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FIXED POINTS AND CYCLIC CONTRACTION

MAPPINGS UNDER IMPLICIT RELATIONS AND

APPLICATIONS TO INTEGRAL EQUATIONS

HEMANT KUMAR NASHINE

Abstract. Inspired by the fact that the discontinuous mappings can-
not be (Banach type) contractions and cyclic contractions need not be
continuous, and taking into account that there are applications to inte-
gral and differential equations based on cyclic contractions, a new type
of cyclic contraction mappings satisfying an implicit relation that in-
volves a control function for a map in a metric space is originated. As a
result, we derive existence and uniqueness results of fixed points for such
mappings. We furnish suitable examples to demonstrate the validity of
the hypotheses of our results. The results will be applied to the study of
the existence and uniqueness of solutions for a class of nonlinear integral
equations.

1. Introduction and preliminaries

The Banach Contraction Principle is a very popular tool which is used to
solve existence problems in many branches of Mathematical Analysis and its
applications. It is no surprise that there is a great number of generalizations
of this fundamental theorem. They go in several directions–modifying the
basic contractive condition or changing the ambiental space. This celebrated
theorem can be stated as follow.
Theorem 1.1. [1]. Let (X, d) be a complete metric space and T be a
mapping of X into itself satisfying:

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X, (1)

where k is a constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X.

Inequality (1) implies continuity of T. A natural question is whether we
can find contractive conditions which will imply existence of a fixed point
in a complete metric space but do not imply continuity.
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There is in the literature a great number of generalizations of the Banach
contraction principle (see [2] and references cited therein).

On the other hand, cyclic representations and cyclic contractions were
introduced by Kirk et al. [3]. A mapping T : A ∪ B → A ∪ B is called
cyclic if T (A) ⊆ B and T (B) ⊆ A, where A,B are nonempty subsets of a
metric space (X, d). Moreover, T is called a cyclic contraction if there exists
k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x ∈ A and y ∈ B. Notice
that although a contraction is continuous, cyclic contractions need not be.
This is one of the important gains of this theorem.

Definition 1.1 (See [3, 4]). Let (X, d) be a metric space. Let p be a
positive integer, A1, A2, . . . , Ap be nonempty subsets of X, Y = ∪pi=1Ai and
T : Y → Y . Then Y is said to be a cyclic representation of Y with respect
to T if

(i) Ai, i = 1, 2, . . . , p are nonempty closed sets, and
(ii) T (A1) ⊆ A2, . . . , T (Ap−1) ⊆ Ap, T (Ap) ⊆ A1.

Following in [3], a number of fixed point theorems on cyclic represen-
tations of Y with respect to a self-mapping T have appeared (see e.g.
[4, 5, 6, 7, 8, 9, 10, 11]).

In recent years, Popa [12] used implicit functions rather than contraction
conditions to prove fixed point theorems in metric spaces whose strength
lies in its unifying power as an implicit function can cover several contrac-
tion conditions at the same time which includes known as well as unknown
contraction conditions. This fact is evident from examples furnished in
Popa [12]. Implicit relations on metric spaces have been used in many arti-
cles (for detail see [13] - [20] and references cited therein).

In this paper, we introduce a new class of cyclic contraction mappings
satisfying an implicit relation that involves a control function for a map in
the setup of metric spaces, and then derive the existence and uniqueness of
fixed points for such mappings. Suitable examples are provided to demon-
strate the validity of our results. Our main result generalizes and improves
many existing theorems in the literature. We also give an application of the
presented theorems in the area of integral equations and prove an existence
theorem for solutions of a system of integral equations.

2. Main results

In this section, first we define a suitable implicit function (given in [19])
involving six real non-negative arguments to prove our results.

Definition 2.1. [19]. Let z be the family of all real continuous func-

tions T : R+6 → R, which are non-decreasing in the first variable and
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non-increasing in the third, fourth, fifth and sixth variables, satisfying the
following conditions:

(T1) There exists h ∈ [0, 1) such that for all u, v, w ≥ 0 with T (u, v, v, u,
w, 0) ≤ 0 or T (u, v, u, v, 0, w) ≤ 0, we have u ≤ hv;

(T2) T (u, u, 0, 0, u, u) > 0 for every u > 0.

