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ON I AND IK-CAUCHY NETS AND COMPLETENESS

SUDIP KUMAR PAL

Abstract. In this paper we study the concept of IK-Cauchy nets which
is more general form of I∗-Cauchy nets ([4,5]). We also investigate its
relation with the concept of I-Cauchy nets and study the completeness
of a uniform space in terms of IK-Cauchy nets. Subsequently our results
extend similar results of Das and Ghosal [4,5].

1. Introduction

The idea of convergence of a real sequence had been extended to statisti-
cal convergence by Fast [9] (see also Schoenberg [21]). A lot of investigations
have been done on this type of convergence and its topological consequences
after the initial works of Fridy [10] and Šalát [11]. Fridy in [10] also de-
fined statistical Cauchy condition. In particular, very recently Di Maio and
Kočinac [17] introduced the concept of statistical convergence as also a re-
lated notion of s∗-convergence in topological spaces and statistical Cauchy
condition in uniform spaces and established the topological nature of this
convergence and also offered some applications to selection principle theory,
function spaces and hyperspaces. More recent applications of ideal conver-
gence extending these results can be seen in [7].

However if one considers the concept of nets instead of sequences (which
undoubtedly play a more important and natural role in topological and
uniform spaces [13]) the above approach does not seem to be appropriate
because of the absence of any idea of density in arbitrary directed sets.
Instead it seems more appropriate to follow the more general approach found
in [17]. Namely it is easy to check that the family Id = {A ⊂ N : d(A) = 0}
forms a non-trivial admissible ideal of N. One may consider an arbitrary
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ideal I of N and define I-convergence and I∗-convergence of sequences as
follows:

A sequence {xn}n∈N of points in a metric space (X, ρ) is said to be I-
convergent to l if for arbitrary ε > 0, the set K(ε) = {k ∈ N : ρ(xk, l) ≥
ε} ∈ I. A sequence {xn}n∈N of points in X is said to be I∗-convergent to l
if there is M = {m1 < m2 < · · · < mk < . . . } ∈ F(I)(the filter associated
with the ideal I) such that limk→∞xmk

= l [11]. The notions of I and I∗-
convergences of sequences coincide with the usual convergence if I = Ifin,
the ideal consisting of finite sets only.

The idea of I∗-convergence has been very recently further extended as
follows: Let K be an ideal of N. A sequence {xn}n∈N of points in X is said
to be IK-convergent [16] to x if there is M ∈ F(I) such that the sequence
{yn}n∈N defined by yn = xn, if n ∈ M, yn = x, if n /∈ M is K-convergent
to x. This Definition is only a special case of the Definition in [16] where
the IK-convergence of a function from an arbitrary set was defined and
investigated. IK-convergence of sequences coincide with I∗-convergence if
K = Ifin.

In [17] Di Maio and Kocinac asked when a statistically Cauchy sequence
in a uniform space is statistically convergent. In terms of nets the problem
is when I-Cauchy nets in uniform spaces are I-convergent. In [4] Das and
Ghosal proved that if a uniform space with a countable base is complete,
then maximal I-Cauchy nets are I-convergent. Subsequently in [5] using the
concepts of I∗-Cauchy nets they presented another solution of the problem.

In this paper we introduce the idea of IK-Cauchy nets, a more general
form of I∗-Cauchy nets and consider similar problems. Also following the
line of investigation in [5], the relation between I and IK-Cauchy conditions
is thoroughly investigated.

The following definitions and notations will be needed.
Throughout the paper the pair (X,Γ) will stand for a uniform space which

will be written sometimes simply as X. It can be recalled that in a uniform
space (X,Γ), for any point x ∈ X the collection {U(x) : U ∈ Γ} (Where
U(x) = {y ∈ X : (x, y) ∈ U}) forms a local neighborhood basis at x. The
corresponding topology is called the uniform topology on X. By an open set
in X we shall always mean an open set in the uniform topology in X.

