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INEQUALITIES FOR CONVEX FUNCTIONS

HAJRUDIN FEJZIĆ AND FUAD ŽIVOJEVIĆ

Abstract. We consider inequalities of the form
∑m

i=0 aiϕ(bi) ≥ 0, and
we give necessary and sufficient conditions on the nodes b0, b1, . . . , bm,
and the weights ai for such an inequality to be true for every real convex
function ϕ. In the case the nodes are integers with b0 the smallest of
them, then

∑m
i=0 aiϕ(bi) ≥ 0 if and only if x−b0

∑m
i=0 aix

bi/(x − 1)2 is
a polynomial with positive coefficients.

1. Introduction

A real function ϕ is convex if and only if ϕ(v)−ϕ(u)
v−u ≤ ϕ(w)−ϕ(v)

w−v whenever
u < v < w are in its domain. The last inequality can be replaced by the
equivalent form

(w − v)ϕ(u) + (u− w)ϕ(v) + (v − u)ϕ(w) ≥ 0. (1)

Convex functions are extremely useful in proving inequalities mainly be-
cause of Jensen’s inequality, a finite form of which states that if ϕ is a
real convex function, if the numbers x1, x2, . . . , xn are in its domain, if

the weights ai are positive, then ϕ
(∑n

i=1 aixi∑n
i=1 aj

)
≤

∑n
i=1 aiϕ(xi)∑n

i=1 aj
. Another in-

equality for convex functions is the so called Karamata’s inequality. Let
x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn be in the domain of a con-
vex function ϕ. Suppose that

∑n
i=k yi ≤

∑n
i=k xi for k = 2, 3, . . . , n and

that
∑n

i=1 yi =
∑n

i=1 xi. Then Karamata’s inequality is that
∑n

i=1 ϕ(xi) ≥∑n
i=1 ϕ(yi). The reader can find further information on Karamata’s and re-

lated inequalities in [1], which contains an extensive bibliography on the
subject.

The conclusions of Jensen’s and Karamata’s inequalities are of the form∑m
i=0 aiϕ(bi) ≥ 0 for every appropriate convex function. Because 1 and −1

are convex,
∑m

i=0 ai = 0 and because x and −x are convex,
∑m

i=0 aibi = 0.
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In this paper we show that such an inequality is true for every real convex
function ϕ provided it holds for the m+ 1 convex functions

gk(x) =

{
0 x < bk

x− bk x ≥ bk
.

Then we use that result to prove Jensen’s and Karamata’s inequalities. Next
we present a simple characterization when the nodes are integers (or if the
spacing between nodes are integer multiples of some h). The result in this
case is that

∑m
i=0 aiϕ(bi) ≥ 0 for every real convex function if and only if

x−b0
∑m

i=0 aix
bi/ (x−1)2 is a polynomial with positive coefficients. Two ex-

amples are given to illustrate the “effectiveness” of this characterization. We
finish the paper with a brief discussion of inequalities for n convex functions.

2. Necessary and sufficient conditions

If f is a function, then we denote by [f : u, v, w] the operator

[f : u, v, w] = (w − v)f(u) + (u− w)f(v) + (v − u)f(w).

From (1) it follows that ϕ is convex if and only if [ϕ : u, v, w] ≥ 0 whenever
u < v < w are in its domain. One obvious property of this operator is that
[cx + d : u, v, w] = 0. This property will be used in the proof of Theorem 2
below.

Proposition 1. If
∑m

i=0 ai = 0 and
∑m

i=0 aibi = 0 where b0 < b1 < · · · < bm,
then there are numbers α0, . . . , αm−2 such that for every function f we have∑m

i=0 aif(bi) =
∑m−2

j=0 αj [f : bj , bj+1, bj+2].

Proof. Let α0 = a0/(b2 − b1); then we can write
∑m

i=0 aif(bi) − α0[f :
b0, b1, b2] as

∑m
i=1 a

′
if(bi). Notice that

∑m
i=1 a

′
i =

∑m
i=0 ai − α0((b2 − b1) +

(b0 − b2) + (b1 − b0)) = 0 and similarly
∑m

i=1 a
′
ibi =

∑m
i=0 aibi − α0((b2 −

b1)b0 + (b0 − b2)b1 + (b1 − b0)b2) = 0. Next let α1 = a′1/(b3 − b2); then

m∑
i=0

aif(bi)− α0[f : b0, b1, b2]− α1[f : b1, b2, b3]