It is easy to see that T : R+6 → R belongs to z in each of the following
cases:

Example 2.1. T (t1, . . . , t6) = t1 − ct2 − a(t3 + t4) − b
√
t5t6, where c > 0,

a, b ≥ 0 and c+ max{2a, b} < 1;

Example 2.2. T (t1, . . . , t6) = t1(t1 − at2 − bt3 − ct4)− dt5t6, where a > 0,
b, c, d ≥ 0 and a+ max{b+ c, d} < 1;

Example 2.3. T (t1, . . . , t6) = t1 − at2 − bt3 − ct4 − dmin{t5, t6}, where
a > 0, b, c, d ≥ 0 and a+ max{b+ c, d} < 1;

Example 2.4. T (t1, . . . , t6) = t21 − at22 − b 1
1+t3+t4

min{t25, t26}, where a > 0,
b ≥ 0 and a+ b < 1;

Example 2.5. T (t1, . . . , t6) = t21 − at22 + b t3t4
1+t5+t6

, where 0 < a < 1 and
b ≥ 0.

To give the new notion of a cyclic contractive mapping, we need following
concept:

We denote by Ψ the set of functions ψ : [0,+∞) → [0,+∞) is a non-
decreasing and continuous function satisfying:

(ψ1) ψ(t) < t for t > 0 and ψ(0) = 0;
(ψ2) ψ is subadditive, that is, for every µ1, µ2 ∈ [0,+∞), ψ(µ1 + µ2) ≤

ψ(µ1) + ψ(µ2);
(ψ3) For all t ∈ (0,∞), limn→∞ tn = 0 if and only if limn→∞ ψ(tn) = 0.

Next, we introduce a new notion of cyclic contraction mapping satisfying
implicit relation that involves a control function.

Definition 2.2. Let (X, d) be a metric space. Let p be a positive integer,
A1, A2, . . . , Ap be nonempty subsets of X and Y = ∪pi=1Ai. An operator
F : Y → Y is called cyclic contraction of implicit relation type if

(I) Y = ∪pi=1Ai is a cyclic representation of Y with respect to F ;
(II) For any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

T (ψ(d(Fx,Fy)), ψ(d(x, y)), ψ(d(x,Fx)),

ψ(d(y,Fy)), ψ(d(x,Fy)), ψ(d(y,Fx))) ≤ 0 (2)

where T ∈ z and ψ ∈ Ψ.
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The following is an example of cyclic contraction of implicit relation type
with Example 2.1.

Example 2.6. Let X = [0, 1] with the usual metric. Suppose A1 = [0, 12 ]

and A2 = [12 , 1] and X =
⋃2
i=1Ai. Define F : X → X such that

Fx =

{
1
2 , x ∈ [0, 1),

0, x = 1.
(3)

Clearly, A1 and A2 are closed subsets of X . Moreover F(Ai) ⊂ Ai+1 for

i = 1, 2, so that
⋃2
i=1Ai is a cyclic representation of X with respect to F .

Furthermore, if T : R+6 → R+ denote

T (t1, t2, t3, t4, t5, t6) = t1 − ct2 − a(t3 + t4)− b
√
t5t6, (4)

where t1 = d(Fx,Fy), t2 = d(x, y), t3 = d(x,Fx), t4 = d(y,Fy), t5 =
d(x,Fy), and t6 = d(y,Fx), for all x, y ∈ X . Also suppose ψ(t) = t

2 for
t ≥ 0.

Let a = 1
6 , b = 1

3 and c = 1
2 , then a, b, c clearly fulfilled all conditions with

c+ max{2a, b} < 1. Then T ∈ z.
Next we show that the mapping F is a cyclic contraction of implicit

relation type. We shall distinguish the following cases:
For x ∈ A1, y ∈ A2 ( or x ∈ A2, y ∈ A1).
• When x ∈ [0, 12 ] and y ∈ [12 , 1), we deduce d(Fx,Fy) = 0 and equation

(4) is trivially satisfied.
• When x ∈ [0, 12 ] and y = 1, we deduce d(Fx,Fy) = 1

2 and

t2 = |x− 1|, t3 = |x− 1

2
|, t4 = 1, t5 = x, t6 =

1

2
,

then clearly equation (4) holds. Hence the mapping F is a cyclic contraction
of implicit relation type.

