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GAPS IN THE PAIRS (BORDER RANK, SYMMETRIC

RANK) FOR SYMMETRIC TENSORS

E. BALLICO

Abstract. Fix integers m ≥ 2, s ≥ 5 and d ≥ 2s+ 2. Here we describe
the possible symmetric tensor ranks ≤ 2d+s−7 of all symmetric tensors
(or homogeneous degree d polynomials) in m + 1 variables with border
rank s.

1. Introduction

An important practical question concerning symmetric tensors (e.g. in
Signal Processing, Statistics and Data Analysis) is their “ minimal ” decom-
position as a sum of pure symmetric tensors (see e.g. [11], [16], [6], [10],
[15], [4], [14] and references therein). This problem may be translated into
the following problem for homogeneous polynomials in m+ 1 variables: for
any degree d homogeneous polynomial f ∈ K[x0, . . . , xm] find the minimal
integer r such that f =

∑r
i=1 Li

d, where each Li is a homogeneous degree
1 polynomial. The latter problem is translated in the following way into a
problem concerning Veronese embeddings of Pm.

Let νd : Pm → Pnm,d , nm,d :=
(
m+d
m

)
− 1, denote the degree d Veronese

embedding of Pm. Set Xm,d := νd(Pm). We often write n instead of nm,d.

For any subset or closed subscheme A of a projective space Pk let 〈A〉 denote
its linear span. For any integer s > 0 the s-secant variety σs(Xm,d) is the
closure in Pn of the union of all linear spaces spanned by s points of Xm,d.
Fix P ∈ Pn. The symmetric rank sr(P ) of P is the minimal cardinality of
a finite set S ⊂ Xm,d such that P ∈ 〈S〉. The border rank br(P ) of P is the
minimal integer s > 0 such that P ∈ σs(Xm,d). There is another notion of
rank of P (the cactus rank cr(P ) ([7], [5]), but we do not need to define it,
because in the range br(P ) ≤ d+ 1 we always have cr(P ) = br(P ) (Remark
1). For any fixed s ≥ 2 one would like to have the stratification by the
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symmetric rank of σs(Xm,d) \ σs−1(Xm,d), i.e. to know what are the ranks
of the homogeneous degree d polynomials with border rank s. This is due
to Sylvester if m = 1, i.e. for binary forms ([9], [15], Theorem 4.1, [4]). For
general m this is known if s = 2, 3 ([4]) and if s = 4 ([1]). For all positive
integers a, b set

σa,b(Xm,d) := {P ∈ Pn : br(P ) = a, sr(P ) = b}.
Notice that σa,b(Xm,d) = {P ∈ σa(Xm,d) \ σa−1(Xm,d) : sr(P ) = b} if
a ≥ 2, that σa,a(Xm,d) contains a non-empty open subset of σa(Xm,d) if
σa−1(Xm,d) 6= Pn and that σa,b(Xm,d) = ∅ if b < a. If either m = 1 and
s is very low (s = 2, 3 in [4], s = 4 in [1]), then for fixed s and large d
near s several integers are not the symmetric rank of any P ∈ σs(Xm,d) \
σs−1(Xm,d). Here we show that this is the case for arbitrary s, d not too
small, but for low ranks, i.e. if we assume r ≤ 2d + s − 7. We prove the
following result.

Theorem 1. Fix integers m, s, d, r such that m ≥ 2, s ≥ 5, d ≥ 2s+ 2 and
s ≤ r ≤ 2d+ s− 7.

Then σs,r(Xm,d) 6= ∅ if and only if one of the following conditions is
satisfied:

• r = s;
• d+ 2− s ≤ r ≤ d+ s− 2 and r + s ≡ d (mod 2);
• 2d+ 2− s ≤ r ≤ 2d+ s− 7.

If σs(Xm,d) ) σs−1(Xm,d), then a general P ∈ σs(Xm,d) satisfies br(P ) =
s = sr(P ). Hence in the set-up of Theorem 1 only the pairs (s, r) with
2 ≤ s < r need to be checked. The statement of Theorem 1 is of the form
“ if and only if ”. However, the proofs of both implications use similar
tools. The key technical tool used in almost all our lemmas is an inductive
method to handle cohomology groups (vanishing and non-vanishing) often
called the Horace Method. The starting observation is that for every s as in
Theorem 1 there is a zero-dimensional scheme A ⊂ Pm such that deg(A) = s
and P ∈ 〈νd(A)〉 (Remark 1). Moreover if sr(P ) > br(P ), then there is a
finite set B ⊂ Pm such that ](B) = sr(P ), P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉 and the
scheme A ∪ B has two strong properties: h1(IA∪B(d)) > 0 and there is a
line or a conic (say D) such that deg((A ∪ B) ∩ D) ≥ deg(D) · d + 2 and
B\B∩D = A\A∩D (Lemmas 1 and 5). In this way it is easy to get the non-
existence part of Theorem 1. The existence part in the range s+r ≤ d+2 (i.e.
with r = d+2−s) is done taking A and B contained in a line L. To cover the
case r+s ≡ d (mod 2) and d+2−s < r ≤ d+s−2 we take A = (A∩L)tE
and B = (B∩L)tE with E ⊂ Pm\L, ](E) = (s+r−d−2)/2, B∩A∩L = ∅
and deg(A∩L) + ](B ∩L) = d+ 2. To cover the case in which r+ s is even
and 2d+2 ≤ r+s we use a smooth conic C ⊂ Pm and take A = (A∩C)tE,
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B = (B ∩C) tE with A ∩B ∩C = ∅, deg(A ∩C) + ](B ∩C) = 2d+ 2 and
](E) = (r + s − 2d − 2)/2. To cover the case 2d + 3 − s ≤ r ≤ 2d + s − 7
and r + s odd we use a reducible conic instead of C; we need two different
constructions according to the parity of the integer (2d+3+s−r)/2 (Lemmas
8 and 9).

In all cases the delicate part is the proof that there is no finite set S ⊂ Pm
such that P ∈ 〈νd(S)〉 and ](S) < ](B) = r. In all cases we again use
Lemmas 1 and 5.

