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FUNCTIONS COMMUTING WITH AN ARBITRARY
FIXED BIJECTION

ANDRZEJ MACH

ABSTRACT. In this note a characterization of all bijective functions com-
muting with a fixed bijection ¢ : X — X, where X is an arbitrary
nonempty set, is given.

INTRODUCTION

One can find commuting functions in many papers devoted to functional
equations or iteration theory, see for example [1], [2], [3], [5], [6]. Therefore,
the problem of describing commuting functions with a given one seems to be
interesting. The aim of this paper is a solution of the commutativity problem
for all bijective functions. We present the form of commuting functions
separately for closed and open orbits (see [4], page 15) of a given bijection
p: X = X.

1. FUNCTIONS COMMUTING WITH A SOLUTION OF BABBAGE FUNCTIONAL
EQUATION

1.1. Notations, definitions, lemma. Let us start with introducing some
notations and definitions. Let X be an arbitrary nonempty set. Let ¢ : X —
X satisfy the Babbage equation (described in [4], page 288), this means

)=z, n=>2, (1.1)

(by ¢™ we denote n-th iteration).
Let us define
D :={m: m divides n}
and
XM .={zreX: ¢"(x) =2 and ¢*(x) # z, for every 1 < k < m}.
2010 Mathematics Subject Classification. Primary 39B12; Secondary 26A18.

Key words and phrases. Bijective function, commuting function, iteration, closed and
open orbits, Babbage functional equation.



222 ANDRZEJ MACH

Lemma 1.1 ([5] or [7]). The sets {X™) : m € D} are pairwise disjoint
and the equality

U xt™=x

meD
holds.

For convenience of the reader we quote the proof from the paper [7].

Proof. Tt is evident that the sets { X (™}, p are pairwise disjoint and |, p
X(m) = X. To prove the reverse inclusion, we reason as follows: if z € X and
p € {1,2,...,n} is the minimal number such that ¢P(z) = x then, evidently,
for t € N U {0} satisfying the inequalities

NPyl
p p
we have
1<n—tp<p and ¢P(z)=ux.
Therefore
PP (@) = "R (PP(2) = " (z) = .
Hence n — tp = p, whence p(t + 1) = n. O

For every m € D, by S,,, we denote an arbitrary selection of the family
of orbits

{{o,0(@), 6% @), ... ¢" (@)} v e X,
1.2. Main constructions for a solution of the Babbage equation.

Proposition 1.1. Let us suppose that m € D is fized, X = X™ and
S = Smn. Let g* : S — S be an arbitrary bijection. Moreover, let k : X —
{0,1,...,m — 1} be defined as follows

k(z):=k < ¢"(x)eSs. (1.2)
The function g : X — X defined by the formula
gl@) = [¢" M 0 g 0 0] (@) (13)

commutes with the function .

Proof. Firstly, let us remark that (1.2) implies k(p(z)) = k(x)—1if k(x) # 0
and k(¢(x)) =m — 1 if k(x) = 0. We have for k(z) # 0

g(w(fﬂ)) = [som"“(”(””))og*ocp’““"(”””} (gp(w)) _ [¢m—k(w<x>)Og*wk(m)m] ()

_ [mefk(x)Jrlog*o(pk(x)flJrl] (z) = w([@mfk(x)og*o(pk(w)] (l,)) _ 90<9($))-
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Similarly, for k(x) = 0 we have

g(go(m)) = [mefk(@(x) og* ok #(@) ( ): [ m— k(go(x))og*osok(go(x))Jrl] ()

= [@m’m“og*ocpm ”1}( ) = 90([@ ko) o g* o Pk )}( )) :w(g(x))
0

Remark 1.2. Let us remark that in the case m = 1 we have ¢ = idyx,
S = X and by the formula (1.3) we get g = ¢* : X — X, i.e. every bijection
commutes with the identity function.