Our main result is the following:

Theorem 2.1. Let (X, d) be a complete metric space, p ∈ N, A1, A2, . . . , Ap
nonempty closed subsets of X and Y = ∪pi=1Ai. Suppose F : Y → Y is a
cyclic contraction of implicit relation type mapping, for some T ∈ z and
ψ ∈ Ψ. Then F has a unique fixed point. Moreover, the fixed point of F
belongs to ∩pi=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence
{xn} in X by:

xn+1 = Fxn, n = 0, 1, 2, . . . .

We shall prove that
lim
n→∞

d(xn, xn+1) = 0. (5)
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If for some k, we have xk+1 = xk, then (5) follows immediately. So, we can
suppose that d(xn, xn+1) > 0 for all n. From the condition (I), we observe
that for all n, there exists i = i(n) ∈ {1, 2, . . . , p} such that (xn, xn+1) ∈
Ai ×Ai+1. Then, from the condition (II), we have

T (ψ(d(Fxn,Fxn−1)), ψ(d(xn, xn−1)),

ψ(d(xn,Fxn)), ψ(d(xn−1,Fxn−1)),
ψ(d(xn,Fxn−1)), ψ(d(xn−1,Fxn))) ≤ 0.

Now since T ∈ z and we have

T (u, v, v, u, w, 0) ≤ 0

for u = ψ(d(xn+1, xn)), v = ψ(d(xn, xn−1)), w = ψ(d(xn−1, xn+1)), it follows
from (T1) that there exists h ∈ [0, 1) such that

ψ(d(xn+1, xn)) ≤ hψ(d(xn, xn−1)).

If we continue this procedure, we can have

ψ(d(xn+1, xn)) ≤ hnψ(d(x1, x0)). (6)

The sequence an := ψ(d(xn, xn+1)), n ≥ 1, of non-negative real numbers,
converges to zero. Then there exists a bijection σ : N∗ → N such that
the sequence {aσ(n)} is non-increasing. Since ψ is increasing, it follows
that the sequence {d(xσ(n), xσ(n)+1)} of non-negative real numbers is non-
increasing, hence it is convergent. Using the continuity of ψ we obtain 0 =
limn→∞ ψ(d(xσ(n), xσ(n)+1)) = ψ(limn→∞ d(xσ(n), xσ(n)+1))). Since ψ(t) = 0
if and only if t = 0, it follows that limn→∞ d(xσ(n), xσ(n)+1)) = 0, therefore

lim
n→∞

d(xn+1, xn) = 0.

Next we show that {xn} is a Cauchy sequence. Suppose it is not true. Then
we can find a δ > 0 and two sequence of integers {m(k)}, {n(k)},m(k) >
n(k) ≥ k with

rk = ψ(d(xn(k), xm(k))) ≥ δ for k ∈ {1, 2, . . . }. (7)

We may also assume
ψ(d(xm(k)−1, xn(k))) < δ (8)

by choosing m(k) to be the smallest number exceeding n(k) for which (7)
holds. Moreover, since ψ is subadditive and nondecreasing and using (6),
(7) and (8) imply

δ ≤ rk = ψ(d(xm(k)−1, xn(k)))

≤ ψ(d(xm(k), xm(k)−1)) + ψ(d(xm(k)−1, xn(k)))

≤ hm(k)−1ψ(d(x0, x1)) + δ
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and so

lim
k→∞

rk = δ. (9)

Also ψ is subadditive and nondecreasing, we conclude

δ ≤ ψ(d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1) + d(xn(k)+1, xm(k)+1))

≤ ψ(d(xn(k), xn(k)+1)) + ψ(d(xm(k), xm(k)+1)) + ψ(d(xn(k)+1, xm(k)+1)))

we have from (6) that

δ ≤ rk = hn(k)ψ(d(x0, x1)) + hm(k)ψ(d(x0, x1)) + ψ(d(xm(k)+1, xn(k)+1)).
(10)

Using the condition (2) for x = xm(k) and y = xn(k), we have

T
(
ψ(d(Fxm(k),Fxn(k))), ψ(d(xm(k), xn(k))),

ψ(d(xm(k),Fxm(k))), ψ(d(xn(k),Fxn(k))),
ψ(d(xm(k),Fxn(k))), ψ(d(xn(k),Fxm(k)))) ≤ 0

and so

T
(
ψ(d(xm(k)+1, xn(k)+1)), rk, h

m(k)(ψ(d(x0, x1))), h
n(k)(ψ(d(x0, x1))),

rk + hn(k)(ψ(d(x0, x1))), rk + hm(k)(ψ(d(x0, x1)))
)
≤ 0.