We work over an algebraically closed base field K such that char(K) = 0.

2. The proof

For any sheaf F on Pm and any integer i ≥ 0 set hi(F) := dim(H i(Pm,F)).
For any scheme X, any effective Cartier divisor D of X and any closed sub-
scheme Z ⊂ X let ResD(Z) denote the residual scheme of Z with respect
to D, i.e. the closed subscheme of X with IZ : ID as its ideal sheaf. For
any R ∈ Pic(X) we have the following exact sequence of coherent sheaves
(called the residual exact sequence):

0→ IResD(Z) ⊗R(−D)→ IZ ⊗R→ ID∩Z,D ⊗ (R|D)→ 0 (1)

We need the following lemma (see [12] for the case in which the scheme
Z is reduced, [4], Lemma 34, for the case z ≤ 2d + 1, and [13] for a strong
tool to prove much more in P2).

Fix positive integers m, d, any P ∈ Pnm,d and any finite set B ⊂ Pm. We
say that B evinces sr(P ) if P ∈ 〈νd(B)〉 and ](B) = sr(P ).

Lemma 1. Fix integers m, d, z such that m ≥ 2 and 0 < z < 3d. Let
Z ⊂ Pm be a zero-dimensional scheme such that deg(Z) = z. If m > 2,
then assume deg(Z) − deg(Zred) ≤ d. We have h1(IZ(d)) > 0 if and only
if either there is a line L ⊂ Pm such that deg(L ∩ Z) ≥ d + 2 or there is a
conic T ⊂ Pm such that deg(T ∩ Z) ≥ 2d+ 2.

Proof. Since Z is zero-dimensional, the restriction map H0(Z,OZ(d)) →
H0(W,OW (d)) is surjective for any W ⊆ Z. Hence for any W ⊆ Z we have
h1(IW (d)) ≤ h1(IZ(d)). Since h0(L,OL(d)) = d + 1 for any line L and
h0(T,OT (d)) = 2d+ 1 for any conic T , we get the “ if ” part. Now assume
h1(IZ(d)) > 0.

(a) First assume m = 2. Apply [13], Remarques (i) at page 116.
(b) Now assume m ≥ 3. We use induction on m. Let H1 ⊂ Pm be a

hyperplane such that deg(H1∩Z) is maximal. Set Z0 := Z, Z1 := ResH1(Z0)
and w1 := deg(Z0 ∩ H1). As in the proof of [1], Proposition 12, we define
recursively the hyperplanes Hi ⊂ Pm, i ≥ 2, the schemes Zi ⊆ Zi−1, and the
integers wi, i ≥ 1, in the following way. Let Hi be any hyperplane such that
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deg(Zi−1∩Hi) is maximal. Set Zi := ResHi(Zi−1) and wi := deg(Hi∩Zi−1).
Any zero-dimensional scheme F ⊂ Pm with deg(F ) ≤ m is contained in a
hyperplane. Hence if wi ≤ m− 1, then wi+1 = 0 and Zi = ∅. Since z < 3d,
we get wi = 0 for all i ≥ d and Zd = ∅. For any integer i > 0 the residual
sequence (1) gives the following exact sequence:

0→ IZi(d− i)→ IZi−1(d− i+ 1)→ IHi∩Zi−1,Hi(d− i+ 1)→ 0 (2)

Since h1(IZ(d)) > 0 and Zd = ∅, (2) gives the existence of integer x such that
1 ≤ x ≤ d−1 and h1(Hx, IHx∩Zx−1,Hx(d−x+1)) > 0. We call e the minimal

such an integer x. First assume e = 1, i.e. assume h1(H1, IZ∩H1(d)) > 0.
Since deg(Z∩H1) ≤ deg(Z) < 3d, the inductive assumption on m gives that
either there is a line L ⊂ H1 such that deg(L ∩ Z) ≥ 2 or there is a conic
T ⊂ H1 such that deg(T ∩ Z) ≥ 2d + 2. From now on we assume e ≥ 2.
First assume we ≥ 2(d − e + 1) + 2. Since wi ≥ we for all i < e, we get
z ≥ 2e(d−e+1)+2e. Since 2 ≤ e ≤ d−1 and z < 3d, we get a contradiction.
Hence we ≤ 2(d− e+ 1) + 1. Since h1(He, IHe∩Ze−1,He(d− e+ 1)) > 0 and
we ≤ 2(d − e + 1) + 1, there is a line L ⊂ He such that deg(L ∩ Ze−1) ≥
d− e + 3 ([4], Lemma 34). Since Ze−1 6= ∅, Ze−2 spans Pm. Hence there is
a hyperplane M ⊂ Pm such that M ⊃ L and deg(M ∩ Ze−2) ≥ deg(Ze−2 ∩
L) +m− 2 ≥ d− e+m+ 1. Hence wi ≥ d− e+m+ 1 for all i < e. Hence
z ≥ e(d− e+ 3) + (e− 1)(m− 2).

First assume e ≥ 3. Since 3d > z ≥ e(d − e + 3) + (e − 1)(m − 2) and
3 ≤ e ≤ d, we get a contradiction.

