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FUNCTIONS COMMUTING WITH AN ARBITRARY

FIXED BIJECTION

ANDRZEJ MACH

Abstract. In this note a characterization of all bijective functions com-
muting with a fixed bijection ϕ : X → X, where X is an arbitrary
nonempty set, is given.

Introduction

One can find commuting functions in many papers devoted to functional
equations or iteration theory, see for example [1], [2], [3], [5], [6]. Therefore,
the problem of describing commuting functions with a given one seems to be
interesting. The aim of this paper is a solution of the commutativity problem
for all bijective functions. We present the form of commuting functions
separately for closed and open orbits (see [4], page 15) of a given bijection
ϕ : X → X.

1. Functions commuting with a solution of Babbage functional
equation

1.1. Notations, definitions, lemma. Let us start with introducing some
notations and definitions. Let X be an arbitrary nonempty set. Let ϕ : X →
X satisfy the Babbage equation (described in [4], page 288), this means

ϕn(x) = x, n ≥ 2, (1.1)

(by ϕn we denote n-th iteration).
Let us define

D := {m : m divides n}
and

X(m) := {x ∈ X : ϕm(x) = x and ϕk(x) 6= x, for every 1 ≤ k < m}.
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Lemma 1.1 ([5] or [7]). The sets {X(m) : m ∈ D} are pairwise disjoint
and the equality ⋃

m∈D
X(m) = X

holds.

For convenience of the reader we quote the proof from the paper [7].

Proof. It is evident that the sets {X(m)}m∈D are pairwise disjoint and
⋃
m∈D

X(m) ⊂ X. To prove the reverse inclusion, we reason as follows: if x ∈ X and
p ∈ {1, 2, . . . , n} is the minimal number such that ϕp(x) = x then, evidently,
for t ∈ N ∪ {0} satisfying the inequalities

n− p
p
≤ t ≤ n− 1

p
,

we have

1 ≤ n− tp ≤ p and ϕtp(x) = x.

Therefore

ϕn−tp(x) = ϕn−tp(ϕtp(x)) = ϕn(x) = x.

Hence n− tp = p, whence p(t+ 1) = n. �

For every m ∈ D, by Sm, we denote an arbitrary selection of the family
of orbits {

{x, ϕ(x), ϕ2(x), . . . , ϕm−1(x)} : x ∈ X(m)
}
.

1.2. Main constructions for a solution of the Babbage equation.

Proposition 1.1. Let us suppose that m ∈ D is fixed, X = X(m) and
S = Sm. Let g∗ : S → S be an arbitrary bijection. Moreover, let k : X →
{0, 1, . . . ,m− 1} be defined as follows

k(x) := k ⇔ ϕk(x) ∈ S. (1.2)

The function g : X → X defined by the formula

g(x) :=
[
ϕm−k(x) ◦ g∗ ◦ ϕk(x)

]
(x) (1.3)

commutes with the function ϕ.

Proof. Firstly, let us remark that (1.2) implies k(ϕ(x)) = k(x)−1 if k(x) 6= 0
and k(ϕ(x)) = m− 1 if k(x) = 0. We have for k(x) 6= 0

g
(
ϕ(x)

)
=
[
ϕm−k(ϕ(x))◦g∗◦ϕk(ϕ(x))

](
ϕ(x)

)
=
[
ϕm−k(ϕ(x))◦g∗◦ϕk(ϕ(x))+1

]
(x)

=
[
ϕm−k(x)+1◦g∗◦ϕk(x)−1+1

]
(x) = ϕ

([
ϕm−k(x)◦g∗◦ϕk(x)

]
(x)
)

= ϕ
(
g(x)

)
.
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Similarly, for k(x) = 0 we have

g
(
ϕ(x)

)
=
[
ϕm−k(ϕ(x))◦g∗◦ϕk(ϕ(x))

](
ϕ(x)

)
=
[
ϕm−k(ϕ(x))◦g∗◦ϕk(ϕ(x))+1

]
(x)

=
[
ϕm−m+1 ◦ g∗ ◦ ϕm−1+1

]
(x) = ϕ

([
ϕm−k(x) ◦ g∗ ◦ ϕk(x)

]
(x)
)

= ϕ
(
g(x)

)
.