=

m∑
i=1

a′if(bi)− α1[f : b1, b2, b3] =

m∑
i=2

a′′i f(bi)

with
∑m

i=2 a
′′
i = 0 and

∑m
i=2 a

′′
i bi = 0. Continuing this way we obtain∑m

i=0 aif(bi)−
∑m−2

j=0 αj [f : bj , bj+1, bj+2] = cf(bm−1)+df(bm) with c+d = 0
and cbm−1 + dbm = 0. But c + d = 0 and cbm−1 + dbm = 0 if and only if
c = d = 0. �

Now we are ready to prove our main result.
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Theorem 2. Suppose that
∑m

i=0 ai = 0 and
∑m

i=0 aibi = 0, then the inequa-
lity

∑m
i=0 aiϕ(bi) ≥ 0 holds for every real convex function with the nodes, bi,

in its domain if and only if it holds for

gk(x) =

{
0 x < bk

x− bk x ≥ bk
for k = 0, 1, . . . ,m.

Proof. Since gk(x) are convex functions, we need only to prove the ⇐=
part. We can assume that all the nodes are distinct and that b0 < b1 <
· · · < bm. With this additional assumption, it is enough to assume that∑m

i=0 aigk(bi) ≥ 0 for k = 1, . . . ,m−1. Let α0, α1, . . . , αm−2 be from Propo-
sition 1. Then for each k = 1, . . . ,m− 1.

m∑
i=0

aigk(bi) =
m−2∑
j=0

αj [gk : bj , bj+1, bj+2]

= αk−1[gk : bk−1, bk, bk+1] = αk−1(bk − bk−1)(bk+1 − bk) ≥ 0

if and only if αk−1 ≥ 0. (The second equality follows from [cx+d : u, v, w] =
0.) Thus αk ≥ 0 for k = 0, . . . ,m − 2. Now let ϕ be any real convex func-

tion with the nodes in its domain. Then
∑m

i=0 aiϕ(bi) =
∑m−2

j=0 αj [ϕ :

bj , bj+1, bj+2] ≥ 0 since each αj ≥ 0 and ϕ is convex. �

Since
∑m

i=0 aigk(bi) =
∑

bi>bk
ai(bi − bk), an immediate consequence of

Theorem 2 is the following result.

Corollary 3. If
∑m

i=0 ai = 0 and
∑m

i=0 aibi = 0, then
∑m

i=0 aiϕ(bi) ≥ 0 for
every real convex function, ϕ, with the nodes in its domain if and only if∑

bi>bk
ai(bi−bk) ≥ 0 for k = 0, 1, . . . ,m. The inequality

∑
bi>bk

ai(bi−bk) ≥
0 can be replaced with

∑
bi<bk

ai(bi − bk) ≤ 0.

The second part follows from the fact that
∑
ai(bi − bk) = 0.

3. Proofs of Jensen’s and Karamata’s inequalities

In this section we will give proofs of Jensen’s and Karamata’s inequalities
based on our main result.

Corollary 4 (Jensen’s inequality). If ϕ is a real convex function defined on
[c, d], x1, x2, . . . , xn in its domain, the weights ai positive, then

n∑
i=1

aiϕ(xi)−
( n∑

j=1

aj

)
ϕ

(∑n
i=1 aixi∑n
j=1 aj

)
≥ 0.



190 HAJRUDIN FEJZIĆ AND FUAD ŽIVOJEVIĆ

Proof. Let x =

∑n
i=1 aixi∑n
j=1 aj

. Since c ≤ xi ≤ d and ai > 0, it follows that

c ≤ x ≤ d. If we write Jensen’s inequality in the form
∑
ciϕ(di) ≥ 0, then

it is clear that
∑
ci = 0 and

∑
cidi = 0 so that Corollary 3 applies. Let

z ∈ {x, x1, . . . , xn}. If z ≥ x, by Corollary 3 first part we need to check
validity of

∑
xi>z ai(xi − z) ≥ 0 while if z < x, by the second part of

Corollary 3 we need to check validity of
∑

xi<z ai(xi− z) ≤ 0. Both of these
inequalities are true since by assumption each ai is positive. �

Before we prove Karamata’s inequality we will prove the following lemma
on majorized sequences which is interesting in its own right.

Lemma 5. Let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn. If
∑n

i=r yi ≤∑n
i=r xi for r = 1, 2, 3, . . . , n, then for every real number z,

∑
xi≥z (xi − z) ≥∑

yi≥z (yi − z) .