Now assume e = 2. We have deg(L ∩ Z) ≥ d + 1. If deg(L ∩ Z) ≥ d + 2,
then we are done. Hence we may assume deg(L ∩ Z) = d+ 1. Set W0 := Z.
Let M1 ⊂ Pm be a hyperplane containing L and with m1 := deg(M1 ∩W0)
maximal among the hyperplanes containing L. We define recursively the
hyperplanes Mi ⊂ Pm, i ≥ 2, the schemes Wi ⊆ Wi−1, and the integers mi,
i ≥ 1, in the following way. Let Mi be any hyperplane such that deg(Wi−1∩
Mi) is maximal. Set Wi := ResMi(Wi−1) and mi := deg(Hi ∩Wi−1). We
have mi ≤ mi−1 for all i, m1 ≥ deg(L∩Z) +m− 2 ≥ d+m− 2 and mi = 0
if mi−1 ≤ m− 1. As above there is a minimal integer f such 1 ≤ f ≤ d− 1
and h1(Mf , IMf∩Wf−1,Mf

(d− f + 1)) > 0. As above we get a contradiction,
unless f = 2. Assume f = 2. Since m2 ≤ z/2 ≤ 2(d− 1) + 1, there is a line
D ⊂M2 such that deg(D∩W1) ≥ d+1. Let E be any connected component
of Z. If E is reduced, then L ∩ResM1(E) = ∅, because M1 ⊃ L. If E is not
reduced, then deg(M1∩ResM1(E)) ≤ deg(E∩M1), because ResM1(E) ⊆ E.
Since deg(Z)− deg(Zred) ≤ d, we get D 6= L. Assume for the moment that
either D ∩ L 6= ∅ or m ≥ 4, i.e. assume the existence of a hyperplane of
Pm containing D ∪ L. Hence w1 ≥ 2d + 1. Hence deg(Z1) ≤ deg(W1) ≤ d.
Hence h1(IZ1(d − 1)) = 0. Hence h1(H2, IZ1∩H2(d − 1)) = 0, contradicting
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the assumption e = 2. Now assume m = 3 and D ∩ L = ∅. We may also
assume deg(L ∩ Z) = deg(D ∩ Z) = d + 1. Let N ⊂ P3 be a general
quadric surface containing D ∪ L. The quadric surface N is smooth. Since
deg(ResN (Z)) ≤ z−2d−2 ≤ d−1, we have h1(IResN (Z)(d−2)) = 0. Hence

the exact sequence

0→ IResN (Z)(d− 2)→ IZ(d)→ IZ∩N,N (d)→ 0 (3)

gives h1(N, IZ∩N,N (d)) > 0. Since D ∩ L = ∅, D and L belong to the
same ruling of N , say D,L ∈ |ON (1, 0)|. Since deg(Z ∩ L) = deg(Z ∩
D) = d+ 1, we have hi(N, IZ∩N,N (d, d)) = hi(N, IResD∪L(Z∩N),N (d− 2, d)),

i = 0, 1. Since deg(ResD∪L(Z ∩N)) = deg(Z ∩N)− 2d− 2 ≤ d− 1, we have
h1(N, IResD∪L(Z∩N),N (d− 2, d)) = 0, a contradiction. �

We recall the following result ([3], Lemma 1).

Lemma 2. Fix P ∈ Pn. Assume the existence of zero-dimensional schemes
A,B ⊂ Pm such that A 6= B, P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉, P /∈ 〈νd(A′)〉 for any
A′ ( A and P /∈ 〈νd(B′)〉 for any B′ ( B. Then h1(IA∪B(d)) > 0.

Remark 1. Fix integers m ≥ 1, d ≥ 2 and P ∈ Pn such that br(P ) ≤
d + 1. By [8], Lemma 2.1.5 and Lemma 2.4.4, there is a smoothable zero-
dimensional and Gorenstein scheme A ⊂ Pm such that deg(A) = br(P ),
P ∈ 〈νd(A)〉 and P /∈ 〈νd(A′)〉 for any A′ ( A. We will say that A evinces
br(P ). In this range the smoothable rank and the border rank coincide. Now
assume br(P ) ≤ (d + 1)/2. Using Lemma 2 and the inequality 2s ≤ d + 1
we get that A is the unique zero-dimensional scheme E ⊂ Pm such that P ∈
〈νd(E)〉 and deg(E) ≤ s. The uniqueness of A implies that A also evinces
the cactus rank cr(P ) of P. In particular cr(P ) = br(P ) if br(P ) ≤ (d+1)/2.

Lemma 3. Fix a proper linear subspace L of Pm, an integer d ≥ 2 and
a finite set E ⊂ Pm \ L such that ](E) ≤ d. Then dim(〈νd(E ∪ L)〉) =
dim(〈νd(L)〉) + ](E). For any closed subscheme U ⊆ L we have 〈νd(U ∪
E)〉 ∩ 〈νd(L)〉 = 〈νd(U)〉. For any O ∈ 〈νd(L∪E)〉 \ 〈νd(E)〉, the set 〈{O} ∪
νd(E)〉 ∩ 〈νd(L)〉 is a unique point.

Proof. Since E is a finite set and E ∩ L = ∅, a general hyperplane H con-
taining L contains no point of E. Since E ∩ H = ∅, we have IE∪H(d) ∼=
IE(d− 1). Since ](E) ≤ d, we have h1(IE(d− 1)) = 0. Hence dim(〈νd(H ∪
E)〉) = dim(〈νd(H)〉) + ](E). Since L ⊆ H, we get dim(〈νd(E ∪ L)〉) =
dim(〈νd(L)〉)+](E). Grassmann’s formula give 〈νd(L)〉∩〈νd(E)〉 = ∅. Hence
〈νd(U ∪ E)〉 ∩ 〈νd(L)〉 = 〈νd(U)〉 for any U ⊆ L. Fix any O ∈ 〈νd(L ∪ E)〉 \
〈νd(E)〉. Since O /∈ 〈νd(E)〉, we have dim(〈{O}∪νd(E)〉) = dim(〈νd(E))+1.
Since O ∈ 〈νd(L∪E)〉 and 〈νd(L)〉∩〈νd(E)〉 = ∅, Grassmann’s formula gives
that 〈{O} ∪ νd(E)〉 ∩ 〈νd(L)〉 is a unique point. �
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In the same way we get the following result.

Lemma 4. Fix a conic T ⊂ Pm, an integer d ≥ 5 and a finite set E ⊂ Pm\T
such that ](E) ≤ d− 1. Then dim(〈νd(E ∪T )〉) = dim(〈νd(T )〉) + ](E). For
any closed subscheme U ⊆ T we have 〈νd(U ∪E)〉 ∩ 〈νd(T )〉 = 〈νd(U)〉. For
any O ∈ 〈νd(T ∪ E)〉 \ 〈νd(E)〉, the set 〈{O} ∪ νd(E)〉 ∩ 〈νd(T )〉 is a unique
point.