�

Remark 1.2. Let us remark that in the case m = 1 we have ϕ = idX ,
S = X and by the formula (1.3) we get g = g∗ : X → X, i.e. every bijection
commutes with the identity function.

Proposition 1.2. The function g given by the equality g =
⋃
m∈D gm, where

gm : X(m) → X(m) has the form (1.3) commutes with the function ϕ : X →
X such that eq. (1.1) holds.

The proof results immediately from ϕ(X(m)) = X(m), Lemma 1.1 and
Proposition 1.1.

Example 1.3. Using Propositions 1.1 and 1.2 one can easily obtain the
following: if g∗ :]12 ,∞[→]12 ,∞[ is an arbitrary bijection then the function

g(x) =


g∗(x) for x > 1

2 ,
1
2 for x = 1

2 ,
1− g∗(1− x) for x < 1

2 ,
(1.4)

commutes with the function ϕ(x) = 1 − x, for x ∈ R. Particularly, the
functions

g(x) =


1
2 + 2

2x−1 for x > 1
2 ,

1
2 for x = 1

2 ,
1
2 −

2
1−2x for x < 1

2 ,
g(x) =


1
2 + ln(x+ 1

2) for x > 1
2 ,

1
2 for x = 1

2 ,
1
2 − ln(32 − x) for x < 1

2 ,

commute with the function ϕ(x) = 1− x, for x ∈ R.

Example 1.4. Let X = R \ {0} and ϕ(x) := 1
x , x ∈ X. Let g∗1 : {−1, 1} →

{−1, 1} be an arbitrary bijection. Let us consider the following cases:

a) S :=]− 1, 0[ ∪ ]0, 1[, or
b) S :=]− 1, 0[ ∪ ]1,+∞[, or
c) S :=]−∞,−1[ ∪ ]0, 1[, or
d) S :=]−∞,−1[ ∪ ]1,+∞[.

Let g∗2 : S → S be an arbitrary bijection. Using Propositions 1.1 and 1.2
the function

g(x) =


g∗1(x) for x ∈ {−1, 1},
g∗2(x) for x ∈ S,

1
g∗2(

1
x
)

for x ∈ X \ S,
(1.5)
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commutes with the function ϕ(x). Particularly, the functions g(x) = xn,
g(x) = 1

xn ,

g(x) =


1 for x = −1,
−1 for x = 1,
sin π

2x for x ∈]− 1, 0[ ∪ ]0, 1[,
1

sin π
2x

for x ∈]−∞,−1[ ∪ ]1,+∞[,

g(x) =



id{−1,1} for x ∈ {−1, 1},
ex+1 for x ∈]−∞,−1[,
lnx− 1 for x ∈]0, 1[,

1

e
1
x+1

for x ∈]− 1, 0[,
1

ln 1
x
−1 for x ∈]1,+∞[,

commute with the function ϕ(x) = 1
x , for x ∈ R \ {0}.

Example 1.5. Let A and Y be arbitrary nonempty sets and cardY ≥ 12.
Let us write Ip := {0, 1, . . . , p}, for p = 0, 1, . . . . Let X := A ∪ B, where

B := {σji ∈ Y : i ∈ I3, j ∈ I4} and cardB = 12. Let ϕ ∈ XX be defined by

ϕ(x) :=


x, if x ∈ A,

σj(i+1)4
, if x = σji , i ∈ I3, j ∈ I4

where (i+ 1)4 denotes the remainder of division of i+ 1 by 4. Then ϕ4(x) =

x, x ∈ X. In this case we have n = 4, X(1) = A, X(2) = ∅, X(4) = B. Let

g∗1 : A → A be an arbitrary bijection. Let S := {σj0 : j ∈ I4}. Take the

bijection g∗2 : S → S defined as follows: g∗2(σj0) := σ
(j+1)5
0 . According to

Propositions 1.1 and 1.2 the function g : X → X defined by the formula

g(x) =

{
g∗1(x) for x ∈ A,
σ
(j+1)5
(i)4

for x = σji ∈ B,

commutes with ϕ.

