w (t) dt

∫ 1

0
w (t) f (tA+ (1− t)B) g (tA+ (1− t)B) dt

≥
∫ 1

0
w (t) f (tA+ (1− t)B) dt

∫ 1

0
w (t) g (tA+ (1− t)B) dt. (2.30)

Proof. Since A and B are commuting selfadjoint operators, then for any
t, s ∈ [0, 1] , tA + (1− t)B and sA + (1− s)B are commuting selfadjoint
operators.

Since (f, g) are continuous and synchronous functions on the interval
[m,M ] , then

f (tA+ (1− t)B) g (tA+ (1− t)B)

+ f (sA+ (1− s)B) g (sA+ (1− s)B)

≥ f (sA+ (1− s)B) g (tA+ (1− t)B)

+ f (tA+ (1− t)B) g (sA+ (1− s)B) (2.31)

for any t, s ∈ [0, 1] .
Now, if we multiply (2.31) with the nonnegative quantities w (t) v (s) and

integrate over t and s on [0, 1] , we deduce the desired result (2.30). �

Corollary 4. With the assumptions from Theorem 5 for (f, g) and (A,B)
we have the inequality∫ 1

0
f (tA+ (1− t)B) g (tA+ (1− t)B) dt

≥
∫ 1

0
f (tA+ (1− t)B) dt

∫ 1

0
g (tA+ (1− t)B) dt. (2.32)
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Remark 7. Assume that A and B are two commuting positive operators
and such that A−B is invertible. Then for p > 0, by utilizing the represen-
tation (2.1) and Fubini’s theorem, we have∫ 1

0
((1− λ)A+ λB)p dλ =

∫ 1

0

(∫ 1

0−
[(1− λ)ϕ (t) + λψ (t)]p dEt

)
dλ

=

∫ 1

0−

(∫ 1

0
[(1− λ)ϕ (t) + λψ (t)]p dλ

)
dEt

=
1

p+ 1

∫ 1

0−

ϕp+1 (t)− ψp+1 (t)

ϕ (t)− ψ (t)
dEt

=
1

p+ 1
(A−B)−1 (Ap+1 −Bp+1

)
.

Similarly, if A and B are two commuting positive definite operators and
such that A−B is invertible, then for p ∈ (−∞, 0) \ {−1} we also have∫ 1

0
((1− λ)A+ λB)p dλ =

1

p+ 1
(A−B)−1 (Ap+1 −Bp+1

)
.

Also, if A and B are two commuting positive definite operators and such
that A−B is invertible, then∫ 1

0
((1− λ)A+ λB)−1 dλ = (A−B)−1 (lnA− lnB) .

On applying the inequality (2.32) for the synchronous functions f (t) =
tp, g (t) = tq with p, q > 0, we get the inequality

1

p+ q + 1
(A−B)−1 (Ap+q+1 −Bp+q+1

)
≥ 1

p+ 1
(A−B)−1 (Ap+1 −Bp+1

)
· 1

q + 1
(A−B)−1 (Aq+1 −Bq+1

)
,

(2.33)

where A and B are commuting positive selfadjoint operators and A − B is
invertible.

Remark 8. In the case of real Hilbert spaces the concept of operator syn-
chronous functions is equivalent with

f (A) g (A) + f (B) g (B) ≥ f (B) g (A) + f (A) g (B)

where A and B can be noncommutative.
In that situation, we can get the inequality:
If (A1, . . . , An) and (B1, . . . , Bn) are two n-tuples of selfadjoint operators

with the spectra in J then for any nonnegative n-tuples of real numbers
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(p1, . . . , pn) and (q1, . . . , qn) and two continuous functions f, g : J → R that
are operator synchronous (asynchronous) on J we have

Qn

n∑
k=1

pkf (Ak) g (Ak) + Pn

n∑
j=1

qjf (Bj) g (Bj)

≥ (≤)
n∑
j=1

qjf (Bj)
n∑
k=1

pkg (Ak) +
n∑
k=1

pkf (Ak)
n∑
j=1

qjg (Bj) (2.34)

where Pn, Qn > 0.
In particular, we have

Pn

n∑
k=1

pkf (Ak) g (Ak) ≥ (≤)
n∑
k=1

pkf (Ak)
n∑
k=1

pkg (Ak) (2.35)

with no commutativity condition between the terms of (A1, . . . , An) .
Other similar results may be stated in the real case, however the details

are left to the interested reader.

3. Other Čebyšev type inequalities

Let (H, 〈., .〉) be a complex Hilbert space.

Definition 2. We say that two commuting selfadjoint operators A and B
are power-synchronous if(

Ak −Aj
)(

Bk −Bj
)
≥ 0 (3.1)

for any k, j ∈ N.