Now passing to the limit as k → ∞ in above and using (9) we have, by
continuity of T and Ψ that

T ( lim
k→∞

ψ(d(xm(k)+1, xn(k)+1)), δ, 0, 0, δ, δ) ≤ 0.

From (T1), we have lim
k→∞

ψ(d(xm(k)+1, xn(k)+1)) ≤ h(ψ(δ)). Therefore from

(10) we have δ ≤ h(ψ(δ)). This is a contradiction since h ∈ [0, 1) and ψ(t) < t
for t > 0. Thus {xn} is a Cauchy sequence in X .

Since (X, d) is complete, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. (11)

We shall prove that

x∗ ∈
p⋂
i=1

Ai. (12)

From condition (I), and since x0 ∈ A1, we have {xnp}n≥0 ⊆ A1. Since A1 is
closed, from (11), we get that x∗ ∈ A1. Again, from the condition (I), we
have {xnp+1}n≥0 ⊆ A2. Since A2 is closed, from (11), we get that x∗ ∈ A2.
Continuing this process, we obtain (12).
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Now, we shall prove that x∗ is a fixed point of F . Indeed, from (12), since
for all n, there exists i(n) ∈ {1, 2, . . . , p} such that xn ∈ Ai(n), applying (II)
with x = x∗ and y = xn, we obtain

T (ψ(d(Fx∗,Fxn)), ψ(d(x∗, xn)), ψ(d(x∗,Fx∗)),
ψ(d(xn,Fxn)), ψ(d(x∗,Fxn)), ψ(d(xn,Fx∗))) ≤ 0

so letting n→∞ from the last inequality with the property of ψ we have

T (ψ(d(Fx∗, x∗)), 0, ψ(d(x∗,Fx∗)), 0, 0, ψ(d(x∗,Fx∗))) ≤ 0.

By (T1) it follows that ψ(d(x∗,Fx∗)) ≤ 0 and so x∗ = Fx∗, that is, x∗ is a
fixed point of F .

Finally, we prove that x∗ is the unique fixed point of F . Assume that y∗

is another fixed point of F , that is, Fy∗ = y∗. By the condition (I), this
implies that y∗ ∈

⋂p
i=1Ai. Then we can apply (II) for x = x∗ and y = y∗.

We obtain

T (ψ(d(Fx∗,Fy∗)), ψ(d(x∗, y∗)), ψ(d(x∗,Fx∗)),
ψ(d(y∗,Fy∗)), ψ(d(x∗,Fy∗)), ψ(d(y∗,Fx∗))) ≤ 0.

Since x∗ and y∗ are fixed points of F , we can show easily that x∗ 6= y∗. If
d(x∗, y∗) > 0, we get

T (ψ(d(x∗, y∗)), ψ(d(x∗, y∗)), 0, 0, ψ(d(x∗, y∗)), ψ(d(y∗, x∗))) ≤ 0.

a contradiction of (T2), ψ(d(x∗, y∗)) = 0; hence d(x∗, y∗) = 0, that is, x∗ =
y∗. Thus we proved the uniqueness of the fixed point. �

Remark 2.1. Note that if we take
T3 : there exists h ∈ [0, 1) such that for all u, v, w ≥ 0

T (u, v, v, u, w, 0) ≤ 0

or

T (u, v, u, v, 0, w) ≤ 0

implies u ≤ hv, instead of T1 in Theorem 2.1, again we can have the same
result.

In the following, we deduce some fixed point theorems from our main
result given by Theorem 2.1.

If we take p = 1 and A1 = X in Theorem 2.1, then we get immediately
the following fixed point theorem for one map due to Popa and Mocanu [15,
Theorem 1]:
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Corollary 2.1. Let (X, d) be a complete metric space and let F : X → X
satisfy the following condition: there exists T ∈ z and ψ ∈ Ψ such that

T (ψ(d(Fx,Fy)), ψ(d(x, y)), ψ(d(x,Fx)),

ψ(d(y,Fy)), ψ(d(x,Fy)), ψ(d(y,Fx))) ≤ 0,

for all x, y ∈ X. Then F has a unique fixed point.