We define the relation in X by

x ∼ y ⇔ ϕp(x) = y, for a p ∈ {0, 1, . . . ,m− 1}.
One can easily observe that it is an equivalence relation.

Let S be a selection of the family of orbits {{x, ϕ(x), ϕ2(x), . . . , ϕm−1(x)} :
x ∈ X}. Then there exists a unique function hS : X → S such that hS(x) ∼
x. Note that hS(ϕ(x)) = hS(x).

Theorem 1.6. Let X be an arbitrary nonempty set and n ≥ 2. Let ϕ :
X → X be a solution of the Babbage equation (1.1) and suppose that X =
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X(m) for a fixed m ∈ D. The bijection g : X → X commutes with the
solution ϕ if and only if there exist a selection S of the family of orbits
{{x, ϕ(x), ϕ2(x), . . . , ϕm−1(x)} : x ∈ X},a bijection g∗ : S → S and a
function p : S → {0, 1, . . . ,m− 1} such that g has the form

g(x) :=
[
ϕm−k(x)+p(hS(x)) ◦ g∗ ◦ ϕk(x)

]
(x) (1.6)

where k : X → {0, 1, . . . ,m− 1} is defined by (1.2).

Proof of the “if” part. Evidently, we have if x ∼ hS(x), hS(ϕ(x)) = hS(x)
and further reasoning is similar as in Proposition 1.1. We have for k(x) 6= 0

g
(
ϕ(x)

)
=
[
ϕm−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))

](
ϕ(x)

)
=
[
ϕm−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))+1

]
(x)

=
[
ϕm−k(x)+1+p(hS(x)) ◦ g∗ ◦ ϕk(x)−1+1

]
(x)

= ϕ
([
ϕm−k(x)+p(hS(x)) ◦ g∗ ◦ ϕk(x)

]
(x)
)

= ϕ
(
g(x)

)
.

Similarly, for k(x) = 0 we have

g
(
ϕ(x)

)
=
[
ϕm−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))

](
ϕ(x)

)
=
[
ϕm−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))+1

]
(x)

=
[
ϕm−m+1+p(hS(x)) ◦ g∗ ◦ ϕm−1+1

]
(x)

= ϕ
([
ϕm−k(x)+p(hS(x)) ◦ g∗ ◦ ϕk(x)

]
(x)
)

= ϕ
(
g(x)

)
.

�

Proof of the “only if” part. Let g : X → X be a bijection commuting with
ϕ. Take an arbitrary selection S of the family of orbits {{x, ϕ(x), ϕ2(x), . . . ,
ϕm−1(x)} : x ∈ X}. One can observe that every function g∗ : S → S defined
in such a way that g∗(s) = t for a t if and only if g(s) ∼ t, is a bijection.
Let x ∈ X and put s := hS(x). There exists p(s) ∈ {0, 1, . . . ,m − 1} such

that ϕp(s)(g∗(s)) = g(s). Moreover we have

ϕk(x)(x) = s, ϕm−k(x)(s) = x.

From the above[
ϕm−k(x)+p(s) ◦ g∗ ◦ ϕk(x)

]
(x) = ϕm−k(x)+p(s)

[
g∗
(
s
)]

= ϕm−k(x)+p(s)
(
t
)

= ϕm−k(x)
(
g(s)

)
= g
(
ϕm−k(x)(s)

)
= g(x).

�
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Theorem 1.7. Let X be an arbitrary nonempty set and n ≥ 2. Let ϕ : X →
X satisfy the Babbage equation (1.1). The bijection g : X → X commutes

with the solution ϕ if and only if g =
⋃
m∈D gm, where gm : X(m) → X(m)

have the form (1.6).

The proof results immediately from ϕ(X(m)) = X(m), Lemma 1.1 and
Theorem 1.6.

Example 1.8. Let X = B, where B is defined as in Example 1.5. Let ϕ

be defined by ϕ(σji ) = σj(i+1)4
, for i ∈ I3, j ∈ I4. Let S be the same as in

Example 1.5, so S := {σj0 : j ∈ I4}. Take the bijection g∗ : S → S defined

as follows: g∗(σj0) := σ
(j+2)5
0 . Define the function p : S → {0, 1, 2, 3} by

p(σj0) = (j)4. By the formula (1.6) we get the function g(σji ) = σ
(j+2)5
(j+i)4

. One

can easily verify that g commutes with ϕ.