Throughout (D,≥) will stand for a directed set and I,K be two non-
trivial ideals of D. Also the symbol N is reserved for the set of all natural
numbers. A net in X will be denoted by {sα : α ∈ D} or simply by {sα},
when there is no confusion about D. Let for α ∈ D, Dα = {β ∈ D;β ≥ α}.
Then the collection F0 = {A ⊂ D : A ⊃ Dα, for some α ∈ D} forms a
filter in D. Let I0 = {A ⊂ D : D r A ∈ F0}. Then I0 is a non-trivial ideal
of D.
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Definition 1.1. ([4], cf. [15]) A non-trivial ideal I of D will be called
D-admissible if Dα ∈ F(I) for all α ∈ D.

Definition 1.2. ([4], cf. [15]) A net {sα : α ∈ D} in a uniform space (X,Γ)
is said to be I-convergent to x0 ∈ X if for any open set U containing x0,
{α ∈ D : sα /∈ U} ∈ I.

Definition 1.3. ([5], cf.[15]) y ∈ X is called an I-cluster point of a net
{sα : α ∈ D} if for any open set U containing y, {α ∈ D : sα ∈ U} /∈ I.

Definition 1.4. ([15]) A net {sα : α ∈ D} in a uniform space (X,Γ) is said
to be I∗-convergent to x0 ∈ X if there exists an M ∈ F(I) such that M
itself is a directed set and the net {sα : α ∈M} is convergent to x0.

Definition 1.5. ([4]) {sα : α ∈ D} is said to be I-Cauchy if for any U ∈ Γ
there exists a β ∈ D such that {α ∈ D : (sα, sβ) /∈ U} ∈ I.

Definition 1.6. ([5]) {sα : α ∈ D} is said to be I∗-Cauchy if there exists a
M ∈ F(I) such that M itself is a directed set and the net {sα : α ∈ M} is
Cauchy.

Definition 1.7. ([20]) An admissible ideal I of subsets from N is said to
satisfy the condition (AP ) if for every countable family of mutually dis-
joint sets {A1, A2, A3, . . . } belonging to I there exists a countable family
of subsets {B1, B2, B3, . . . } of N such that for each j, Aj∆Bj is finite and
B =

⋃
jBj ∈ I.

Definition 1.8. ([16]) Let I, K be two admissible ideals of an arbitrary
non-empty set S. Then we say that I satisfies the condition AP (I,K) if for
every countable family of mutually disjoint sets {A1, A2, A3, . . . } belonging
to I there exists a countable family of sets {B1, B2, B3, . . . } from I such
that for each j, Aj∆Bj ∈ K and B =

⋃
jBj ∈ I.

It is known ([11], see also [3]) that the notions of I and I∗-convergence
(Cauchy condition) of sequences are equivalent if and only if the ideal I
satisfies the condition (AP ). Further in [16] it was established that the
notions of I and IK-convergence of sequences are equivalent if and only if
I and K are two admissible ideals and I satisfies AP (I,K) condition.

Definition 1.9. ([15]) A D-admissible ideal I is said to satisfy the condition
(DP ) if for every countable family of mutually disjoint sets {A1, A2, A3, . . . }
belonging to I there exists a countable family of subsets {B1, B2, B3, . . . }
of D such that for each j, Aj∆Bj ⊂ D r Dαj for some αj ∈ D and B =⋃
jBj ∈ I.

The condition (DP ) is a special case of condition AP (I,K).
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2. Main results

We first introduce our main idea of IK-Cauchy condition and then we will
investigate some basic results.

Let M ⊂ D and K be an ideal of D. Let us put K pM= {A∩M : A ∈ K}.
Clearly K pM is a sub-ideal of K i.e. K pM is an ideal of M (and so of D) and
K pM⊂ K. If K is D-admissible then K pM is M -admissible when M itself is
also a directed set. Also if M ∈ F(I), when I is D-admissible then M is
directed set because F(Ifin) ⊂ F(I) then M ∩A 6= ∅ for every A ∈ F(Ifin).
This means that M is cofinal in (D,≥) and consequently it is a directed set.
In [16] IK-convergence of a function from an arbitrary set was defined and
investigated. In the following definition we consider a special case of that
definition.

Definition 2.1. Let K be a non-trivial admissible ideal of D. A net {sα :
α ∈ D} in a uniform space (X,Γ) is said to be IK-convergent to x0 ∈ X if
there exists a M ∈ F(I) and the net {tα : α ∈ D} defined by tα = sα if α ∈
M and tα = x0 if α ∈ D \M is K-convergent to x0.