Proof. The case z > xn is trivial. If xn ≥ z ≥ yn, then
∑

xi≥z (xi − z) −∑
yi≥z (yi − z) =

∑
xi≥z (xi − z) ≥ 0. It remains to verify the case z < yn.

Let 0 ≤ k ≤ n − 1 denote the number of x′s that are less than or equal z,
and let 0 ≤ r ≤ n− 1 denote the number of y′s that are less than or equal
z. Since both sequences are increasing∑

xi≥z
(xi − z)−

∑
yi≥z

(yi − z) =
n∑

i=k+1

(xi − z)−
n∑

i=r+1

(yi − z).

If k = r, then the last equality reduces to
∑n

i=r+1 xi −
∑n

i=r+1 yi which is
positive by our assumption. If k > r, then

∑n
i=k+1(xi− z)−

∑n
i=r+1(yi− z)

can be written as
∑n

i=r+1(xi − yi) −
∑k

i=r+1(xi − z). By our assumption∑n
i=r+1(xi − yi) ≥ 0, while

∑k
i=r+1(xi − z) ≤ 0 by the choice of k. Thus in

this case
∑

xi≥z (xi − z) ≥
∑

yi≥z (yi − z) . If k < r, then
∑n

i=k+1(xi − z)−∑n
i=r+1(yi − z) =

∑n
i=r+1(xi − yi) +

∑r
i=k+1(xi − z) which again is positive

by our assumption and the choice of k. �

Corollary 6 (Karamata’s inequality). Let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤
y2 ≤ · · · ≤ yn be in the domain of a real convex function ϕ. Suppose
that

∑n
i=k yi ≤

∑n
i=k xi for k = 2, 3, . . . , n and

∑n
i=1 yi =

∑n
i=1 xi. Then∑n

i=1 ϕ(xi) ≥
∑n

i=1 ϕ(yi).

Proof. If we write Karamata’s inequality
∑n

i=1 ϕ(xi) ≥
∑n

i=1 ϕ(yi) as 0 ≤∑n
i=1 ϕ(xi)−

∑n
i=1 ϕ(yi) =

∑2n
i=1 ciϕ(di), then clearly

∑
ci = 0 while

∑
cidi

=
∑n

i=1 xi −
∑n

i=1 yi = 0 by our assumption. Now by Corollary 3 we have
to prove that if z ∈ {xi, yi}ni=1, then

∑
xi>z(xi−z)−

∑
yi>z(yi−z) ≥ 0. But

by Lemma 5 the last inequality is true for any z. �
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The next result states that these type of inequalities remain true if the
nodes are transformed by a linear function.

Corollary 7. Let c 6= 0 and d be real numbers. The nodes {bi}mi=0 and the
corresponding weights {ai}mi=0 satisfy

∑m
i=0 aiϕ(bi) ≥ 0 for every real convex

function ϕ with the nodes in its domain, if and only if
∑m

i=0 aiψ(cbi+d) ≥ 0
for every real convex function ψ with the nodes {cbi + d}mi=0 in its domain.

Proof. First suppose that
∑m

i=0 aiϕ(bi) ≥ 0 for every real convex function.
As was pointed out earlier this assumption implies that

∑m
i=0 ai = 0 and∑m

i=0 aibi = 0. Consequently
∑m

i=0 ai(cbi + d) = 0. Assume that for each
i = 0, 1, . . . ,m, cbi +d is in the domain of a convex function ψ. By Corollary
3 we have to verify the inequality

∑
cbj+d>cbk+d aj((cbj + d)− (cbk + d)) ≥ 0

for each k = 0, 1, . . . ,m. We have∑
cbj+d>cbk+d

ajc(bj − bk) =

{
c
∑

bj>bk
aj(bj − bk) if c ≥ 0

c
∑

bj<bk
aj(bj − bk) if c < 0

≥ 0

again by Corollary 3 applied to ϕ. The converse follows from this case applied
to the pair 1

c and −dc . �

4. Nodes whose differences are integers

If bi − b0 is an integer for each i = 1, 2, . . . ,m, then for any function f
we can write

∑m
i=0 aif(bi) =

∑R
j=0 ajf(b0 + j) where R = bm − b0, and

aj =

{
ai if b0 + j = bi
0 otherwise

. If in addition, b0 < b1 < · · · < bm,
∑m

i=0 ai = 0

and
∑m

i=0 aibi = 0, the statement of Proposition 1, for the function f(t) = xt,
takes on the simple form

m∑
i=0

aix
bi =

m∑
i=0

aif(bi) =

R∑
j=0

ajf(b0 + j)