If ψ is the identity in Corollary 2.1, we have following:

Corollary 2.2. Let (X, d) be a complete metric space and let F : X → X
satisfy the following condition: there exists T ∈ z such that

T (d(Fx,Fy), d(x, y), d(x,Fx), d(y,Fy), d(x,Fy), d(y,Fx)) ≤ 0,

for all x, y ∈ X. Then F has a unique fixed point.

If we combine Theorem 2.1 with Example 2.1, we obtain the following
result.

Corollary 2.3. Let (X, d) be a complete metric space, p ∈ N, A1, A2, . . . , Ap
nonempty closed subsets of X, Y = ∪pi=1Ai and F : Y → Y . Suppose

(I)′ Y = ∪pi=1Ai is a cyclic representation of Y with respect to F ;
(II)′ For any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

d(Fx,Fy) ≤ c d(x, y)+a (d(x,Fx)+d(y,Fy))+b
√
d(x,Fy).d(y,Fx) (13)

where c > 0, a, b ≥ 0 and c + max{2a, b} < 1. Then F has a unique fixed
point. Moreover, the fixed point of F belongs to ∩pi=1Ai.

If we combine Theorem 2.1 with Example 2.3, we obtain the following
result.

Corollary 2.4. Let (X, d) be a complete metric space, p ∈ N, A1, A2, . . . , Ap
nonempty closed subsets of X, Y = ∪pi=1Ai and F : Y → Y. Suppose

(I)′ Y = ∪pi=1Ai is a cyclic representation of Y with respect to F ;
(II)′ For any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

ψ(d(Fx,Fy)) ≤ a ψ(d(x, y)) + b ψ(d(x,Fx))

+ c ψ(d(y,Fy)) + dmin{ψ(d(x,Fy)), ψ(d(y,Fx))} (14)

where a > 0, b, c, d ≥ 0 and a+ max{b+ c, d} < 1, and ψ ∈ Ψ. Then F has
a unique fixed point. Moreover, the fixed point of F belongs to ∩pi=1Ai.

Remark 2.2. Corollary 2.4 is an extension to Theorem 2.1 in [4, 3, 22, 23].

If the altering distance ψ be the identity in Theorem 2.1, we have follow-
ing:
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Corollary 2.5. Let (X, d) be a complete metric space, p ∈ N, A1, A2, . . . , Ap
nonempty closed subsets of X, Y = ∪pi=1Ai and F : Y → Y. Suppose that
there exists T ∈ z such that

(I)′ Y = ∪pi=1Ai is a cyclic representation of Y with respect to F ;
(II)′ For any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

T (d(Fx,Fy), d(x, y), d(x,Fx), d(y,Fy), d(x,Fy), d(y,Fx)) ≤ 0.

Then F has a unique fixed point. Moreover, the fixed point of F belongs to
∩pi=1Ai.

The following example demonstrates the validity of Corollary 2.4 obtained
by modifying the example from [6].

Example 2.7. Let X = R with the usual metric. Suppose A1 = [−1, 0] =

A3 and A2 = [0, 1] = A4 and Y =
⋃4
i=1Ai. Define F : Y → Y by Fx = −x

6
for all x ∈ Y. Clearly, Ai (i = 1, 2, 3, 4) are closed subsets of X . Moreover

F(Ai) ⊂ Ai+1 for i = 1, 2, 3, 4 so that
⋃4
i=1Ai is a cyclic representation of

Y with respect to F . Moreover, mapping F is a implicit relation type cyclic

contractive, where T : R+6 → R+ defined by

T (t1, t2, t3, t4, t5, t6) = t1 − at2 − bt3 − ct4 − dmin{t5, t6}, (15)

where t1 = d(Fx,Fy), t2 = d(x, y), t3 = d(x,Fx), t4 = d(y,Fy), t5 =
d(x,Fy), and t6 = d(y,Fx), for all x, y ∈ X . Then T ∈ z. Indeed, to see
this fact we examine following cases:

Equation (17) reduces to

ψ(d(Fx,Fy)) = ψ
( |x− y|

6

)
≤ a ψ(d(x, y))+b ψ

(5|x|
6

)
+c ψ

(5|y|
6

)
+dmin

{
ψ
(∣∣x+

y

6

∣∣), ψ(∣∣y+
x

6

∣∣)}.
(16)

Let a = 1
2 , b = c = d = 1

6 , then a, b, c, d clearly fulfilled all conditions with

a+ max{b+ c, d} < 1. Let ψ(t) = t
2 for t ≥ 0.

