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INEQUALITIES FOR CONVEX FUNCTIONS

HAJRUDIN FEJZIC AND FUAD ZIVOJEVIC

ABSTRACT. We consider inequalities of the form }1" j aip(b;) > 0, and
we give necessary and sufficient conditions on the nodes bg, b1, ..., bm,
and the weights a; for such an inequality to be true for every real convex
function ¢. In the case the nodes are integers with by the smallest of
them, then 37 aip(b;) > 0 if and only if 70 37 a;z% /(z — 1)? is
a polynomial with positive coefficients.

1. INTRODUCTION

A real function ¢ is convex if and only if @(vg :i(u) < “O(wu)):f(v) whenever
u < v < w are in its domain. The last inequality can be replaced by the

equivalent form

(w —v)p(u) + (u—w)p(v) + (v —u)p(w) = 0. (1)

Convex functions are extremely useful in proving inequalities mainly be-
cause of Jensen’s inequality, a finite form of which states that if ¢ is a
real convex function, if the numbers x1,xs,...,x, are in its domain, if

Z?:l aiwi) < Z?;l a;p(x;)

n .
i=1%j

. Another in-

the weights a; are positive, then ¢ ( e
equality for convex functions is the so called Karamata’s inequality. Let
1 <29 < --- < zpand y1 < yo < - < gy, be in the domain of a con-
vex function ¢. Suppose that >, y; < D", x; for k = 2,3,...,n and
that Y., y; = > ..y «;. Then Karamata’s inequality is that > ;" | o(z;) >
Y1 ¢(yi). The reader can find further information on Karamata’s and re-
lated inequalities in [1], which contains an extensive bibliography on the
subject.

The conclusions of Jensen’s and Karamata’s inequalities are of the form
Yot aip(bi) > 0 for every appropriate convex function. Because 1 and —1
are convex, Zﬁo a; = 0 and because z and —x are convex, Z?lo a;b; = 0.
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In this paper we show that such an inequality is true for every real convex
function ¢ provided it holds for the m + 1 convex functions

gk(x)_{o r<by

.’L‘—bk .%'Zbk

Then we use that result to prove Jensen’s and Karamata’s inequalities. Next
we present a simple characterization when the nodes are integers (or if the
spacing between nodes are integer multiples of some h). The result in this
case is that y ;" a;p(b; ) > 0 for every real convex function if and only if

xS a;a%/ (v —1)? is a polynomial with positive coefficients. Two ex-
amples are given to illustrate the “effectiveness” of this characterization. We
finish the paper with a brief discussion of inequalities for n convex functions.

2. NECESSARY AND SUFFICIENT CONDITIONS

If f is a function, then we denote by [f : u, v, w] the operator

[f w0, w] = (w—0) f(u) + (u—w)f(v) + (v —u)f(w).
From (1) it follows that ¢ is convex if and only if [¢ : u,v,w] > 0 whenever
u < v < w are in its domain. One obvious property of this operator is that
[cx +d : w,v,w] = 0. This property will be used in the proof of Theorem 2
below.

Proposition 1. If Y ja; =0 and Y ;" a;b; = 0 where by < by < -+ < by,
then there are numbers oy, . .., am,m_o such that for every function f we have
Sitgaif (bi) = Y7507 ylf < by bie1s bjsal-

Proof. Let ap = ao/(bg — b1); then we can write Y ;" a;f(b;) — ao[f :
bo, b1, bo] as >, alf(b;). Notice that Y 1" a) = S a; — ap((ba — b1) +

(b — b2) 4+ (b1 — b)) = 0 and similarly > ", alb; = > " a;ib; — ao((b2 —
bl)bo + (bo — b2)b1 + (bl — bo)bQ) = 0. Next let o = al/(bg — bg); then

Zazf ) — aolf : bo, b1, bo] — cu[f : by, ba, by

= Za f(bi) —aalf : b1,b2,b3] = Zailf(bi)

with Y " oa = 0 and )", ;’b = 0. Continuing this way we obtain

>imgaif(bi)— Z] _0 a;[f 1 bj,bj41, bjpo] = cf (bp—1)+df (b)) with c+d =0
and cb,,—1 + db,, = 0. But ¢+ d = 0 and ¢b,,,—1 + db,, = 0 if and only if
c=d=0. O

Now we are ready to prove our main result.
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Theorem 2. Suppose that > " qa; =0 and Y. a;b; = 0, then the inequa-
lity > o aip(b;) > 0 holds for every real convex function with the nodes, b;,
in its domain if and only if it holds for

fork=0,1,...,m

Proof. Since gi(x) are convex functions, we need only to prove the <=
part. We can assume that all the nodes are distinct and that by < b; <

