FUNCTIONS COMMUTING WITH AN ARBITRARY FIXED BIJECTION

ANDRZEJ MACH

ABSTRACT. In this note a characterization of all bijective functions commuting with a fixed bijection $\varphi : X \to X$, where X is an arbitrary nonempty set, is given.

INTRODUCTION

One can find commuting functions in many papers devoted to functional equations or iteration theory, see for example [1], [2], [3], [5], [6]. Therefore, the problem of describing commuting functions with a given one seems to be interesting. The aim of this paper is a solution of the commutativity problem for all bijective functions. We present the form of commuting functions separately for closed and open orbits (see [4], page 15) of a given bijection $\varphi:X\to X.$

1. Functions commuting with a solution of Babbage functional **EQUATION**

1.1. Notations, definitions, lemma. Let us start with introducing some notations and definitions. Let X be an arbitrary nonempty set. Let $\varphi: X \to$ X satisfy the Babbage equation (described in $[4]$, page 288), this means

$$
\varphi^n(x) = x, \quad n \ge 2,\tag{1.1}
$$

(by φ^n we denote *n*-th iteration).

Let us define

$$
D := \{m : m \text{ divides } n\}
$$

and

$$
X^{(m)} := \{ x \in X : \varphi^m(x) = x \text{ and } \varphi^k(x) \neq x, \text{ for every } 1 \leq k < m \}.
$$

Key words and phrases. Bijective function, commuting function, iteration, closed and open orbits, Babbage functional equation.

²⁰¹⁰ Mathematics Subject Classification. Primary 39B12; Secondary 26A18.

Lemma 1.1 ([5] or [7]). The sets $\{X^{(m)} : m \in D\}$ are pairwise disjoint and the equality

$$
\bigcup_{m \in D} X^{(m)} = X
$$

holds.

For convenience of the reader we quote the proof from the paper [7].

Proof. It is evident that the sets $\{X^{(m)}\}_{m\in D}$ are pairwise disjoint and $\bigcup_{m\in D}$ $X^{(m)} \subset X$. To prove the reverse inclusion, we reason as follows: if $x \in X$ and $p \in \{1, 2, \ldots, n\}$ is the minimal number such that $\varphi^p(x) = x$ then, evidently, for $t \in \mathbb{N} \cup \{0\}$ satisfying the inequalities

$$
\frac{n-p}{p}\leq t\leq \frac{n-1}{p},
$$

we have

$$
1 \le n - tp \le p
$$
 and $\varphi^{tp}(x) = x$.

Therefore

$$
\varphi^{n-tp}(x) = \varphi^{n-tp}(\varphi^{tp}(x)) = \varphi^n(x) = x.
$$

Hence $n - tp = p$, whence $p(t + 1) = n$.

For every $m \in D$, by S_m , we denote an arbitrary selection of the family of orbits

$$
\Big\{\{x,\varphi(x),\varphi^2(x),\ldots,\varphi^{m-1}(x)\}:\ x\in X^{(m)}\Big\}.
$$

1.2. Main constructions for a solution of the Babbage equation.

Proposition 1.1. Let us suppose that $m \in D$ is fixed, $X = X^{(m)}$ and $S = S_m$. Let $g^* : S \to S$ be an arbitrary bijection. Moreover, let $k : X \to S$ $\{0, 1, \ldots, m-1\}$ be defined as follows

$$
k(x) := k \quad \Leftrightarrow \quad \varphi^k(x) \in S. \tag{1.2}
$$

The function $g: X \to X$ defined by the formula

$$
g(x) := \left[\varphi^{m-k(x)} \circ g^* \circ \varphi^{k(x)}\right](x)
$$
 (1.3)

commutes with the function φ .