• For x ∈ A1, y ∈ A2.

(i) Suppose x = −1 and y = 0. Then equation (16) holds as it reduces
to 1

6 <
2
3 .

(ii) Suppose x = 0 and y = 1. Then equation (16) holds as it reduces to
1
6 <

2
3 .

(iii) Suppose x = −1 and y = 1. Then equation (16) holds as it reduces
to 1

3 <
51
36 .

• For x ∈ A2, y ∈ A1.
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(i) Suppose x = 1
2 and y = −1

2 . Then equation (16) holds as it reduces

to 1
6 <

51
72 .

(ii) Suppose x = 1 and y = −1. Then equation (16) holds as it reduces
to 1

3 <
51
36 .

• For x = y, d(Fx,Fy) = 0. Then equation (16) trivially holds.
Similarly other cases can be verified. Therefore, all conditions of Corollary

2.4 are satisfied, and so F has a fixed point (which is z = 0 ∈
⋂4
i=1Ai).

We illustrate Corollary 2.3 by an example which is obtained by modifying
the one from [10].

Example 2.8. Let X = R+3
and we define d : X × X → [0, 1) by

d(x, y) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|,
for x = (x1, x2, x3), y = (y1, y2, y3) ∈ X , and let A = {(x, 0, 0) : x ∈ R+},
B = {(0, y, 0) : y ∈ R+}, C = {(0, 0, z) : z ∈ R+}, be three subsets of X .

Define F : A ∪ B ∪ C → A ∪ B ∪ C by

F((x, 0, 0)) =

(
0,

1

6
x, 0

)
; for all x ∈ R+;

F((0, y, 0)) =

(
0, 0,

1

6
y

)
; for all y ∈ R+;

F((0, 0, z)) =

(
1

6
z, 0, 0

)
; for all x ∈ R+;

Let the function T : R+6 → R+ be defined by

T (t1, t2, t3, t4, t5, t6) = t1 − ct2 − a(t3 + t4)− b
√
t5t6, (17)

where t1 = d(Fx,Fy), t2 = d(x, y), t3 = d(x,Fx), t4 = d(y,Fy), t5 =
d(x,Fy), and t6 = d(y,Fx), for all x, y ∈ X .

Let a = 1
6 , b = 1

3 and c = 1
2 , then a, b, c clearly fulfilled all conditions with

c+ max{2a, b} < 1. Then T ∈ z.
By routine calculation, one can prove that F is a cyclic contraction sat-

isfying implicit relation type mapping for ψ(t) = 1
3 t for t ≥ 0. Therefore, all

conditions of Corollary 2.3 are satisfied, and so F has a fixed point (which

is (0, 0, 0) ∈
⋂3
i=1A ∪ B ∪ C.)

3. An application to integral equations

In this section, we apply Corollary 2.4 to study the existence and unique-
ness of solutions to a class of nonlinear integral equations.

We consider the nonlinear integral equation

u(t) =

∫ T

0
G(t, s)f(s, u(s)) ds, for all t ∈ [0,T], (18)
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where T > 0, f : [0,T] × R → R and G : [0,T] × [0,T] → [0,∞) are
continuous functions.

Let X = C([0,T]) be the set of real continuous functions on [0, T ]. We
endow X with the standard metric

d∞(u, v) = max
t∈[0,T]

|u(t)− v(t)|, for all u, v ∈ X .