The following lemma was proved (with D a hyperplane) in [2], Lemma
8. The same proof works for an arbitrary hypersurface D of Pm (see also
Remark 2 below).

Lemma 5. Fix P ∈ Pn. Assume the existence of zero-dimensional schemes
A,B ⊂ Pm such that A 6= B, P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉, P /∈ 〈νd(A′)〉 for any
A′ ( A and P /∈ 〈νd(B′)〉 for any B′ ( B. Assume that B is reduced. As-
sume the existence of a positive integer t ≤ d and of a degree t hypersurface
D ⊂ Pm such that h1(IResD(A∪B)(d−t)) = 0. Set E := B\B∩D. Then νd(E)

is linearly independent, E = ResD(A) and every unreduced connected compo-
nent of A is contained in D. The linear space 〈νd(A)〉∩ 〈νd(B)〉 is the linear
span of its supplementary subspaces 〈νd(E)〉 and 〈νd(A∩D)〉 ∩ 〈νd(B ∩D)〉.

Remark 2. Take the set-up of Lemma 5.
Claim : We have 〈νd(A ∩ D)〉 ∩ 〈νd(B ∩ D)〉 6= ∅ and there is Q ∈

〈νd(A ∩D)〉 ∩ 〈νd(B ∩D)〉 such that P ∈ 〈{Q} ∪ νd(E)〉.
Proof of the Claim : Lemma 2 gives h1(IA∪B(d)) > 0. Since P /∈

〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(B′)〉 for any B′ ( B, we get E 6= A
and E 6= B, i.e. A∩D 6= ∅ and B ∩D 6= ∅. The residual exact sequence (1)
gives the following exact sequence:

0→ IResD(A∪B)(d− t)→ IA∪B(d)→ I(A∪B)∩,D,D(d)→ 0 (4)

From (4) and the definition of E we get the last assertion of Lemma 5. Since
P ∈ 〈νd(A)〉∩〈νd(B)〉, P /∈ 〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(B′)〉 for any
B′ ( B, νd(A) and νd(B) are linearly independent. Since h1(IA∪B(d)) > 0
(Lemma 2), the exact sequence (4) gives h1(D, I(A∪B)∩,D,D(d)) > 0. Hence
the linear independence of νd(A) and νd(B) implies 〈νd(A ∩D)〉 ∩ 〈νd(B ∩
D)〉 6= ∅. Since νd(A) is linearly independent, P ∈ 〈νd(A)〉 ∩ 〈νd(B)〉, P /∈
〈νd(A′)〉 for any A′ ( A and P /∈ 〈νd(B′)〉 for any B′ ( B, the sets 〈{P} ∪
νd(E)〉∩ 〈νd(A∩D)〉 and 〈{P}∪ νd(E)〉∩ 〈νd(A∩D)〉 are given by a unique
point. Call it QA and QB, respectively. Obviously P ∈ 〈νd(E) ∪ {QA}〉 ∩
〈νd(E) ∪ {QB}〉. Since P /∈ 〈νd(E)〉, we get QA = QB. Set Q := QA.

For any reduced projective set Y ⊂ Pr spanning Pr and any P ∈ Pr
let rY (P ) denote the minimal cardinality of a finite set S ⊂ Y such that
P ∈ 〈S〉. The positive integer rY (P ) is often called the Y -rank of P .
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Lemma 6. Assume m = 2. Fix integers w ≥ 3 and d ≥ 4w− 1. Take lines
L1, L2 ⊂ P2 such that L1 6= L2. Set {O} := L1 ∩ L2. Let A1 ⊂ L1 be the
degree w effective divisor of L1 with O as its support. Fix O2 ∈ L2 \ {O}
and let A2 ⊂ L2 the degree w effective divisor of L2 with O2 as its reduction.
Set A := A1 ∪A2. Fix P ∈ 〈νd(A)〉 such that P /∈ 〈νd(A′)〉 for any A′ ( A.
Then br(P ) = 2w and sr(P ) ≥ 2d + 3 − 2w. There is P as above with
sr(P ) = 2d+ 3− 2w.

Proof. Since deg(A) = 2w ≤ (d+ 1)/2 and P /∈ 〈νd(A′)〉 for any A′ ( A, A
is the only scheme evincing br(P ) (Remark 1).

(a) In this step we prove the existence of P as above and with sr(P ) ≤
2d+3−2w. Fix B1 ⊂ L1\{O} such that ](B1) = d−w+2 and B2 ⊂ L2\{P2}
such that ](B2) = d−w+1. Since O /∈ B1, deg(A1∪B1) = d+2 and νd(L1) is
a degree d rational normal curve in its linear span, the set 〈νd(A1)〉∩〈νd(B1)〉
is a single point (call it P ′). We have P ′ /∈ 〈W 〉 if either W ( A1 or W ( B1.
Since dim(〈νd(L1 ∪ L2)〉) = 2d, νd(A1 ∪ A2 ∪ B1 ∪ B2) spans 〈νd(L1 ∪ L2)〉
and dim(〈νd(B1∪B2)〉) = 2d+ 2−2w, the set 〈νd(A1∪A2)〉∩ 〈νd(B1∪B2)〉
is a line, M . Obviously P ′ ∈ M . Take as P any of the points of M \ {P ′}.
Since P ∈ 〈νd(B1 ∪B2)〉, we have sr(P ) ≤ 2d+ 3− 2w.

(b) To conclude the proof it is sufficient to prove that sr(P ) ≥ 2d+ 3−
2w. Assume sr(P ) ≤ 2d+ 2− 2w and fix B ⊂ P2 evincing sr(P ). We have
h1(IA∪B(d)) > 0 (Lemma 2) and deg(A ∪ B) ≤ 2d + 2. Hence either there
is a line D ⊂ P2 such that deg(D ∩ (A ∪ B)) ≥ d + 2 or there is a conic T
such that deg(T ∩ (A ∪B)) ≥ 2d+ 2 (Lemma 1).