Definition 2.2. A net {sα : α ∈ D} in a uniform space (X,Γ) is said to
be IK-Cauchy if there exists a M ∈ F(I) and the net {sα : α ∈ M} is
K pM -Cauchy.

If one takes I = Id and K = Ifin then IK-convergence becomes s∗-

convergence and IK-Cauchy condition becomes s∗-Cauchy condition.

Theorem 2.1. In a uniform space (X,Γ) every IK-convergent net satisfies
IK-Cauchy condition.

Proof. Let {sα : α ∈ D} be IK-convergent to x0. Then there exists a M ∈
F(I) and the net {tα : α ∈ D} defined by tα = sα if α ∈ M and tα =
x0 if α ∈ D \M is K-convergent to x0. i.e. the net {sα : α ∈ M} is K pM
-convergent to x0. Hence {sα : α ∈ M} is K pM -Cauchy (by Theorem 2 of
[4]). i.e. {sα : α ∈ D} is IK-Cauchy. �

Theorem 2.2. Let I, K be two D-admissible ideals with K ⊂ I. Then an
IK-Cauchy net in X is also I-Cauchy.

Proof. Let U ∈ Γ and {sα : α ∈ D} be IK-Cauchy. Then there exists a
M ∈ F(I) and the net {sα : α ∈ M} is K pM -Cauchy. Therefore there
exists a A ∈ K pM such that α, β /∈ A (α, β ∈ M) implies (sβ, sα) ∈ U
(by Theorem 1 of [4]). Choose B = D r (M ∩ (D r A)). Then B ∈ I
(as D r A ∈ F(K) and F(K) ⊂ F(I) and M ∈ F(I) ). Now γ, δ /∈ B
implies γ, δ ∈M ∩ (D rA) i.e. γ, δ ∈M and γ, δ /∈ A which implies that
(sγ , sδ) ∈ U. Hence {sα : α ∈ D} is I-Cauchy (by Theorem 1 of [4]). �
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The following example shows that in general, the above result is not true
if K * I.
Example 2.1. Let I = Ifin = {A ⊂ N : A is finite} and K = Id = {A ⊂
N : d(A) = 0}. Then clearly F(K) * F(I). Consider the sequence {xn}n∈N
defined as xn = k if n = k2 and xn = 1

n if n 6= k2. Then {xn}n∈N is not
I-convergent and also not I-Cauchy (since I-convergence and I-Cauchy
condition coincides for complete metric spaces [8]). Put M = N. Then
M ∈ F(I). Define yn = xn if n 6= 1 and xn = 0 if n = 1. Then {xn}n∈M
is K pM -convergent to 0 i.e. {xn}n∈N is IK-convergent to 0 and so is IK-
Cauchy.

Theorem 2.3. If (X,Γ) is a uniform space with ∆ ∈ Γ then I-Cauchy
condition implies IK-Cauchy condition for D-admissible ideals I and K.
Proof. Let {sα : α ∈ D} be I-Cauchy. We have to show that {sα : α ∈ D}
is also IK-Cauchy. Since ∆ ∈ Γ, there is a A ∈ I such that γ, δ /∈ A implies
(sγ , sδ) ∈ ∆. Put M = D r A. Then M ∈ F(I) and we can show that M
is directed with respect to the binary relation induced from (D,≥). Take
β ∈ M (as M 6= ∅). Let sβ = x0. Now for all α ∈ M, sα = sβ = x0.
Thus {sα : α ∈ M} is a constant net and so is Cauchy i.e. {sα : α ∈ D} is
IK-Cauchy. �

The following example shows that in general I-Cauchy condition does
not imply IK-Cauchy condition even if I and K are D-admissible ideals
such that F(K) ⊂ F(I). However, the following example is modeled after a
similar example from [5].

Example 2.2. If a uniform space (X,Γ) with the property that
⋂
U∈ΓU =

∆ has a Cauchy sequence {xn}n∈N of distinct points then there exists an
admissible non-trivial ideal I of N and a sequence {yn}n∈N in X such that
{yn}n∈N is I-Cauchy but not IK-Cauchy where K is an admissible ideal of
N with condition (AP ) and K ⊂ I.
Proof. Let N =

⋃∞
j=1Aj be a decomposition of N such that each Aj is infinite

and Ai∩Aj = ∅ for i 6= j. Let I denote the class of all A ⊂ N which intersects
at most a finite number of Aj ’s. Then I is a non-trivial admissible ideal.
Note that any Aj is a member of I.