=
R−2∑
j=0

αj [x
t : b0 + j, b0 + j + 1, b0 + j + 2] = xb0(x− 1)2(

R−2∑
j=0

αjx
j)

where the last equality follows from [xt : u, u+ 1, u+ 2] = xu(x2− 1). Recall
that the numbers αj from the statement of Proposition 1 depend only on
the nodes and the weights. In particular if ϕ is any convex function defined
on [c, d] that contains all of the nodes, then for the same αjs we also have

m∑
i=0

aiϕ(bi) =

R−2∑
j=0

αj [ϕ : b0 + j, b0 + j + 1, b0 + j + 2].
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Now it is easy to modify the proof of Theorem 2 to obtain our next result.

Theorem 8. Suppose that the nodes are integers, b0 the smallest of them
and {b0, b1, . . . , bm} ⊆ [p, q]. Then

∑m
i=0 aiϕ(bi) ≥ 0 for every real convex

function ϕ defined on [p, q] if and only if x−b0
∑m

i=0 aix
bi/(x − 1)2 is a

polynomial with positive coefficients.

Proof. First notice that if h(x) = x−b0
∑m

i=0 aix
bi , then

∑m
i=0 ai = 0 and∑m

i=0 aibi = 0 if and only if h(1) = h′(1) = 0 if and only if h(x)/(x − 1)2

is a polynomial. Thus under either condition
∑m

i=0 aiϕ(bi) ≥ 0 for every

real convex function ϕ or x−b0
∑m

i=0 aix
bi/(x− 1)2 is a polynomial, we have∑m

i=0 ai = 0 and
∑m

i=0 aibi = 0. As in the proof of Theorem 2 we may
assume that b0 < b1 < · · · < bm. By Proposition 1 there are numbers
α0, α1, . . . , αR−2 such that

m∑
i=0

aiϕ(bi) =

R−2∑
j=0

αj [ϕ : b0 + j, b0 + j + 1, b0 + j + 2] (2)

and

m∑
i=0

aix
bi = xb0(x− 1)2(

R−2∑
j=0

αjx
j). (3)

Suppose each αj is positive and let ϕ be convex. Then for each j =
0, 1, . . . , R − 2, [ϕ : b0 + j, b0 + j + 1, b0 + j + 2] ≥ 0 and hence each term
of the first equation (2) is positive. Thus

∑m
i=0 aiϕ(bi) ≥ 0. This proves the

⇐= part. To prove the =⇒ part, for 1 ≤ k ≤ R− 1, we consider the convex
functions

ϕ(x) = gk(x) =

{
0 x < b0 + k

x− (b0 + k) x ≥ b0 + k
.

As in the proof of Theorem 2 the sum

m∑
i=0

aiϕ(bi) =
R−2∑
j=0

αj [ϕ : b0 + j, b0 + j + 1, b0 + j + 2]

reduces to

αk−1[ϕ : b0 + k − 1, b0 + k, b0 + k + 1] = αk−1 ≥ 0.

Thus α0, α1, . . . , αR−2 are all positive, and hence from (3) it follows that
x−b0

∑m
i=0 aix

bi/(x− 1)2 is a polynomial with positive coefficients. �

If there is an h such that bk − b0 is an integer multiple of h, (which is the
case if all the nodes are rational numbers,) then Corollary 7 and Theorem
8 produce the following result.
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Corollary 9. Suppose there is an h such that for b0 < b1 < · · · < bm we have
bk−b0 is an integer multiple of h for k = 1, . . . ,m. Then

∑m
i=0 aiϕ(bi) ≥ 0 for

every real convex function ϕ defined on [b0, bm] if and only if
∑m

i=0 aix
bi−b0

h /
(x− 1)2 is a polynomial with positive coefficients.

Proof. First we apply Corollary 7 with c = 1
h and d =− b0

h . Thus
∑m

i=0 aiϕ(bi)
≥ 0 for every real convex function ϕ defined on [b0, bm] if and only if∑m

i=0 aiψ( bi−b0h ) ≥ 0 for every real convex function ψ defined on [0, bm−b0h ].

Since by the assumption bi−b0
h are integers, from Theorem 8 we obtain that∑m

i=0 aiψ( bi−b0h ) ≥ 0 for every real convex function defined on [0, bm−b0
h ]

if and only if
∑m

i=0 aix
bi−b0

h /(x − 1)2 is a polynomial with positive coeffi-
cients. �

We finish this section with another application of Theorem 8. For every
real convex function ϕ on real line

43ϕ(5)− 82ϕ(4) + 63ϕ(3)− 51ϕ(2) + 26ϕ(1) + ϕ(0) ≥ 0.