(b1) Assume the existence of a line D such that deg(D ∩ (A ∪ B)) ≥
d+ 2. Since deg(ResD(A ∪B)) ≤ (2d− 2w + 2) + 2w − d− 2 = d, we have
h1(IResD(A∪B)(d− 1)) = 0. Hence Lemma 5 gives A ⊂ D, a contradiction.

(b2) Assume the existence of a conic T such that deg(T ∩ (A ∪ B)) ≥
2d+2. Since deg(A)+deg(B) ≤ 2d+2, we get A∩B = ∅, ](B) = 2d+2−2w
and A ∪B ⊂ T . We have deg(L2 ∩A) = w+ 1 and deg(L1 ∩A) = w. Since
w ≥ 3, the Bezout theorem implies that L1∪L2 is the unique conic containing
A. Hence T = L1 ∪ L2. Set Bi := B ∩ Li. First assume ](B1) ≥ d− w + 2.
Since ](B1) ≤ d − w, the scheme ResL1(A ∪ B) = A2 ∪ B2 has degree ≤ d.
Hence h1(IResL1

(A∪B)(d− 1)) = 0. Lemma 5 gives A ⊂ L1, a contradiction.

Now assume ](B1) ≤ d − w + 1. Let G ⊂ L1 be the degree w − 1 effective
divisor of L1 with O as its support. Since ResL2(A∪B) = G∪B1 has degree
≤ d, Lemma 5 implies A ⊂ L2, a contradiction. �

Lemma 7. Assume m = 2. Fix integers w ≥ 2 and d ≥ 4w+ 1. Take lines
L1, L2 ⊂ P2 such that L1 6= L2. Set {O} := L1 ∩ L2. Let A1 ⊂ L1 be the
degree w+ 1 effective divisor of L1 with O as its support. Fix O2 ∈ L2 \{O}
and let A2 ⊂ L2 the degree w effective divisor of L2 with O2 as its reduction.
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Set A := A1 ∪A2. Fix P ∈ 〈νd(A)〉 such that P /∈ 〈νd(A′)〉 for any A′ ( A.
Then br(P ) = 2w+ 1 and sr(P ) ≥ 2d+ 2− 2w. There is a P as above with
sr(P ) = 2d+ 2− 2w.

Proof. Copy the proof of Lemma 6. In step (b2) we have T = L1 ∪ L2,
because deg(L1 ∩A) = deg(L2 ∩A) = w + 1 ≥ 3). �

Lemma 8. Fix integers w ≥ 3, s ≥ 2w and assume d ≥ 2s − 1. Fix lines
D,R ⊂ Pm such that D 6= R and D ∩ R 6= ∅. Set {O} := D ∩ R. Let U be
the plane spanned by D ∪R. Let E ⊂ U be a general subset with cardinality
s − 2w. Let A1 ⊂ D be the zero-dimensional degree w subscheme of D
with O as its support. Fix O′ ∈ R \ {O} and call A2 the zero-dimensional
subscheme of R with O′ as its support and degree w. Set A := A1∪A2. There
is P ∈ 〈νd(A1 ∪A2 ∪E)〉 such that br(P ) = s and sr(P ) = 2d+ 3 + s− 4w.

Proof. We will always compute the residual schemes with respect to divisors
of U . Notice that A := A1 ∪ A2 ∪ E is curvilinear and hence it only has
finitely many subschemes. Hence there is P ∈ 〈νd(A1 ∪ A2 ∪ E)〉 such that
P /∈ 〈νd(F )〉 for any F ( A1 ∪A2 ∪E. Since deg(A) = s ≤ (d+ 1)/2, we get
sr(P ) = s and that A is the only subscheme of Pm evincing sb(P ) (Remark
1).

(a) Fix P ∈ 〈νd(A1 ∪ A2 ∪ E)〉 such that P /∈ 〈νd(F )〉 for any F (
A1 ∪ A2 ∪ E. In this step we prove that sr(P ) ≥ 2d+ 3 + s− 2w. Assume
sr(P ) ≤ 2d+2+s−2w. By [9], Proposition 3.1, or [15], subsection 3.2, there
is B ⊂ U evincing sr(P ). Since A is not reduced, we have A 6= B. Hence
h1(U, IA∪B(d)) > 0. Set W := A ∪ B. Since deg(W ) ≤ 2d + 2s − 6 < 3d,
either there is a line L ⊂ U such that deg(L∩W ) ≥ d+ 2 or there is a conic
T ⊂ U such that deg(T ∩W ) ≥ 2d+ 2 (Lemma 1).

(a1) Assume the existence of a line L ⊂ U such that deg(L ∩W ) ≥
d + 2. If h1(U, IResL(W )(d − 1)) = 0, then Lemma 5 gives A1 ∪ A2 ⊂
L, absurd. Hence h1(U, IResL(W )(d − 1)) > 0. Since deg(ResL(W )) ≤
2(d − 1) + 1, there is a line L′ ⊂ U such that deg(L′ ∩ ResL(W )) ≥ d + 1.
Since deg(ResL∪L′(W )) ≤ d − 1, Lemma 5 gives A1 ∪ A2 ⊂ L ∪ L′ and
ResL∪L′(A) = B \ B ∩ (L ∪ L′). Since w ≥ 3, the Bezout theorem gives
L∪L′ = D∪R. Hence E ⊂ B and B \E ⊂ D∪R. Lemma 5 and Remark 2
applied to D∪R give the existence of Q ∈ 〈νd(A∩(D∪R))〉 such that A1∪A2

evinces br(Q), while B \ E evinces sr(Q). Since ](B \ E) ≤ 2d + 2 − 2w,
either ]((B \ E) ∩D) ≤ d+ 1− w or ]((B \ E) ∩R) ≤ d− w. First assume
]((B \ E) ∩ D) ≤ d + 1 − w. Since deg(ResR(A1 ∪ A2)) = w − 1, we have
h1(IResR((A∪B)∩(D∪R))(d− 1)) = 0. Hence Lemma 5 applied to A∩ (D∩R)

and B ∩ (D ∪ R) gives ResR(A1 ∪ A2) = ResR(B ∩ (D ∪ R)). Since B is
reduced, we get w ≤ 2, a contradiction.
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(a2) Now we assume the existence of a conic T ⊂ U such that deg(T ∩
W ) ≥ 2d+2. Since deg(ResT (W )) ≤ d−1, we have h1(IResT (W )(d−2)) = 0.