Let {yn}n∈N be a sequence defined by yn = xj if n ∈ Aj . Let U ∈ Γ.
Since {xn}n∈N is Cauchy, there exists a m0 ∈ N such that (xm, xn) ∈ U for
all m,n ∈ N with m,n ≥ m0. Clearly A1 ∪ A2 ∪ · · · ∪ Am0 = C ∈ I and
m,n /∈ C implies (ym, yn) = (xp, xq) for some p, q ≥ m0, and so belongs to
U. Hence {yn}n∈N is I-Cauchy.

Now if possible suppose that {yn}n∈N is IK-Cauchy. Then there exists
a H ∈ I such that {yn}n∈M , where M = N r H, is K pM -Cauchy. From
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the construction of I it follows that there exists a l ∈ N such that H ⊂
A1 ∪A2 ∪ · · · ∪Al and then Ai ⊂M = NrH for i ≥ l+ 1. We first observe
that K pM also satisfies the condition (AP ). For this let {A1, A2, . . . } be
a countable family of mutually disjoint sets from K pM . As K pM is a
sub-ideal of K and K satisfies the condition (AP), there exists a countable
family of subsets {B1, B2, . . . } of N such that for each j, Aj∆Bj is finite
and B =

⋃
jBj ∈ K. Put Cj = Bj ∩M. Then for each j, Aj∆Cj is finite

and C =
⋃
jCj ∈ K pM . Now {yn}n∈M is K pM ∗-Cauchy (see [3, 17]).

Hence there exists a set M ′ ∈ F(K pM) such that {yn}n∈M∩M ′ is Cauchy.
Observe that M rM ′ ∈ K pM i.e. M rM ′ = A ∩M where A ∈ K. Hence
M ′ = (Dr (A∩M))∪ (DrM). Since Dr (A∩M) ∈ F(K), so M ′ ∈ F(K).
Again since F(K) ⊂ F(I), so M ′ ∈ F(I). Hence from the construction of
I, there exists a l1 ∈ N such that Ai ⊂M ′ for i ≥ l+ 1. Thus Ai ⊂M ∩M ′
for i ≥ l0 + 1 where l0 = max{l, l1}. Choose i, j ∈ N with i, j ≥ l0 + 1
so that Ai, Aj ⊂ M ∩M ′. So {yn}n∈M∩M ′ contains an infinite number of
terms which are equal to xi and xj respectively. Now by our assumption⋂
U∈ΓU = ∆. Since xi 6= xj , there is a V ∈ Γ such that (xi, xj) /∈ V. Then

there does not exist any m0 ∈ M ∩M ′ with the property that m,n ≥ m0

implies (ym, yn) ∈ V , which contradicts the fact that {yn}n∈M∩M ′ is Cauchy.
Therefore {yn}n∈N is not IK-Cauchy. �

We shall now study the equivalence of I and IK-Cauchy conditions under
certain assumptions (namely conditions AP (I,K)) which becomes necessary
as well as sufficient on certain restrictions on the space.

Theorem 2.4. Let I,K be two D-admissible ideals of a directed set (D,≥
) and I satisfies the condition AP (I,K). Let (X,Γ) be a uniform space
having a countable base R. Then for any net {sα : α ∈ D} in X, I-Cauchy
condition implies IK-Cauchy condition.

Proof. LetR = {Ui : i = 1, 2, 3, . . . } be a countable base of (X,Γ) . Without
any loss of generality we can assume {Ui : i = 1, 2, 3, . . . } to be monoton-
ically decreasing. Since {sα : α ∈ D} is I-Cauchy, for each Ui ∈ R there
exists a Ki ∈ I such that β, α /∈ Ki implies (sα, sβ) ∈ Ui.