Proof. Firstly, let us remark that (1.2) implies $k(\varphi(x)) = k(x) - 1$ if $k(x) \neq 0$ and $k(\varphi(x)) = m - 1$ if $k(x) = 0$. We have for $k(x) \neq 0$

$$
g(\varphi(x)) = \left[\varphi^{m-k(\varphi(x))} \circ g^* \circ \varphi^{k(\varphi(x))}\right] \left(\varphi(x)\right) = \left[\varphi^{m-k(\varphi(x))} \circ g^* \circ \varphi^{k(\varphi(x))+1}\right](x)
$$

=
$$
\left[\varphi^{m-k(x)+1} \circ g^* \circ \varphi^{k(x)-1+1}\right](x) = \varphi\left(\left[\varphi^{m-k(x)} \circ g^* \circ \varphi^{k(x)}\right](x)\right) = \varphi\left(g(x)\right).
$$

Similarly, for $k(x) = 0$ we have

$$
g(\varphi(x)) = \left[\varphi^{m-k(\varphi(x))} \circ g^* \circ \varphi^{k(\varphi(x))}\right] \left(\varphi(x)\right) = \left[\varphi^{m-k(\varphi(x))} \circ g^* \circ \varphi^{k(\varphi(x))+1}\right](x)
$$

$$
= \left[\varphi^{m-m+1} \circ g^* \circ \varphi^{m-1+1}\right](x) = \varphi\left(\left[\varphi^{m-k(x)} \circ g^* \circ \varphi^{k(x)}\right](x)\right) = \varphi\left(g(x)\right).
$$

Remark 1.2. Let us remark that in the case $m = 1$ we have $\varphi = id_X$, $S = X$ and by the formula (1.3) we get $g = g^* : X \to X$, i.e. every bijection commutes with the identity function.

Proposition 1.2. The function g given by the equality $g = \bigcup_{m \in D} g_m$, where $g_m: X^{(m)} \to X^{(m)}$ has the form (1.3) commutes with the function $\varphi: X \to Y$ X such that eq. (1.1) holds.

The proof results immediately from $\varphi(X^{(m)}) = X^{(m)}$, Lemma 1.1 and Proposition 1.1.

Example 1.3. Using Propositions 1.1 and 1.2 one can easily obtain the following: if $g^* :]\frac{1}{2}, \infty[\to]\frac{1}{2}$ $\frac{1}{2}$, ∞ is an arbitrary bijection then the function

$$
g(x) = \begin{cases} g^*(x) & \text{for } x > \frac{1}{2}, \\ \frac{1}{2} & \text{for } x = \frac{1}{2}, \\ 1 - g^*(1 - x) & \text{for } x < \frac{1}{2}, \end{cases}
$$
(1.4)

commutes with the function $\varphi(x) = 1 - x$, for $x \in \mathbb{R}$. Particularly, the functions

$$
g(x) = \begin{cases} \frac{1}{2} + \frac{2}{2x-1} & \text{for } x > \frac{1}{2}, \\ \frac{1}{2} & \text{for } x = \frac{1}{2}, \\ \frac{1}{2} - \frac{2}{1-2x} & \text{for } x < \frac{1}{2}, \end{cases} \quad g(x) = \begin{cases} \frac{1}{2} + \ln(x + \frac{1}{2}) & \text{for } x > \frac{1}{2}, \\ \frac{1}{2} & \text{for } x = \frac{1}{2}, \\ \frac{1}{2} - \ln(\frac{3}{2} - x) & \text{for } x < \frac{1}{2}, \end{cases}
$$

commute with the function $\varphi(x) = 1 - x$, for $x \in \mathbb{R}$.

Example 1.4. Let $X = \mathbb{R} \setminus \{0\}$ and $\varphi(x) := \frac{1}{x}, x \in X$. Let $g_1^* : \{-1, 1\} \to$ $\{-1, 1\}$ be an arbitrary bijection. Let us consider the following cases:

a) $S :=] -1, 0[\cup [0, 1[, \text{ or }$ b) $S :=] -1, 0[\cup [1, +\infty[, \text{ or}]$ c) $S :=] - \infty, -1[\cup]0,1[$, or d) $S :=] - \infty, -1[\cup [1, +\infty[$.