Hence the case t = 2 of Lemma 5 gives A1∪A2 ⊂ T and B\B∩T = ResT (A).
Since w ≥ 3, and A1 ∪ A2 ⊂ T , the Bezout theorem gives T = D ∪ R. We
work as in step (b1) (notice that in the case L ∪ L′ = D ∪ R we only used
that deg((L ∪ L′) ∩ (A ∪B)) ≥ 2d+ 2).

(b) In this step we check the existence of P ∈ 〈νd(A1 ∪ A2 ∪ E)〉 such
that P /∈ 〈νd(F )〉 for any F ( A1 ∪ A2 ∪ E and sr(P ) = 2d + 3 + s − 2w
and br(P ) = s. Lemma 6 gives the existence of O ∈ 〈νd(A1 ∪A2)〉 such that
sr(O) ≤ 2d+ 3− 2w and O /∈ 〈νd(G)〉 for any G ( A1 ∪A2. Take a general
P ∈ 〈{O}∪νd(E)〉. Obviously sr(P ) ≤ sr(O)+](E) ≤ 2d+3+s−2w. Step
(b) gives sr(P ) = 2d+ 3 + s− 2w. Assume br(P ) < s. Since br(P ) ≤ d+ 1,
there is a zero-dimensional scheme W ⊂ Pm such that deg(W ) = br(P ), P ∈
〈νd(W )〉 and P /∈ 〈νd(W ′)〉 for any W ′ (W . First assume W * A1∪A2∪F .
Lemma 2 gives h1(IA1∪A2∪E∪W (d)) > 0. Since bs(P ) + s ≤ 2d + 1, there
is a line L ⊂ Pm such that deg(L ∩ (A1 ∪ A2 ∪ E ∪W )) ≥ d + 2. As in
step (b1) we get a contradiction. Now assume W ( A1 ∪ A2 ∪ E. Set
A′ := (A1 ∪A2) ∩W . Lemma 3 gives 〈{P} ∪ νd(E)〉 ∩ 〈νd(A1 ∪A2)〉 = {O}
and 〈{P} ∪ νd(E′)〉 ∩ 〈νd(A1 ∪A2)〉 . Since P ∈ 〈νd(W )〉 and P /∈ 〈νd(W ′)〉
for any W ′ ( W , the set 〈{P} ∪ 〈νd(W ∩ E)〉 ∩ 〈νd(A′)〉, is a single point.
Hence E ⊆W and {O} ∈ 〈νd(A′)〉, contradicting the choice of O. �

Quoting Lemma 7 instead of Lemma 6 we get the following result.

Lemma 9. Fix integers w ≥ 2 and s ≥ 2w+1, Assume d ≥ 2s−1. Fix lines
D,R ⊂ Pm such that D 6= R and D ∩ R 6= ∅. Set {O} := D ∩ R. Let U be
the plane spanned by D ∪R. Let E ⊂ U be a general subset with cardinality
s− 2w − 1. Let A1 ⊂ D be the zero-dimensional degree w + 1 subscheme of
D with O as its support. Fix O′ ∈ R \ {O} and call A2 the zero-dimensional
subscheme of R with O′ as its support and degree w. Set A := A1∪A2. There
is P ∈ 〈νd(A1 ∪A2 ∪E)〉 such that br(P ) = s and sr(P ) = 2d+ 1 + s− 4w.

Proof of Theorem 1. Since the cases s = 2, 3 are true by [4], Theorems 32
and 37, we may assume s ≥ 4 (the case (s, r) = (3, 2d − 1) does not occur
in the statement of Theorem 1, because we assumed r ≤ 2d + s − 7; this
inequality is used in steps (d) and (e) below).

Notice that σs(Xm,d) \ σs−1(Xm,d) 6= ∅ (e.g., because s(m+ 1) <
(
m+d
m

)
).

Fix P ∈ σs(Xm,d)\σs−1(Xm,d) and write r := sr(P ). Since P /∈ σs−1(Xm,d)
we have r ≥ s. Since σs(Xm,d) 6= σs−1(Xm,d) a non-empty open subset
of σs(Xm,d) is formed by points with rank s. Hence to prove Theorem
1 we may assume r > s. By Remark 1 there is a unique degree s zero-
dimensional scheme A ⊂ Pm such that P ∈ 〈νd(A)〉 and this scheme is
smoothable. By Remark 1 there is no zero-dimensional scheme A1 ⊂ Pm
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such that deg(A1) < s and P ∈ 〈νd(A1)〉. Hence P has cactus rank s and
P /∈ 〈νd(A′)〉 for any A′ ( A. Since sr(P ) = r there is a finite set B ⊂ Pm
such that ](B) = r, P ∈ 〈νd(B)〉 and P /∈ 〈νd(B′)〉 for any B′ ( B. Set
W := A ∪ B. We have deg(W ) ≤ deg(A) + deg(B) = r + s and equality
holds if and only if A ∩ B = ∅. Lemma 2 gives h1(IW (d)) > 0. Hence
deg(W ) ≥ d + 2 (e.g., by [4], Lemma 34). Therefore σs,x(Xm,d) = ∅ if
s+ 1 ≤ x ≤ d− s+ 1.

We have σs,d−s+2(Xm,d) 6= ∅, because σs,d−s+2(X1,d) 6= ∅ by a theorem of
Sylvester ([9], [15], Theorem 4.1, or [4]) and for any line L ⊂ Pm and any
P ∈ 〈νd(L)〉 the symmetric rank and the border rank of P are the same with
respect to Xm,d or with respect to νd(L) ∼= X1,d ([15], subsection 3.2).