- < by,. With this additional assumption, it is enough to assume that
o Dalgk(b )>0fork=1,...,m—1. Let ag, 1, ..., Qm—2 be from Propo-
sition 1. Then for each k = 1, co,m— 1.

m—2
Zazgk Z a] 9k : b]7 b]Jrla b]+2]

= akfl[gk b1, b, bit1] = g1 (b — bg—1) (b1 — bg) >0

if and only if a1 > 0. (The second equality follows from [cx +d : u,v, w] =
0.) Thus o > 0 for £k = 0,...,m — 2. Now let ¢ be any real convex func-
tion with the nodes in its domain. Then > " a;p(b;) = Z;”:_f ajle -

bj,bjt1,bj12] > 0 since each o; > 0 and ¢ is convex. ([

k:

Since > " aigk(bi) = > 2p.~p, @i(bi — br), an immediate consequence of
Theorem 2 is the following result.

Corollary 3. If Y " ja; =0 and X" ;a;b; = 0, then > " ;a;p(bi) > 0 for
every real convex function, ¢, with the nodes in its domain if and only if
D bispy, @i(bi—bg) >0 fork =0,1,...,m. The inequality } -, -, a;(b;—bg) >
0 can be replaced with Ebi<bk a;(b; — bg) <0.

The second part follows from the fact that > a;(b; — bg) = 0.

3. PROOFS OF JENSEN’S AND KARAMATA’S INEQUALITIES

In this section we will give proofs of Jensen’s and Karamata'’s inequalities
based on our main result.

Corollary 4 (Jensen’s inequality). If ¢ is a real convez function defined on

[e,d], x1,x9,...,2, in its domain, the weights a; positive, then
n n
D i—y Gili
> astan - (e (it 0
Jj=1 J
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iy Gl
2?21 aj

¢ < T < d. If we write Jensen’s inequality in the form ) ¢;p(d;) > 0, then
it is clear that > ¢; = 0 and ) ¢;d; = 0 so that Corollary 3 applies. Let
z € {Z,x1,...,zp}. If z > T, by Corollary 3 first part we need to check
validity of > . ai(z; —2) > 0 while if 2 < Z, by the second part of
Corollary 3 we need to check validity of > __ a;(z; —2) < 0. Both of these
inequalities are true since by assumption each a; is positive. O

Proof. Let T = . Since ¢ < x; < d and a; > 0, it follows that

Before we prove Karamata’s inequality we will prove the following lemma
on majorized sequences which is interesting in its own right.

Lemma 5. Let 1 < a0 < - <xp and y1 <yo < -+ < yp. IfZ?:Tyi
iy i forr =1,2,3,...,n, then for every real number z, 3, . (v; — 2)

ZinZ (yi — 2).

Proof. The case z > x,, is trivial. If x,, > z > y,, then in% (x; — 2) —
doyise Wi —2) = 3.5, (¥ — 2) > 0. It remains to verify the case 2 < Yn.
Let 0 < k < n — 1 denote the number of x’s that are less than or equal z,
and let 0 < r < n — 1 denote the number of y's that are less than or equal
z. Since both sequences are increasing

<
>

Yowi—2)=> (=2 =D (@—2- > (-2
T2z Yi>z i=k+1 i=r+1

If k = r, then the last equality reduces to > ;" . ; — > " . ¥ which is
positive by our assumption. If k > r, then 7" (s —2) = >0 (yi — 2)
can be written as > 1" (@ — yi) — Zf:rﬂ(xi — z). By our assumption
Y1 (i — yi) > 0, while Zf:rJrl(xi — z) < 0 by the choice of k. Thus in
this case inZZ (x; —2) > Zyizz (yi —2z). If k < r, then Z?:k+1(xi —z)—
Yo (Wi = 2) = Do (i — yi) + iy (zi — 2) which again is positive
by our assumption and the choice of k. O

Corollary 6 (Karamata’s inequality). Let 1 < z9 < -+ < x,, and y; <
yo < oo <y, be in the domain of a real convex function @. Suppose

that Y pyi < >, fork =2,3,...,n and Y yi = > xi. Then
i (@) = 25 oY)

Proof. If we write Karamata’s inequality > " ; o(x;) > >, o(y;) as 0 <

S (@) = o(yi) = 300 cip(d;), then clearly 3 ¢; = 0 while Y- ¢;d;
=31z — Y.,y =0 by our assumption. Now by Corollary 3 we have
to prove that if z € {z;, yi}jLy, then >, o (@i —2)—=>, - (yi—2) > 0. But
by Lemma 5 the last inequality is true for any z. O
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The next result states that these type of inequalities remain true if the
nodes are transformed by a linear function.