Let $g_2^* : S \to S$ be an arbitrary bijection. Using Propositions 1.1 and 1.2 the function

$$
g(x) = \begin{cases} g_1^*(x) & \text{for } x \in \{-1, 1\}, \\ g_2^*(x) & \text{for } x \in S, \\ \frac{1}{g_2^*(\frac{1}{x})} & \text{for } x \in X \setminus S, \end{cases}
$$
(1.5)

commutes with the function $\varphi(x)$. Particularly, the functions $g(x) = x^n$, $g(x) = \frac{1}{x^n},$

$$
g(x) = \begin{cases} 1 & \text{for } x = -1, \\ -1 & \text{for } x = 1, \\ \frac{\sin \frac{\pi}{2}x}{\sin \frac{\pi}{2x}} & \text{for } x \in]-1,0[\cup]0,1[, \\ \frac{1}{\sin \frac{\pi}{2x}} & \text{for } x \in]-\infty,-1[\cup]1,+\infty[, \\ e^{x+1} & \text{for } x \in]-\infty,-1[, \\ g(x) = \begin{cases} id_{\{-1,1\}} & \text{for } x \in]-\infty,-1[, \\ \frac{\ln x - 1}{\ln x - 1} & \text{for } x \in]0,1[, \\ \frac{1}{e^{\frac{1}{x}+1}} & \text{for } x \in]-1,0[, \\ \frac{1}{\ln \frac{1}{x}-1} & \text{for } x \in]1,+\infty[, \end{cases} \end{cases}
$$

commute with the function $\varphi(x) = \frac{1}{x}$, for $x \in \mathbb{R} \setminus \{0\}$.

Example 1.5. Let A and Y be arbitrary nonempty sets and $cardY \ge 12$. Let us write $I_p := \{0, 1, ..., p\}$, for $p = 0, 1, ...$ Let $X := A \cup B$, where $B := \{ \sigma_i^j \in Y : i \in I_3, j \in I_4 \}$ and $card B = 12$. Let $\varphi \in X^X$ be defined by

$$
\varphi(x) := \begin{cases} x, & \text{if } x \in A, \\ \sigma_{(i+1)a}^j, & \text{if } x = \sigma_i^j, \ i \in I_3, j \in I_4 \end{cases}
$$

where $(i+1)_4$ denotes the remainder of division of $i+1$ by 4. Then $\varphi^4(x)$ = $x, x \in X$. In this case we have $n = 4$, $X^{(1)} = A$, $X^{(2)} = \emptyset$, $X^{(4)} = B$. Let $g_1^*: A \to A$ be an arbitrary bijection. Let $S := \{ \sigma_0^j \}$ $j \in I_4$. Take the bijection $g_2^* : S \to S$ defined as follows: $g_2^*(\sigma_0^j)$ $\sigma_0^{(j)}:=\sigma_0^{(j+1)_5}$ $0^{(J+1)5}$. According to Propositions 1.1 and 1.2 the function $g: X \to X$ defined by the formula

$$
g(x) = \begin{cases} g_1^*(x) & \text{for } x \in A, \\ \sigma_{(i)_4}^{(j+1)_5} & \text{for } x = \sigma_i^j \in B, \end{cases}
$$

commutes with φ .

We define the relation in X by

$$
x \sim y \quad \Leftrightarrow \quad \varphi^p(x) = y, \text{ for a } p \in \{0, 1, \ldots, m-1\}.
$$

One can easily observe that it is an equivalence relation.

Let S be a selection of the family of orbits $\{\{x, \varphi(x), \varphi^2(x), \ldots, \varphi^{m-1}(x)\}$: $x \in X$. Then there exists a unique function $h_S : X \to S$ such that $h_S(x) \sim Y$ x. Note that $h_S(\varphi(x)) = h_S(x)$.

Theorem 1.6. Let X be an arbitrary nonempty set and $n \geq 2$. Let φ : $X \rightarrow X$ be a solution of the Babbage equation (1.1) and suppose that $X =$

 $X^{(m)}$ for a fixed $m \in D$. The bijection $g: X \rightarrow X$ commutes with the solution φ if and only if there exist a selection S of the family of orbits $\{\{x,\varphi(x),\varphi^2(x),\ldots,\varphi^{m-1}(x)\} : x \in X\}$, a bijection $g^* : S \to S$ and a function $p: S \to \{0, 1, \ldots, m-1\}$ such that g has the form

$$
g(x) := \left[\varphi^{m-k(x)+p(h_S(x))} \circ g^* \circ \varphi^{k(x)}\right](x)
$$
 (1.6)

where $k: X \rightarrow \{0, 1, \ldots, m-1\}$ is defined by (1.2).