This can be verified by Karamata’s inequality but it is much easier to apply
Theorem 8. All we need to check is that

(43x5 − 82x4 + 63x3 − 51x2 + 26x+ 1)/(x− 1)2

is a polynomial with all positive coefficients. Indeed

43x5 − 82x4 + 63x3 − 51x2 + 26x+ 1 = (x− 1)2(1 + 28x+ 4x2 + 43x3).

On the other hand it is not true that

43ϕ(5)− 87ϕ(4) + 73ϕ(3)− 56ϕ(2) + 26ϕ(1) + ϕ(0) ≥ 0

for every convex function because this time

43x5 − 87x4 + 73x3 − 56x2 + 26x+ 1 = (x− 1)2(1 + 28x− x2 + 43x3).

5. Inequalities for n convex functions

In this section we briefly discuss inequalities for n convex functions. Con-
vexity can be described via divided differences. If u, v, and w are three

distinct points, then [u, v, w : f ] = f(u)
(u−v)(u−w) + f(v)

(v−u)(v−w) + f(w)
(w−u)(w−v) is

called the divided difference of f at points u, v, and w. A function is convex
if and only if [u, v, w : f ] ≥ 0 for any three distinct points u, v, and w from
its domain. If we consider a set V of n+ 1 distinct points, then we say that

f is n convex if [V : f ] =
∑

u∈V
f(u)∏

v 6=u(u−v) ≥ 0 for any such set V from

the domain of f. Thus being convex is equivalent to being 2 convex. One
can see that increasing and 1 convex are equivalent concepts and the same
is true for nonnegative and 0 convex. An interested reader can find more
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information about n convex functions in [2]. Proposition 1 was instrumental
in obtaining our results for convex functions. For n convex functions this
proposition takes on the following form.

Proposition 10. Suppose that
∑m

i=0 aib
k
i = 0 for k = 0, 1, . . . , n − 1. If

b0 < b1 < · · · < bm, then there are numbers α0, . . . , αm−n such that for
every function f we have

∑m
i=0 aif(bi) =

∑m−n
j=0 αj [bj , bj+1, . . . , bj+n : f ].

Now in the case of increasing functions (the case n = 1) the role of
the functions gk(x) in the statement of Theorem 2 are played by increasing

functions gk(x) =

{
0 x < bk
1 x ≥ bk

and Corollary 3 takes on the following form.

Theorem 11. Suppose that
∑m

i=0 ai = 0. If b0 ≤ b1 ≤ · · · ≤ bm; then∑m
i=0 aif(bi) ≥ 0 for every increasing function f if and only if

∑m
i=k ai ≥ 0

for k = 1, 2, . . . ,m.

Unfortunately the inequalities for n convex for n ≥ 3 are not as nice as
those for convex functions. For example in the case of integer nodes only
the easy implication of Theorem 8 is true.

Theorem 12. Let m, n be integers with m ≥ n + 1. Suppose that p =
b0 < b1 < · · · < bm = q are integers. If x−p

∑m
i=0 aix

bi/(x − 1)n is a
polynomial with positive coefficients, then

∑m
i=0 aiϕ(bi) ≥ 0 for every real n

convex function ϕ defined on [p, q].

We omit the proofs since they are very similar to the proofs of the cor-
responding results for convex functions. But the converse fails for n ≥ 3 as
the following example shows. We will show that

−5f(0) + 16f(1)− 22f(2) + 20f(3)− 13f(4) + 4f(5) ≥ 0 (4)

for every 3 convex function defined on [0, 5]. Since

−5 + 16x− 22x2 + 20x3 − 13x4 + 4x5 = (x− 1)3(5− x+ 4x2)

this will be a counterexample to the converse of Theorem 12. Let g(x) =
f(x/2); then g is 3 convex on [0, 10] and

−5g(0) + 16g(2)− 22g(4) + 20g(6)− 13g(8) + 4g(10) ≥ 0 (5)

since by Theorem 12 the corresponding polynomial

−5 + 16x2 − 22x4 + 20x6 − 13x8 + 4x10 = (x2 − 1)3(5− x2 + 4x4)

= (x− 1)3(5 + 15x+ 14x2 + 2x3 + x4 + 11x5 + 12x6 + 4x7).

Now the inequality (4) follows from (5).
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