Let A1 = K1, A2 = K2 r K1, A3 = K3 r (K1 ∪ K2), . . . . Then {Ai :
i = 1, 2, 3, . . . } is a countable family of mutually disjoint sets in I. By
the condition AP (I,K) there exists a countable family of sets {Bi : i =
1, 2, 3, . . . } in I such that Aj∆Bj ⊂ D r Cj for some Cj ∈ F(K) and
B = ∪Bj ∈ I. Let M = D r B. Then M ∈ F(I). Let U ∈ Γ. Since
R is a basis of Γ, there exists l ∈ N such that Ul ⊂ U. Now Kl r B ⊂⋃l
i=1(Ai \Bi) ⊂

⋃l
i=1(D r Ci) (by condition AP (I,K), where Ci ∈ F(K)).

Put C = C1 ∩ C2 ∩ · · · ∩ Cl. Then Kl
c ∩ M ⊃ M ∩ C (for otherwise

there is a γ ∈ M ∩ C but γ /∈ Kl
c and so γ ∈ Kl ∩M ⊂ D \ C which is
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a contradiction). This shows that α, β ∈ C ∩M implies α, β ∈ Kl
c which

consequently implies that (sα, sβ) ∈ Ul ⊂ U. Thus {sα : α ∈ M} is K pM -

Cauchy and so {sα : α ∈ D} is IK-Cauchy. �

Theorem 2.5. Let (X,Γ) be a uniform space having a countable basis R
with the property that

⋂
U∈ΓU = ∆ and let X has at least one limit point.

If for every net {sα : α ∈ D} I-Cauchy condition implies IK-Cauchy con-
dition. Then the condition AP (I,K) holds.

Proof. Without any loss of generality we can assume that R = {Ui : i =
1, 2, 3, . . . } be a countable basis of Γ satisfying the condition that each Ui
is symmetric and Ui+1 ◦ Ui+1 ⊂ Ui for all i = 1, 2, 3, . . . . Let x0 be a limit
point of X. Then {Ui(x0) : i = 1, 2, 3, . . . } is a monotonically decreasing
open base at x0. Since

⋂
U∈ΓU = ∆, it follows that the uniform topology

corresponding to the family Γ is also T1. We can find a sequence {xi}i∈N of
distinct elements in X such that xi ∈ Ui (x0) r Ui+1 (x0) , xi 6= x0 for all i
and xi → x0.

Let {Ai : i = 1, 2, 3, . . . } be a mutually disjoint countable family of non-
empty sets from I. Define a net {sα : α ∈ D} by sα = xj if α ∈ Aj
and sα = x0 if α /∈ Aj for any j ∈ N. As in Theorem 6 [5] we can show
that {sα : α ∈ D} is I-Cauchy. By our assumption {sα : α ∈ D} is IK-
Cauchy. Hence there exists a set H ∈ I such that M = D rH ∈ F(I) and
{sα : α ∈ M} is K pM -Cauchy. Now let Bj = Aj ∩ H for all j ∈ N. We
consider following cases.

If for each j there exists Cj ∈ F(K) such that Aj is disjoint from M ∩Cj
then clearly we have Aj ⊂ Bj ∪ (M r Cj) and so Aj∆Bj = Aj r Bj ⊂
M r Cj ⊂ D r Cj . Also since Bj ∈ I for all j ∈ N and B = ∪Bj ⊂ H ∈ I
so the condition AP (I,K) holds.

Next suppose that the condition of the previous case does not hold. First
suppose that there is only one j ∈ N for which the condition specified in
the above case does not hold good. Then re-defining Bi = Ai ∩H for i 6= j
and Bj = Aj we can see that the sequence of sets {Bi : i = 1, 2, 3, . . . }
has the property that Bi ∈ I for all i and ∪Bi ⊂ Aj ∪ H ∈ I. Clearly
Ai∆Bi ⊂ D r Ci for all i 6= j for some Ci ∈ F(K) and Ai∆Bi = ∅. Hence
the condition AP (I,K) holds.