Proof of the "if" part. Evidently, we have if $x \sim h_S(x)$, $h_S(\varphi(x)) = h_S(x)$ and further reasoning is similar as in Proposition 1.1. We have for $k(x) \neq 0$

$$
g(\varphi(x)) = \left[\varphi^{m-k(\varphi(x))+p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x))}\right] \left(\varphi(x)\right)
$$

\n
$$
= \left[\varphi^{m-k(\varphi(x))+p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x))+1}\right] (x)
$$

\n
$$
= \left[\varphi^{m-k(x)+1+p(h_S(x))} \circ g^* \circ \varphi^{k(x)-1+1}\right] (x)
$$

\n
$$
= \varphi\left(\left[\varphi^{m-k(x)+p(h_S(x))} \circ g^* \circ \varphi^{k(x)}\right] (x)\right) = \varphi\left(g(x)\right).
$$

Similarly, for $k(x) = 0$ we have

$$
g(\varphi(x)) = \left[\varphi^{m-k(\varphi(x))+p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x))}\right](\varphi(x))
$$

\n
$$
= \left[\varphi^{m-k(\varphi(x))+p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x))+1}\right](x)
$$

\n
$$
= \left[\varphi^{m-m+1+p(h_S(x))} \circ g^* \circ \varphi^{m-1+1}\right](x)
$$

\n
$$
= \varphi\left(\left[\varphi^{m-k(x)+p(h_S(x))} \circ g^* \circ \varphi^{k(x)}\right](x)\right) = \varphi\left(g(x)\right).
$$

Proof of the "only if" part. Let $g: X \to X$ be a bijection commuting with φ . Take an arbitrary selection S of the family of orbits $\{\{x,\varphi(x),\varphi^{2}(x),\ldots,\varphi^{2}(x)\}\}$ $\varphi^{m-1}(x)$: $x \in X$. One can observe that every function $g^* : S \to S$ defined in such a way that $g^*(s) = t$ for a t if and only if $g(s) \sim t$, is a bijection. Let $x \in X$ and put $s := h_S(x)$. There exists $p(s) \in \{0, 1, \ldots, m-1\}$ such that $\varphi^{p(s)}(g^*(s)) = g(s)$. Moreover we have

$$
\varphi^{k(x)}(x) = s, \ \varphi^{m-k(x)}(s) = x.
$$

From the above

$$
\[\varphi^{m-k(x)+p(s)} \circ g^* \circ \varphi^{k(x)}\] (x) = \varphi^{m-k(x)+p(s)} \Big[g^*\Big(s\Big)\Big] = \varphi^{m-k(x)+p(s)}\Big(t\Big)
$$

$$
= \varphi^{m-k(x)} \Big(g(s)\Big) = g\Big(\varphi^{m-k(x)}(s)\Big) = g(x).
$$

Theorem 1.7. Let X be an arbitrary nonempty set and $n \geq 2$. Let $\varphi : X \to Y$ X satisfy the Babbage equation (1.1). The bijection $g: X \to X$ commutes with the solution φ if and only if $g = \bigcup_{m \in D} g_m$, where $g_m : X^{(m)} \to X^{(m)}$ have the form (1.6) .

The proof results immediately from $\varphi(X^{(m)}) = X^{(m)}$, Lemma 1.1 and Theorem 1.6.

Example 1.8. Let $X = B$, where B is defined as in Example 1.5. Let φ be defined by $\varphi(\sigma_i^j)$ σ_i^j) = σ_i^j $\binom{J}{(i+1)_4}$, for $i \in I_3, j \in I_4$. Let S be the same as in Example 1.5, so $S := \{ \sigma_0^j \}$ $j: j \in I_4$. Take the bijection $g^* : S \to S$ defined as follows: $g^*(\sigma_0^j)$ $\sigma_0^{(j)} := \sigma_0^{(j+2)_{5}}$ $0^{(1+2)5}_{0}$. Define the function $p: S \to \{0, 1, 2, 3\}$ by $p(\sigma_0^j)$ \mathbf{g}_0^j = $(j)_4$. By the formula (1.6) we get the function $g(\sigma_i^j)$ $i_j^{(j)} = \sigma_{(j+i)_4}^{(j+2)_5}$ $\frac{(j+2)5}{(j+i)_4}$. One can easily verify that g commutes with φ .