Theorem 6. Let A and B be two commuting selfadjoint operators. If either
0 ≤ A ≤ 1H and 0 ≤ B ≤ 1H or A ≥ 1H and B ≥ 1H then A and B are
power-synchronous.

Proof. Utilising the representation (2.1) and (2.2), we have for any k natural
number

Ak =

∫ 1

0−
ϕk (λ) dEλ and Bk =

∫ 1

0−
ψk (µ) dEµ.

If 0 ≤ A ≤ 1H and 0 ≤ B ≤ 1H then the representing functions ϕ and ψ
take the values in [0, 1] almost everywhere.
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We have for k > j(
Ak −Aj

)(
Bk −Bj

)
=

∫ 1

0−

(
ϕk (λ)− ϕj (λ)

)
dEλ

∫ 1

0−

(
ψk (µ)− ψj (µ)

)
dEµ

=

∫ 1

0−

∫ 1

0−

(
ϕk (λ)− ϕj (λ)

)(
ψk (µ)− ψj (µ)

)
dEλdEµ

=

∫ 1

0−

∫ 1

0−
ϕj (λ)ψj (µ)

(
ϕk−j (λ)− 1

)(
ψk−j (µ)− 1

)
dEλdEµ ≥ 0.

The same inequality holds if k < j. Therefore for any k, j ∈ N we have (3.1).
If A ≥ 1H and B ≥ 1H the proof goes likewise and the details are omitted.

�

Utilizing this concept we can state the following Čebyšev type inequality.

Theorem 7. Let f (z) =
∑∞

n=0 anz
n and be g (z) =

∑∞
n=0 bnz

n be two func-
tions defined by power series with nonnegative coefficients and convergent on
the open disk D (0, R) ⊂ C, R > 0. If A and B are power-synchronous, p, q
two real numbers with 0 ≤ p, q < R and such that

a ‖AB‖ , q ‖AB‖ , p ‖A‖ , q ‖B‖ , q ‖A‖ , p ‖B‖ < R (3.2)

then we have the inequality

g (q) f (pAB) + f (p) g (qAB) ≥ f (pA) g (qB) + g (qA) f (pB) . (3.3)

Proof. Since A and B are power-synchronous, then we have

AkBk +AjBj ≥ AkBj +AjBk

for any k, j ∈ N.

Since A and B are commuting operators we have AkBk = (AB)k and

AjBj = (AB)j for any k, j ∈ N, then

(AB)k + (AB)j ≥ AkBj +AjBk (3.4)

for any k, j ∈ N.
Now, if we multiply the inequality (3.4) by akp

kbjq
j ≥ 0 and sum over k

and j from 0 to m we get

m∑
j=0

bjq
j
m∑
k=0

akp
k (AB)k +

m∑
k=0

akp
k

m∑
j=0

bjq
j (AB)j

≥
m∑
k=0

akp
kAk

m∑
j=0

bjq
jBj +

m∑
j=0

bjq
jAj

m∑
k=0

akp
kBk. (3.5)
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We observe that the series whose partial sums are involved in the inequality
(3.5) are convergent, then by letting m→∞ in (3.5) we deduce the desired
result (3.3). �

A particular case of interest is when g = f.

Corollary 5. Let f (z) =
∑∞

n=0 anz
n be a function defined by power series

with nonnegative coefficients and convergent on the open disk D (0, R) ⊂ C,
R > 0. If A and B are power-synchronous, p a real number with 0 ≤ p < R
and such that

p ‖AB‖ , p ‖A‖ , p ‖B‖ < R (3.6)

then we have the inequality

f (p) f (pAB) ≥ f (pA) f (pB) . (3.7)

Example 2. 1. For the commuting operators A and B, assume that 0 ≤
A < 1H and 0 ≤ B < 1H and p is a real number with 0 ≤ p < 1. Then we
have the inequalities

(1H − pAB)−1 ≥ (1− p) (1H − pA)−1 (1H − pB)−1

and

ln (1− p)−1 ln (1H − pAB)−1 ≥ ln (1H − pA)−1 ln (1H − pB)−1 .

2. For the commuting operators A and B, assume that either 0 ≤ A ≤ 1H
and 0 ≤ B ≤ 1H or A ≥ 1H and B ≥ 1H and p ≥ 0, then we have the
inequalities

sinh (p) sinh (pAB) ≥ sinh (pA) sinh (pB) ,

cosh (p) cosh (pAB) ≥ cosh (pA) cosh (pB) ,

and

exp (p) exp (pAB) ≥ exp (pA) exp (pB) .
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Universitete, No. 2, (1882), 93–98; Polnoe sobranie sočinenĭı P. L. Čebyševa. Moskva–
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(90k:46048).
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