(a) In this step we prove that σs,r(Xm,d) 6= ∅ for every r ∈ {d − s +
3, . . . , d+s−2} such that r+s ≡ d (mod 2). Fix r ∈ {d−s+3, · · · , d+s−2}
such that r + s ≡ d (mod 2). Set b := (d + 2 + s − r)/2. Since r + s ≡ d
(mod 2), we have b ∈ Z. Since r ≤ d+s−2, we have b ≥ 2. Since r ≥ d−s+3,
we have b < s. Since d ≥ 2s − 2, we have r > s and hence 2b < d + 2. Fix
a line L ⊂ Pm and a connected zero-dimensional scheme Z ′ ⊂ L such that
deg(Z ′) = b. Take any Q ∈ 〈νd(Z ′)〉 such that Q /∈ 〈νd(Z ′′)〉 for any Z ′′ ( Z ′

(Q exists and the set of all such points Q is a non-empty open subset of a pro-
jective space of dimension deg(Z ′)−1, because Z ′ is a divisor of the smooth
curve L). Fix any set E ⊂ Pm \L such that ](E) = s− b = (s+ r−d−2)/2.
Since E ∩ L = ∅, we have deg(Z ′ ∪ E) = s. Since d ≥ s − 1, we have
dim(〈νd(Z ′ ∪ E)〉) = s − 1. Since L is contained in a smooth curve, Z ′ is
curvilinear. Since E is a finite set, the scheme Z ′ ∪ E is curvilinear. We
claim that any zero-dimensional curvilinear subscheme W ⊂ Pm has only
finitely many subschemes. Indeed, W is contained in a smooth curve C and
hence we may write W =

∑x
i=1 aiQi for some x ∈ N \ {0}, ai ∈ N \ {0}

and Qi ∈ C. The subschemes of W are the effective divisors of C of the
form

∑x
i=1 biQi for some bi ∈ {0, . . . , ai}. Hence W has exactly

∏x
i=1(ai+1)

subschemes. Hence Z ′ ∪ E has only finitely many closed subschemes. Fix
any O ∈ 〈νd(Z ′ ∪ E)〉 such that O /∈ 〈νd(F )〉 for any F ( Z ′ ∪ E (O exists
and the set of all such points O is a non-empty open subset of the (s− 1)-
dimensional projective space 〈νd(Z ′ ∪ E)〉, because Z ′ ∪ E has only finitely
many subschemes and O /∈ 〈νd(L ∪ E′)〉 for any E′ ( E). Let A′ ⊂ L be
a set evincing sr(Q) with respect to the rational normal curve νd(L). A
theorem of Sylvester gives ](A′) = d − deg(Z ′) + 2 ([9], [15], Theorem 4.1,
or [4]). Set G := A′ ∪ E. Since E ∩ L = ∅, we have ](G) = r.

Claim 1: br(O) = s.
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Proof of Claim 1: We have O ∈ 〈νd(Z ′ ∪ E)〉 and O /∈ 〈νd(F )〉 for any
F ( Z ′ ∪ E. Apply Remark 1.

Claim 2: sr(O) = r and G evinces sr(O).
Proof of Claim 2: Since P ∈ 〈νd(G)〉, we have sr(P ) ≤ r. Since

s ≤ (d + 1)/2, Z ′ ∪ E is the only scheme evincing br(O). Since Z ′ is
not reduced, we get sr(P ) > s. Fix any U ⊂ Pm evincing sr(P ). Since
sr(P ) + br(P ) ≤ 2d+ 1, sr(P ) > br(P ) and Z ′ ∪E evinces br(O), [3], Theo-
rem 1, gives the existence of a line D ⊂ Pm such that (Z ′∪E)\D∩(Z ′∪E) =
U \U ∩D and every unreduced connected component of Z ′∪E is contained
in D. Since Z ′ is not reduced, we get D = L. Hence U \ U ∩ L = E. Since
O ∈ 〈νd(Z ′∪E)〉 ⊆ 〈νd(L∪E)〉, Lemma 3 gives that 〈{O}∪νd(E)〉∩〈νd(L)〉
is a single point (call it Q′). Since O ∈ 〈{Q} ∪ νd(E)〉 and Q ∈ 〈νd(L)〉, we
have Q′ = Q. Lemma 3 gives Q ∈ 〈νd(L ∩ U)〉. Since A′ evinces sr(Q), we
get sr(P ) = ](U) ≥ ](E) + ](A′), concluding the proof of Claim 2.

The point O shows that σs,r(Xm,d) 6= ∅ for any r ∈ {d+3−s, . . . , d+s−2}
such that r + s ≡ d (mod 2).

(b) Fix any integer r such that r ∈ {d−s+3, . . . , d+s−2} and r+s ≡ d+
1 (mod 2). In this step we prove that σs,r(Xm,d) = ∅. Assume the existence
of P ∈ σs,r(Xm,d). Fix A ⊂ Pm evincing br(P ) and B ⊂ Pm evincing
sr(P ). Since r > s we have A 6= B. As in step (a) we get the existence
of a line D ⊂ Pm such that deg((A ∪ B) ∩ D) ≥ d + 2, every unreduced
connected component of A is contained in D and ResD(A) = B \B∩D. Set
E := B\B∩D. By Lemma 3 the set 〈νd(D)〉∩〈νd(E)∪{P}〉 is a unique point,
O, and O ∈ 〈νd(A ∩D)〉 ∩ 〈νd(B ∩D)〉. Since deg(A) = deg(A ∩D) + ](E)
(resp. ](B) = ](B ∩D) + ](E)), A ∩D evinces br(P ) (resp. B ∩D evinces
sr(O)). The quoted theorem of Sylvester gives sr(O)+br(O) = d+2. Hence
s+ r = 2 · ](E) + sr(O) + br(O) ≡ d (mod 2), a contradiction.