2. The case of open orbits

Let X be an arbitrary nonempty set. Let $\varphi: X \to X$ be a bijection such that

$$
\varphi^n(x) \neq x, \quad \forall n \ge 1. \tag{2.1}
$$

In this case all orbits are as follows:

$$
\{\ldots,\varphi^{-3}(x),\varphi^{-2}(x),\varphi^{-1}(x),x,\varphi(x),\varphi^{2}(x),\varphi^{3}(x),\varphi^{4}(x),\ldots\}.
$$

Now, we define the equivalence relation in X by

$$
x \sim y \quad \Leftrightarrow \quad \varphi^p(x) = y, \text{ for a } p \in \mathbb{Z}.
$$

Let S be a selection of the family of orbits

$$
\Big\{\{\ldots,\varphi^{-3}(x),\varphi^{-2}(x),\varphi^{-1}(x),x,\varphi(x),\varphi^{2}(x),\varphi^{3}(x),\varphi^{4}(x),\ldots\}:x\in X\Big\}.
$$

Then there exists a unique function $h_S : X \to S$ such that $h_S(x) \sim x$. Note that $h_S(\varphi(x)) = h_S(x)$.

Theorem 2.1. Let X be an arbitrary nonempty set. Let $\varphi: X \to X$ be a bijective function satisfying (2.1). The bijection $g: X \to X$ commutes with the function φ if and only if there exist a selection S of the family of orbits

$$
\Big\{\{\ldots,\varphi^{-3}(x),\varphi^{-2}(x),\varphi^{-1}(x),x,\varphi(x),\varphi^{2}(x),\varphi^{3}(x),\varphi^{4}(x),\ldots\}:\ x\in X\Big\},\
$$

a bijection $g^*: S \to S$ and a function $p: S \to \mathbb{Z}$ such that g has the form

$$
g(x) := \left[\varphi^{-k(x) + p(h_S(x))} \circ g^* \circ \varphi^{k(x)}\right](x)
$$
\n(2.2)

where $k : X \to \mathbb{Z}$ is defined by (1.2).

Proof of the "if" part. Evidently, we have if $x \sim h_S(x)$, $h_S(\varphi(x)) = h_S(x)$ and further reasoning is similar as in Proposition 1.1 and in Theorem 1.6. Indeed, we have $k(\varphi(x)) = k(x) - 1$ for all $x \in X$, so

$$
g(\varphi(x)) = \left[\varphi^{-k(\varphi(x)) + p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x))}\right] \left(\varphi(x)\right)
$$

\n
$$
= \left[\varphi^{-k(\varphi(x)) + p(h_S(\varphi(x)))} \circ g^* \circ \varphi^{k(\varphi(x)) + 1}\right](x)
$$

\n
$$
= \left[\varphi^{-k(x) + 1 + p(h_S(x))} \circ g^* \circ \varphi^{k(x) - 1 + 1}\right](x)
$$

\n
$$
= \varphi\left(\left[\varphi^{-k(x) + p(h_S(x))} \circ g^* \circ \varphi^{k(x)}\right](x)\right) = \varphi\left(g(x)\right).
$$

Proof of the "only if" part. Let $q: X \to X$ be a bijection commuting with φ . Take an arbitrary selection S of the family of orbits

$$
\Big\{\{\ldots,\varphi^{-3}(x),\varphi^{-2}(x),\varphi^{-1}(x),x,\varphi(x),\varphi^{2}(x),\varphi^{3}(x),\varphi^{4}(x),\ldots\}:\ x\in X\Big\}.
$$

One can observe that every function $g^* : S \to S$ defined in such a way that $g^*(s) = t$ for a t if and only if $g(s) \sim t$, is a bijection. Let $x \in X$ and put $s := h_S(x)$. There exists $p(s) \in \mathbb{Z}$ such that $\varphi^{p(s)}(g^*(s)) = g(s)$. Moreover we have

$$
\varphi^{k(x)}(x) = s, \ \varphi^{-k(x)}(s) = x.
$$

From the above

$$
\left[\varphi^{-k(x)+p(s)} \circ g^* \circ \varphi^{k(x)}\right](x) = \varphi^{-k(x)+p(s)}\left[g^*\left(s\right)\right] = \varphi^{-k(x)+p(s)}\left(t\right)
$$

$$
= \varphi^{-k(x)}\left(g(s)\right) = g\left(\varphi^{-k(x)}(s)\right) = g(x).
$$