It is well known that (X , d∞) is a complete metric space.
Let (α, β) ∈ X 2, (α0, β0) ∈ R2 such that

α0 ≤ α ≤ β ≤ β0. (19)

We suppose that for all t ∈ [0,T], we have

α(t) ≤
∫ T

0
G(t, s)f(s, β(s)) ds (20)

and

β(t) ≥
∫ T

0
G(t, s)f(s, α(s)) ds. (21)

We suppose that for all s ∈ [0,T], f(s, ·) is a decreasing function, that is,

x, y ∈ R, x ≥ y =⇒ f(s, x) ≤ f(s, y). (22)

We suppose that

sup
t∈[0,T]

∫ T

0
G(t, s) ds ≤ 1. (23)

Finally, we suppose that for all s ∈ [0, 1], for all x, y ∈ R with x ≤ β0 and
y ≥ α0 or x ≥ α0 and y ≤ β0,

|f(s, x)− f(s, y)|
≤ ad(x, y) + bd(x,Fx) + cd(y,Fy) + dmin{d(x,Fy), d(y,Fx)}, (24)

where a > 0, b, c, d ≥ 0 and a+ max{b+ c, d} < 1.
Now, define the set

C = {u ∈ C([0,T]) : α ≤ u ≤ β}.
We have the following result.

Theorem 3.1. Under the assumptions (19)–(24), problem (18) has one and
only one solution u∗ ∈ C.

Proof. Define the closed subsets of X , A1 and A2 by

A1 = {u ∈ X : u ≤ β}
and

A2 = {u ∈ X : u ≥ α}.
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Define the mapping F : X → X by

Fu(t) =

∫ T

0
G(t, s)f(s, u(s)) ds, for all t ∈ [0,T].

We shall prove that

F(A1) ⊆ A2 and F(A2) ⊆ A1. (25)

Let u ∈ A1, that is,

u(s) ≤ β(s), for all s ∈ [0,T].

Using condition (22), since G(t, s) ≥ 0 for all t, s ∈ [0,T], we obtain that

G(t, s)f(s, u(s)) ≥ G(t, s)f(s, β(s)), for all t, s ∈ [0,T].

The above inequality with condition (20) implies that∫ T

0
G(t, s)f(s, u(s)) ds ≥

∫ T

0
G(t, s)f(s, β(s)) ds ≥ α(t),

for all t ∈ [0,T]. Then we have Fu ∈ A2.
Similarly, let u ∈ A2, that is,

u(s) ≥ α(s), for all s ∈ [0,T].

Using condition (22), since G(t, s) ≥ 0 for all t, s ∈ [0,T], we obtain that

G(t, s)f(s, u(s)) ≤ G(t, s)f(s, α(s)), for all t, s ∈ [0,T].

The above inequality with condition (21) implies that∫ T

0
G(t, s)f(s, u(s)) ds ≤

∫ T

0
G(t, s)f(s, α(s)) ds ≤ β(t),

for all t ∈ [0,T]. Then we have Fu ∈ A1. Finally, we deduce that (25) holds.
Now, let (u, v) ∈ A1 ×A2, that is, for all t ∈ [0,T],

u(t) ≤ β(t), v(t) ≥ α(t).

This implies from condition (19) that for all t ∈ [0,T],

u(t) ≤ β0, v(t) ≥ α0.
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Now, using conditions (23) and (24), we can write that for all t ∈ [0,T], we
have

|Fu−Fv|(t) ≤
∫ T

0
G(t, s)|f(s, u(s))− f(s, v(s))| ds

≤
∫ T

0
G(t, s)[a|u(s)− v(s)|+ b|u(s)−Fu(s)|+ c|v(s)−Fv(s)|

+ dmin{|u(s)−Fv(s)|, |v(s)−Fu(s)|}] ds
≤ [ad∞(u, v) + bd∞(u,Fu) + cd∞(v,Fv)

+ dmin{d∞(u,Fv), d∞(v,Fu)}]
∫ T

0
G(t, s) ds

≤ ad∞(u, v) + bd∞(u,Fu) + cd∞(v,Fv) + dmin{d∞(u,Fv), d∞(v,Fu)}.
This implies that

ψ(d∞(Fu,Fv)) ≤ aψ(d∞(u, v)) + bψ(d∞(u,Fu)) + cψ(d∞(v,Fv))

+ dmin{ψ(d∞(u,Fv)), ψ(d∞(v,Fu))},
where ψ(t) = t. Using the same technique, we can show that the above
inequality holds also if we take (u, v) ∈ A2 ×A1.

Now, all conditions of Corollary 2.4 are satisfied (with p = 2), and we
deduce that F has a unique fixed point u∗ ∈ A1 ∩A2 = C, that is, u∗ ∈ C is
the unique solution to (18). �
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