2. The case of open orbits

Let X be an arbitrary nonempty set. Let ϕ : X → X be a bijection such
that

ϕn(x) 6= x, ∀n ≥ 1. (2.1)

In this case all orbits are as follows:

{. . . , ϕ−3(x), ϕ−2(x), ϕ−1(x), x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), . . . }.

Now, we define the equivalence relation in X by

x ∼ y ⇔ ϕp(x) = y, for a p ∈ Z.

Let S be a selection of the family of orbits{
{. . . , ϕ−3(x), ϕ−2(x), ϕ−1(x), x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), . . . } : x ∈ X

}
.

Then there exists a unique function hS : X → S such that hS(x) ∼ x. Note
that hS(ϕ(x)) = hS(x).

Theorem 2.1. Let X be an arbitrary nonempty set. Let ϕ : X → X be a
bijective function satisfying (2.1). The bijection g : X → X commutes with
the function ϕ if and only if there exist a selection S of the family of orbits{
{. . . , ϕ−3(x), ϕ−2(x), ϕ−1(x), x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), . . . } : x ∈ X

}
,

a bijection g∗ : S → S and a function p : S → Z such that g has the form

g(x) :=
[
ϕ−k(x)+p(hS(x)) ◦ g∗ ◦ ϕk(x)

]
(x) (2.2)

where k : X → Z is defined by (1.2).
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Proof of the “if” part. Evidently, we have if x ∼ hS(x), hS(ϕ(x)) = hS(x)
and further reasoning is similar as in Proposition 1.1 and in Theorem 1.6.
Indeed, we have k(ϕ(x)) = k(x)− 1 for all x ∈ X, so

g
(
ϕ(x)

)
=
[
ϕ−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))

](
ϕ(x)

)
=
[
ϕ−k(ϕ(x))+p(hS(ϕ(x))) ◦ g∗ ◦ ϕk(ϕ(x))+1

]
(x)

=
[
ϕ−k(x)+1+p(hS(x)) ◦ g∗ ◦ ϕk(x)−1+1

]
(x)

= ϕ
([
ϕ−k(x)+p(hS(x)) ◦ g∗ ◦ ϕk(x)

]
(x)
)

= ϕ
(
g(x)

)
.

�

Proof of the “only if” part. Let g : X → X be a bijection commuting with
ϕ. Take an arbitrary selection S of the family of orbits{
{. . . , ϕ−3(x), ϕ−2(x), ϕ−1(x), x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), . . . } : x ∈ X

}
.

One can observe that every function g∗ : S → S defined in such a way that
g∗(s) = t for a t if and only if g(s) ∼ t, is a bijection. Let x ∈ X and put

s := hS(x). There exists p(s) ∈ Z such that ϕp(s)(g∗(s)) = g(s). Moreover
we have

ϕk(x)(x) = s, ϕ−k(x)(s) = x.

From the above[
ϕ−k(x)+p(s) ◦ g∗ ◦ ϕk(x)

]
(x) = ϕ−k(x)+p(s)

[
g∗
(
s
)]

= ϕ−k(x)+p(s)
(
t
)

= ϕ−k(x)
(
g(s)

)
= g
(
ϕ−k(x)(s)

)
= g(x).

�

3. Final remarks, examples and problems

Remark 3.1. The results of this paper can be useful in finding all func-
tions commuting with a given one. Namely, by Theorem 1.7, we have a
ready to use description of commuting functions for all closed orbits of the
given bijective function. Similarly, in Theorem 2.1, we have a ready to use
construction of commuting functions for all open orbits of the given bijec-
tive function. Since the union of the closed orbits XI and the union of open
orbits XII are disjoint and ϕ(XI) = XI , ϕ(XII) = XII , then the presented
results are complete for the characterization of all commutative functions
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with a given bijection ϕ. More precisely, the domain X of the bijection ϕ
can be decomposed onto disjoint sets as follows

X =
∞⋃
n=1

X(n) ∪ X(∞),

where X(n) = {x ∈ X : ϕn(x) = x and ϕk(x) 6= x for 0 < k < n} and

X(∞) = {x ∈ X : ϕn(x) 6= x for n ≥ 1}. Theorems 1.6, 1.7 and Remark

1.2 describe the form of commuting function g on the sets X(n), n ≥ 1 and
Theorem 2.1 describes the form of g on the set X(∞).