 \Box

3. Final remarks, examples and problems

Remark 3.1. The results of this paper can be useful in finding all functions commuting with a given one. Namely, by Theorem 1.7, we have a ready to use description of commuting functions for all closed orbits of the given bijective function. Similarly, in Theorem 2.1, we have a ready to use construction of commuting functions for all open orbits of the given bijective function. Since the union of the closed orbits X_I and the union of open orbits X_{II} are disjoint and $\varphi(X_I) = X_I$, $\varphi(X_{II}) = X_{II}$, then the presented results are complete for the characterization of all commutative functions

with a given bijection φ . More precisely, the domain X of the bijection φ can be decomposed onto disjoint sets as follows

$$
X = \bigcup_{n=1}^{\infty} X^{(n)} \quad \cup \quad X^{(\infty)},
$$

where $X^{(n)} = \{x \in X : \varphi^n(x) = x \text{ and } \varphi^k(x) \neq x \text{ for } 0 < k < n\}$ and $X^{(\infty)} = \{x \in X : \varphi^n(x) \neq x \text{ for } n \geq 1\}.$ Theorems 1.6, 1.7 and Remark 1.2 describe the form of commuting function g on the sets $X^{(n)}$, $n \geq 1$ and Theorem 2.1 describes the form of g on the set $X^{(\infty)}$.

Example 3.2. Let us consider the bijection $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ given by the formula $\varphi(x) = 3x$. Using the presented theorems we can construct all functions g commuting with φ . We have $\mathbb{R}_+ = \mathbb{R}_+^{(1)} \cup \mathbb{R}_+^{(\infty)}$, where $\mathbb{R}_+^{(1)} = \{0\}$ and $\mathbb{R}^{(\infty)}_+ = \mathbb{R}_+ \setminus \{0\}$. Therefore $g(0) = 0$ and to define g on the set $\mathbb{R}^{(\infty)}_+$ we use Theorem 2.1. The interval $\tilde{[1,3]}$ forms a selection of the family of orbits

$$
\Big\{\{\ldots,\varphi^{-3}(x),\varphi^{-2}(x),\varphi^{-1}(x),x,\varphi(x),\varphi^{2}(x),\varphi^{3}(x),\varphi^{4}(x),\ldots\}: x \in \mathbb{R}_{+}^{(\infty)}\Big\}.
$$

Moreover

$$
\mathbb{R}_+^{(\infty)}=\bigcup_{l\in\mathbb{Z}}[3^l,3^{l+1}[
$$

and for $x \in [3^l, 3^{l+1}], l \in \mathbb{Z}$ - according with (1.2) - we have $k(x) = -l$. The formula below gives a family of functions which commute with φ .

$$
g(x) = \begin{cases} 0 & \text{for} \quad x = 0, \\ 3^{p(s)+l} \cdot g^*(3^{-l}x) & \text{for} \quad x \in [3^l, 3^{l+1}[\text{ and } l \in \mathbb{Z}, \end{cases}
$$

where $g^* : [1,3] \rightarrow [1,3]$ is an arbitrary bijection and $p : [1,3] \rightarrow \mathbb{Z}$ is an arbitrary function. Taking the bijection $g^* : [1,3] \rightarrow [1,3]$ defined by the formula $g^*(x) = 1 + 2\sin\frac{\pi}{4}(x-1)$ and taking the function $p(s) = 7$, for $s \in [1,3]$, we obtain from the above the form of the commuting function g as follows

$$
g(x) = \begin{cases} 0 & \text{for } x = 0, \\ 3^{7+l} \cdot [1 + 2\sin\frac{\pi}{4}(3^{-l}x - 1)] & \text{for } x \in [3^l, 3^{l+1}[\text{ and } l \in \mathbb{Z}. \end{cases}
$$