(c) In this step we fix an integer r such that d + s − 1 ≤ r ≤ 2d +
1 − s. In order to obtain a contradiction we assume σs,r(Xm,d) 6= ∅ and
fix P ∈ σs,r(Xm,d). Take A ⊂ Pm evincing br(P ) and B ⊂ Pm evincing
sr(P ). Let A1 be the union of the connected components of A which are
not reduced. Since r > s, we have A1 6= ∅. Hence deg(A1) ≥ 2. Lemma 2
gives h1(IA∪B(d)) > 0. Since deg(A ∪ B) ≤ s + r ≤ 2d + 1, there is a line
D ⊂ Pm such that deg((A ∪B) ∩D) ≥ d+ 2 (Lemma 1 or [4], Lemma 34).
Set E := B \ B ∩ D. Since e := deg(ResD(A ∪ B)) ≤ r + s − d − 2 ≤ d,
we have h1(IResD(A∪B)(d − 1)) = 0. Hence Lemma 5 gives A1 ⊂ D and

A \ A ∩ D = E, e = ](E) and e = deg(A \ A ∩ D) ≤ s − deg(A1). Since
A evinces br(P ), the set 〈νd(E) ∪ {P}〉 ∩ 〈νd(A1)〉 is a unique point, O.
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Sylvester’s theorem gives sr(O) ≤ d. Since P ∈ 〈νd(E) ∪ {O}〉, we get
sr(P ) ≤ e+ d ≤ d+ s− 2, a contradiction.

(d) In this step we prove that σs,r(Xm,d) 6= ∅ for every integer r such
that 2d+ 2− s ≤ r ≤ 2d+ s− 7 and r + s ≡ 0 (mod 2). Set b := (2d+ 2 +
s− r)/2. Since r + s ≡ 0 (mod 2), we have b ∈ Z. Since r ≤ 2d+ s− 7, we
have b ≥ 9/2 and hence b ≥ 5. Since r ≥ 2d+ 2− s, we have b ≤ s. We may
assumem = 2 ([15], subsection 3.2). Fix a smooth conic C ⊂ P2, a connected
zero-dimensional scheme A1 ⊂ C such that deg(A1) = b and a general set
E ⊂ P2 \C such that ](E) = s− b. We have ](E) ≤ d− 1. Set A := A1 ∪E
and {O′} := (A1)red. Fix P ∈ 〈νd(A)〉 such that P /∈ 〈νd(F )〉 for any scheme
F ( A (P exists, because A is curvilinear and dim(〈νd(A)〉) = deg(A)− 1).
Since s = deg(A) ≤ (d + 1)/2, then br(P ) = s and A is the only scheme
evincing br(P ) (Remark 1). Lemma 4 gives that the set 〈{P}∪E〉∩〈νd(C)〉
is a unique point, O, that O ∈ 〈νd(A1)〉 and that sr(O) = b. Since b ≤ d+1,
the quoted theorem of Sylvester gives rνd(C)(O) = 2d+2−b. FixB1 ⊂ C such
that νd(B1) evinces rνd(C)(O), i.e. take B1 ⊂ C such that ](B1) = 2d+2−b,
O ∈ 〈νd(B1)〉 and O /∈ 〈νd(F )〉 for any F ( B1. We have P ∈ 〈νd(B1 ∪E)〉.
Lemma 4 also gives P /∈ 〈νd(G)〉 for any G ( B1 ∪E. Since br(P ) = s, P ∈
〈νd(B1 ∪E)〉 and ](B1 ∪E) = r, to prove that σs,r(Xm,d) 6= ∅ it is sufficient
to prove that sr(P ) ≥ r. Assume sr(P ) < r and take B evincing sr(P ).
We have h1(IA∪B(d)) > 0 (Lemma 2). Since deg(A ∪ B) ≤ s+ r − 1 < 3d,
either there is a line D ⊂ P2 such that deg(D ∩ (A∪B)) ≥ d+ 2 or there is
a conic T such that deg(T ∩ (A ∪B)) ≥ 2d+ 2 (Lemma 1).

(d1) Here we assume the existence of a line D ⊂ P2 such that deg(D ∩
(A∪B)) ≥ d+2. If h1(IResD(A∪B)(d−1)) = 0, then Lemma 5 gives A1 ⊂ D,

a contradiction. Hence h1(IResD(A∪B)(d − 1)) > 0. Since deg(ResD(A ∪
B)) ≤ r+ s− 1− d− 2 ≤ 2(d− 1) + 1, Lemma 1 or [4], Lemma 34, give the
existence of a line D′ ⊂ P2 such that deg(D′∩ResD(A∪B)) ≥ d+ 1. Hence
deg((A ∪ B) ∩ (D ∪ D′)) ≥ 2d + 3. Hence deg(ResD∪D′(A ∪ B)) ≤ d − 1.
Hence h1(IResD∪D′ (A∪B)(d − 2)) = 0. Lemma 5 gives A1 ⊂ D ∪D′. Since

C is an irreducible conic containing A1, the Bezout theorem gives b ≤ 4, a
contradiction.

(d2) Now assume the existence of a conic T ⊂ P2 such that deg(T ∩(A∪
B)) ≥ 2d+ 2. Since deg(ResT (A∪B)) ≤ d− 1, we have h1(IResT (A∪B)(d−
2)) = 0. Hence the case t = 2 of Lemma 5 gives A1 ⊂ T and ResT (A) =
B \ B ∩ T . Since b ≥ 5, C is irreducible and A1 ⊂ C, the Bezout theorem
gives T = C. We get B \B ∩ C = E. Hence ](B ∩ C) ≤ 2d+ 1− b. Hence
deg(C ∩ (A ∪B)) ≤ 2d+ 1, a contradiction.

(e) In this step we prove that σs,r(Xm,d) 6= ∅ for every integer r such
that 2d+ 3− s ≤ r ≤ 2d+ s− 7 and r+ s ≡ 1 (mod 2) and hence conclude
the proof of Theorem 1. Set c := (2d+ 3 + s− r)/2 and w := bc/2c. Since
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r + s ≡ 1 (mod 2), we have c ∈ Z. Since r ≥ 2d + 3 − s, we have c ≤ s.
Since r ≤ 2d+ s− 7, we have c ≥ 5. If c is odd, then we apply Lemma 9. If
c is even, then we apply Lemma 8. �
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