Corollary 7. Let ¢ # 0 and d be real numbers. The nodes {b;}I", and the
corresponding weights {a; }["o satisfy > "y aip(bi) > 0 for every real convex
function @ with the nodes in its domain, zf and only if Y ;" aitp(cbi+d) >0
for every real convex function ¢ with the nodes {cb; + d}I*, in its domain.

Proof. First suppose that Y ;" a;p(b;) > 0 for every real convex function.
As was pointed out earlier this assumption implies that Y ;" a; = 0 and
Yoty aibi = 0. Consequently > 7" a;i(cb; + d) = 0. Assume that for each
1=0,1,...,m, cb; +d is in the domain of a convex function 1. By Corollary
3 we have to verify the inequality >, 4, a @i ((ch;j +d) — (cbp +d)) = 0
for each kK =0,1,...,m. We have

Z ajce(b; — by) :{ CZI;J->b,C a;(b; k) 1 c> -0

c . ai(b; —b ife<0 —
cbj+d>cbp+d Zb3<bk J( J k)

again by Corollary 3 applied to . The converse follows from this case applied
to the palr and Td. O

4. NODES WHOSE DIFFERENCES ARE INTEGERS

If b; — by is an integer for each i = 1,2,...,m, then for any function f
we can write Y " a;f(b;) = Zf:o a;jf(bo + j) where R = by, — by, and

. a; if b() +j = bi
4 = { 0  otherwise
and " a;b; = 0, the statement of Proposition 1, for the function f(t) = xt,
takes on the simple form

m m R
Zambi = Zaif(bi) = Zajf(bo +7)
i=0 i=0

=0

. If in addition, by < by < -+ < by, E?;O a; =0

=yl

-2
aj[:rt:b0+j,bo+j+1,bo+j+2]:x (z —1)? Zajscj

<.
Il
o

where the last equality follows from [x? : u,u+1,u+2] = z%(2? — 1). Recall
that the numbers a; from the statement of Proposition 1 depend only on
the nodes and the weights. In particular if ¢ is any convex function defined
on [c, d] that contains all of the nodes, then for the same a;s we also have

R-2

Zazgo =Y ajlp:bo+.bo+5+1bo+ 5+ 2.
7=0



192 HAJRUDIN FEJZIC AND FUAD ZIVOJEVIC

Now it is easy to modify the proof of Theorem 2 to obtain our next result.

Theorem 8. Suppose that the nodes are integers, by the smallest of them
and {by,b1,...,bm} C [p,q]l. Then Y /", aip(b;) > 0 for every real convex
function ¢ defined on [p,q] if and only if x=% S a;a%/(x — 1)% is a
polynomaial with positive coefficients.

Proof. First notice that if h(x) = x7% > a;2%, then Y ja; = 0 and
Y aib; = 0 if and only if h(1) = h/(1) = 0 if and only if h(z)/(z — 1)
is a polynomial. Thus under either condition ) " ajp(b;) > 0 for every
real convex function ¢ or 7% " a;x% /(z — 1)? is a polynomial, we have
Yoiroai = 0 and Y ;" aib; = 0. As in the proof of Theorem 2 we may

assume that by < by < --- < by,. By Proposition 1 there are numbers
g, a1, ...,0R_9 such that
m R—2
> aip(bi) =Y ajlpbo+dbo+ 5+ 1,bo+ 5 + 2] (2)
i=0 §=0
and
m R—-2 '
> aah =@ = 1)) ajal). 3)
i=0 j=0

Suppose each «; is positive and let ¢ be convex. Then for each j =
0,1,...,R—2,[¢p :bo+Jj,bo+Jj+1,bp+ 7+ 2] >0 and hence each term
of the first equation (2) is positive. Thus Y ;" a;p(b;) > 0. This proves the
<= part. To prove the = part, for 1 < k < R — 1, we consider the convex

functions
(z) = gu() = 0 x <by+k
I == 52— (bo+k) z>by+k

As in the proof of Theorem 2 the sum
m R—-2
> aip(b) = gl bo+ 4, bo+ 5+ Lbo+j +2]
i=0 §=0

reduces to
ak,1[<p tbo+ k — 1,b0+k,bo+/€+1] =qap_1 > 0.
Thus ag, aq,...,ar—9 are all positive, and hence from (3) it follows that

xS a;a% /(z — 1)? is a polynomial with positive coefficients. O

If there is an h such that by — by is an integer multiple of h, (which is the
case if all the nodes are rational numbers,) then Corollary 7 and Theorem
8 produce the following result.
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Corollary 9. Suppose there is an h such that for by < by < -+ < by, we have
b—bo is an integer multiple of h fork =1,...,m. Theny ;" a;p(b;) > 0 for

b;—b
every real convex function ¢ defined on [by, by,) if and only if Y ;" qa;z ™k 0/

(x —1)? is a polynomial with positive coefficients.