Example 3.3. For the bijection $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ given by the formula $\varphi(x) =$ x^3 we have $\mathbb{R}_+ = \mathbb{R}_+^{(1)} \cup \mathbb{R}_+^{(\infty)}$, where $\mathbb{R}_+^{(1)} = \{0, 1\}$ and $\mathbb{R}_+^{(\infty)} = \mathbb{R}_+ \setminus \{0, 1\}$. Let $g_1^* : \{0,1\} \to \{0,1\}$ be an arbitrary bijection. Let $g_2^* : [\frac{1}{8}, \frac{1}{2}]$ $\frac{1}{2}$ [∪[2, 8[→ $\left[\frac{1}{8}\right]$ $\frac{1}{8}, \frac{1}{2}$ $\frac{1}{2}$ [∪[2,8] be an arbitrary bijection and $p: [\frac{1}{8}, \frac{1}{2}]$ $\frac{1}{2}$ [∪[2,8[→ Z be an arbitrary function. We have

$$
\mathbb{R}_+^{(\infty)} = \bigcup_{l \in \mathbb{Z}} [2^{-3^{l+1}}, 2^{-3^l} [\cup \bigcup_{l \in \mathbb{Z}} [2^{3^l}, 2^{3^{l+1}} [
$$

and $k(x) = -l$, for $x \in [2^{-3^{l+1}}, 2^{-3^{l}}] \cup [2^{3^{l}}, 2^{3^{l+1}}]$, $l \in \mathbb{Z}$. The formula below gives a family of functions which commute with $\varphi.$

$$
g(x) = \begin{cases} g_1^*(x) & \text{for } x \in \{0, 1\}, \\ [g_2^*(x^{3^{-l}})]^{3^{p(s)+l}} & \text{for } x \in [2^{-3^{l+1}}, 2^{-3^l}[\cup[2^{3^l}, 2^{3^{l+1}}[\text{and } l \in \mathbb{Z}. \end{cases}
$$

Example 3.4. For the bijection $\varphi : \mathbb{R} \to \mathbb{R}$ given by the formula $\varphi(x) = -x^3$ we have $\mathbb{R} = \mathbb{R}^{(1)} \cup \mathbb{R}^{(2)} \cup \mathbb{R}^{(\infty)}$, where $\mathbb{R}^{(1)} = \{0\}$, $\mathbb{R}^{(2)} = \{-1,1\}$ and $\mathbb{R}^{(\infty)} = \mathbb{R} \setminus \{-1, 0, 1\}.$ Theorems 1.6, 1.7 and Remark 1.2 describe the form of the commuting function g on the sets $\mathbb{R}^{(1)}$, $\mathbb{R}^{(2)}$ and Theorem 2.1 describes the form of g on the set $\mathbb{R}^{(\infty)}$. Determining the parameters as in the previous examples we can obtain all functions commuting with the given function φ .

Problem 3.5. Characterize all functions commuting with a given finction $f: X \to X$ (not necessarily bijective), where X is an arbitrary nonempty set, particularly for $f : \mathbb{R} \to \mathbb{R}$.

Acknowledgements. I wish to thank to anonymous referee for all valuable remarks.

REFERENCES

- [1] D. Krassowska and M. C. Zdun, On limit sets of mixed iterates of commuting mappings, Aequationes Math., 78 (2009), 283–295.
- [2] D. Krassowska and M. C. Zdun, On the embeddability of commuting continuous injections in iteration semigroups, Publicationes Math., 75 (2009), 179–190.
- [3] D. Krassowska, *Iteration groups and commuting functions in* \mathbb{R}^n , Grazer Math. Berichte, 351 (2007), 100–109.
- [4] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, Polish Scientific Publishers (PWN), Warszawa 1968.
- [5] A. Mach, The translation equation on certain n-groups, Aequationes Math., 47 (1994), 11–30.
- [6] A. Mach, The construction of the solutions of the generalized translation equation, Aequationes Math., 64 (2002), 1–23.
- [7] A. Mach, On some functional equations involving Babbage equation, Result. Math., 51 (2007), 97–106.

(Received: November 5, 2012) Faculty of Economics

(Revised: February 20, 2013) Department of Social and Technical Science University of Business and Enterprise ul. Akademicka 12 27-400 Ostrowiec Swietokrzyski ´ Poland amach@wsbip.edu.pl or Faculty of Engineering and Economics

230 ANDRZEJ MACH

The State Higher School of Vocational Education Narutowicza 9 06-400 Ciechanów Poland andrzej.mach@pwszciechanow.edu.pl