Finally suppose that there are more than one j ∈ N for which the con-
dition specified above does not hold. Take any two of these members of N
say i and j (i 6= j) . We have C1 = Ai ∩M /∈ K and C2 = Aj ∩M /∈ K.
Now any E ∈ F(K pM ) is of the form E = C ∩M where C ∈ F(K). Again
C ∩C1 6= ∅ for otherwise we will have C1 ⊂ D \C ∈ K which is not the case.
By similar reasoning C∩C2 6= ∅. This implies that there exists a γ ∈ Ai and
a δ ∈ Aj . Clearly sγ = xi and sδ = xj . Since xi 6= xj and by our assumption⋂
U∈ΓU = ∆, so there exists a U ∈ R such that (xi, xj) 6∈ U. Since any
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E ∈ F(K pM ) is of the form C ∩M where C ∈ F(K) so we get that for
any E ∈ F(K pM ) there are γ, δ ∈ E such that (sγ , sδ) = (xi, xj) /∈ U. This
contradicts the fact that {sα : α ∈M} is K pM -Cauchy. Hence there cannot
be more than one j ∈ N for which the above condition does not hold. This
completes the proof of the theorem. �

In the rest of the paper we primarily investigate when IK-Cauchy nets
are IK-convergent and its relation with completeness.

Theorem 2.6. Let (X,Γ) be a uniform space. If for every directed set D
there exists two arbitrary D-admissible ideals I and K such that every IK-
Cauchy net {sα : α ∈ D} in X is IK-convergent in X, then X is complete.

Proof. Let {sα : α ∈ D} be a Cauchy net in X and I,K be two D-admissible
ideals. Now D ∈ F(I), {sα : α ∈ D} is I0 pD-Cauchy and so is K pD-Cauchy
as K is D-admissible. Thus {sα : α ∈ D} is IK-Cauchy and so by our
assumption {sα : α ∈ D} is also IK-convergent. Let {sα : α ∈ D} be IK-
convergent to x0 ∈ X. Then there exists M ∈ F(I) and the net {sα : α ∈M}
is K pM convergent to x0.

Let E = {(U(x0), β) : U ∈ Γ, β ∈ M}. For (U(x0), β) and (V (x0), α)
define (U(x0), β) ≥ (V (x0), α) if and only if U(x0) ⊂ V (x0) and β ≥ α.
Then (E,≥) is a directed set.

Let (U(x0), β) ∈ E. Now for each U ∈ Γ, {α ∈ M : sα /∈ U(x0)} ∈ K pM .
Then {α ∈ M : sα ∈ U(x0)} ∈ F(K pM) and so belongs to F(K) as was
shown earlier. Therefore M ′ = {α ∈ M : sα ∈ U(x0)} ∩ {α ∈ M : α ≥
β} ∈ F(K). Choose γ ∈M ′. Now define i : E →M by i(U(x0), β) = γ and
t : E → X by t(U(x0), β) = sγ . Then it is easy to check that {tδ : δ ∈ E} is
a subnet of {sα : α ∈M} and hence of {sα : α ∈ D} which converges to x0.
This shows that (X,Γ) is complete. �

Theorem 2.7. In a complete uniform space (X,Γ) having a countable base
R, every IK-Cauchy net {sα : α ∈ D} has a subnet {tβ : β ∈ E} which is
convergent.

The proof is analogous to the proof of Theorem 6 [4] with minor modifi-
cations and so is omitted.

Theorem 2.8. In a complete uniform space (X,Γ) having a countable base
R, every maximal IK-Cauchy net is IK-convergent for every D−admissible
ideals I and K.

Proof. Follows from Theorem 2.7. �
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[12] P. Kostyrko, M. Mac̆aj and T. Šalát, Statistical convergence and I-convergence, Un-

published; http://thales.doa.fmph.uniba.sk/macaj/Icon.pdf.
[13] K. Kuratowski, Topology, I, PWN, Warszawa, 1961.
[14] B. K. Lahiri and Pratulananda Das, I and I∗-convergence in topological spaces, Math.

Bohemica, 130 (2005), 153–160.
[15] B. K. Lahiri and Pratulananda Das, I and I∗-convergence of nets, Real Anal. Ex-

change, 32 (2008), 431 - 442.
[16] M. Mac̆aj and M. Sleziak, IK-convergence, Real Anal. Exchange, 36 (1) (2010 - 11),

177–193.
[17] G. Di Maio and Lj. D. R. Koc̆inac, Statistical convergence in topology, Topology Appl.,

156 (2008), 28–45.
[18] A. Nabiev, S. Pehlivan and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math.,

11 (2007), 569 - 576.
[19] S. K. Pal, D. Chandra and S. Dutta, Rough Ideal Convergence, Hacett. J. Math. Stat.,

42 (6) (2013), 633-640.
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