Proof. First we apply Corollary 7 with ¢ = % and d = —%0. Thus Y ;" aip(b;)
> 0 for every real convex function ¢ defined on [bg, by,] if and only if
i aiw(bi;bo) > 0 for every real convex function v defined on [0, @].

Since by the assumption @ are integers, from Theorem 8 we obtain that

i aiw(bi;bo) > 0 for every real convex function defined on [0, @]
b;—b . . . "
if and only if > 7" jaxz ™ * */(x — 1)2 is a polynomial with positive coeffi-

cients. 0

We finish this section with another application of Theorem 8. For every
real convex function ¢ on real line

43¢p(5) — 82p(4) + 63p(3) — 51¢(2) + 26¢(1) + ¢(0) > 0.
This can be verified by Karamata’s inequality but it is much easier to apply
Theorem 8. All we need to check is that

(4327 — 822* 4+ 6323 — 5122 + 26z + 1)/ (z — 1)?
is a polynomial with all positive coefficients. Indeed
432° — 8221 4 632 — 512 + 262 + 1 = (2 — 1)%(1 + 28z + 4a” + 4323).

On the other hand it is not true that

43p(5) — 87p(4) 4+ 73¢(3) — 56¢(2) + 26p(1) + ¢(0) > 0
for every convex function because this time

432 — 87z + 7323 — 5627 4 262 +1 = (x — 1)%(1 + 28z — 22 + 4323).

5. INEQUALITIES FOR n. CONVEX FUNCTIONS

In this section we briefly discuss inequalities for n convex functions. Con-
vexity can be described via divided differences. If u, v, and w are three

distinct points, then [u,v,w : f] = (u_g)((lg_w) + (v_qf)((vv)_w) + (w_{t()l(uu)}_y) is
called the divided difference of f at points u, v, and w. A function is convex
if and only if [u,v,w : f] > 0 for any three distinct points u, v, and w from

its domain. If we consider a set V' of n+ 1 distinct points, then we say that

fis n convex if [V @ f] = > v % > 0 for any such set V from

the domain of f. Thus being convex is equivalent to being 2 convex. One
can see that increasing and 1 convex are equivalent concepts and the same
is true for nonnegative and 0 convex. An interested reader can find more
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information about n convex functions in [2]. Proposition 1 was instrumental
in obtaining our results for convex functions. For n convex functions this
proposition takes on the following form.

Proposition 10. Suppose that 1" abf = 0 for k = 0,1,...,n — 1. If
bp < by < --- < by, then there are numbers ag,...,Qm_n such that for
every function f we have 37" g aif (b)) =3 750" aj[bj, b1, .o, bjgn ¢ f.

Now in the case of increasing functions (the case n = 1) the role of
the functions gi(z) in the statement of Theorem 2 are played by increasing

functions gx(x) = { (1) i ; Zk and Corollary 3 takes on the following form.
= Uk

Theorem 11. Suppose that Zzﬁ;o a; = 0. If bg < by < -+ < by then
Yoiroaif(bi) >0 for every increasing function f if and only if Y /", a; > 0
fork=1,2,... m.

Unfortunately the inequalities for n convex for n > 3 are not as nice as
those for convex functions. For example in the case of integer nodes only
the easy implication of Theorem 8 is true.

Theorem 12. Let m, n be integers with m > n + 1. Suppose that p =
bop < by < -+ < by, = q are integers. If x7P 3" a;xb/(z — 1)" is a
polynomial with positive coefficients, then Y .~ aip(bi) > 0 for every real n
convez function ¢ defined on [p, q].

We omit the proofs since they are very similar to the proofs of the cor-
responding results for convex functions. But the converse fails for n > 3 as
the following example shows. We will show that

—5£(0) + 16£(1) — 22/(2) +20£(3) — 13f(4) +4f(5) =0 (4)
for every 3 convex function defined on [0, 5]. Since
—5 4 162 — 222°% 4 2023 — 1321 + 42° = (z — 1)3(5 — = + 42?)

this will be a counterexample to the converse of Theorem 12. Let g(z) =
f(z/2); then g is 3 convex on [0, 10] and

—5g(0) + 16¢(2) — 22g(4) + 20¢9(6) — 13¢g(8) + 4¢(10) > 0 (5)
since by Theorem 12 the corresponding polynomial
—5 4 1622 — 2221 4 202% — 132® + 4210 = (2% — 1)3(5 — 22 + 42)
= (z —1)3(5 + 152 + 142 + 22° + 2% + 112 + 1225 4 427).
Now the inequality (4) follows from (5).
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