Example 3.2. Let us consider the bijection ϕ : R+ → R+ given by the
formula ϕ(x) = 3x. Using the presented theorems we can construct all

functions g commuting with ϕ. We have R+ = R(1)
+ ∪R

(∞)
+ , where R(1)

+ = {0}
and R(∞)

+ = R+ \{0}. Therefore g(0) = 0 and to define g on the set R(∞)
+ we

use Theorem 2.1. The interval [1, 3[ forms a selection of the family of orbits{
{. . . , ϕ−3(x), ϕ−2(x), ϕ−1(x), x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), . . . } : x∈R(∞)

+

}
.

Moreover

R(∞)
+ =

⋃
l∈Z

[3l, 3l+1[

and for x ∈ [3l, 3l+1[, l ∈ Z - according with (1.2) - we have k(x) = −l. The
formula below gives a family of functions which commute with ϕ.

g(x) =

{
0 for x = 0,

3p(s)+l · g∗(3−lx) for x ∈ [3l, 3l+1[ and l ∈ Z,

where g∗ : [1, 3[→ [1, 3[ is an arbitrary bijection and p : [1, 3[→ Z is an
arbitrary function. Taking the bijection g∗ : [1, 3[→ [1, 3[ defined by the
formula g∗(x) = 1 + 2 sin π

4 (x − 1) and taking the function p(s) = 7, for
s ∈ [1, 3[, we obtain from the above the form of the commuting function g
as follows

g(x) =

{
0 for x = 0,
37+l · [1 + 2 sin π

4 (3−lx− 1)] for x ∈ [3l, 3l+1[ and l ∈ Z.

Example 3.3. For the bijection ϕ : R+ → R+ given by the formula ϕ(x) =

x3 we have R+ = R(1)
+ ∪ R(∞)

+ , where R(1)
+ = {0, 1} and R(∞)

+ = R+ \ {0, 1}.
Let g∗1 : {0, 1} → {0, 1} be an arbitrary bijection. Let g∗2 : [18 ,

1
2 [∪[2, 8[→

[18 ,
1
2 [∪[2, 8[ be an arbitrary bijection and p : [18 ,

1
2 [∪[2, 8[→ Z be an arbitrary

function. We have

R(∞)
+ =

⋃
l∈Z

[2−3
l+1
, 2−3

l
[ ∪

⋃
l∈Z

[23
l
, 23

l+1
[
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and k(x) = −l, for x ∈ [2−3
l+1
, 2−3

l
[∪[23

l
, 23

l+1
[, l ∈ Z. The formula below

gives a family of functions which commute with ϕ.

g(x) =

{
g∗1(x) for x ∈ {0, 1},
[g∗2(x3

−l
)]3

p(s)+l
for x ∈ [2−3

l+1
, 2−3

l
[∪[23

l
, 23

l+1
[and l ∈ Z.

Example 3.4. For the bijection ϕ : R→ R given by the formula ϕ(x) = −x3
we have R = R(1) ∪ R(2) ∪ R(∞), where R(1) = {0}, R(2) = {−1, 1} and

R(∞) = R \ {−1, 0, 1}. Theorems 1.6, 1.7 and Remark 1.2 describe the form

of the commuting function g on the sets R(1),R(2) and Theorem 2.1 describes
the form of g on the set R(∞). Determining the parameters as in the previous
examples we can obtain all functions commuting with the given function ϕ.

Problem 3.5. Characterize all functions commuting with a given finction
f : X → X (not necessarily bijective), where X is an arbitrary nonempty
set, particularly for f : R→ R.

Acknowledgements. I wish to thank to anonymous referee for all valuable
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