Proposition 1.2. The function g given by the equality g = J,,c p 9m, where
Gm : X — XM has the form (1.3) commutes with the function ¢ : X —
X such that eq. (1.1) holds.

The proof results immediately from (X)) = X(™) Lemma 1.1 and
Proposition 1.1.

Example 1.3. Using Propositions 1.1 and 1.2 one can easily obtain the

following: if g* :]3, 00[—]3, 00| is an arbitrary bijection then the function

g*(z) for = > 7
g(z) =14 3 for =3, (1.4)
l-—g*(1—-2x) for z <3,

commutes with the function p(z) = 1 — z, for z € R. Particularly, the
functions

s+ 52 for x> 1, %—i—ln(m—i—%) for $>%
g(z) = % for z= = %, g(z) = ? for z = 7
5‘% for z< 3, §—ln(%—x) for z <3,

commute with the function p(z) =1 — z, for x € R.

Example 1.4. Let X =R\ {0} and ¢(z) := 1,2 € X. Let g : {-1,1} —
{—1,1} be an arbitrary bijection. Let us consider the following cases:

a) S:=]—1,0[U]0,1[, or

b) §:=] = 1,0[ UL, 4ol or
C) S ::] — 00, [ ]0’ 1[7 or
d) §:=] =00, =1[ U ]1,+o0].

: .S — S be an arbitrary bijection. Using Propositions 1.1 and 1.2
the function

i (
g(z) = gi‘l(a:) for xz €S, (1.5)
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commutes with the function ¢(z). Particularly, the functions g(z) = z™,

g9(z) = 4,

1 for x = —1,
-1 for x =1,
g(z) = sinZx for €] —1,0[U]0,1],

_1_
sin -
id{—l,l} for x € {—1, 1},

e? Tt for z €] — o0, 1],

for = €] — oo, —1[ U |1, 400],

g(z) = Inz—1 for z €]0,1],
fﬂ for = €] —1,0],
er
\ lnllfl for x €]1,4+o00],

commute with the function ¢(z) = 1, for 2 € R\ {0}.
Example 1.5. Let A and Y be arbitrary nonempty sets and cardY > 12.

Let us write I, := {0,1,...,p}, for p =0,1,... . Let X := AU B, where
B := {O'g €Y :i€ls je Iy} and cardB = 12. Let ¢ € XX be defined by
T, if x € A,
p(z) =

U{MM, ifx=0l, iclsjcl
where (i +1)4 denotes the remainder of division of i + 1 by 4. Then p*(x) =
z,z € X. In this case we have n = 4, X(1) = A, X(Q') =0, X% = B. Let
g; © A — A be an arbitrary bijection. Let S := {0 : j € I1}. Take the

bijection g5 : S — S defined as follows: gg(ag) = O'(()j+1)5. According to
Propositions 1.1 and 1.2 the function g : X — X defined by the formula

{ gi(z) for ze A,

U5 for 4= ag € B,

9(x) = ot
?)4

commutes with .
We define the relation in X by
x~y & PP(r) =y, forape{0,1,...,m—1}.

One can easily observe that it is an equivalence relation.

Let S be a selection of the family of orbits {{z, o(z), p*(z),...,™ 1 (z)} :
x € X }. Then there exists a unique function hg : X — S such that hg(z) ~
x. Note that hg(p(z)) = hg(x).

Theorem 1.6. Let X be an arbitrary nonempty set and n > 2. Let ¢ :
X — X be a solution of the Babbage equation (1.1) and suppose that X =
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X)) for a fized m € D. The bijection g : X — X commutes with the
solution @ if and only if there exist a selection S of the family of orbits
Uz, o(x), %(x),..., " Y2)} : = € X},a bijection g* : S — S and a
function p: S — {0,1,...,m — 1} such that g has the form

g(z) == [¢m—k(x>+p(hs(as>> og o wk(m)] () (1.6)
where k: X — {0,1,...,m — 1} is defined by (1.2).

Proof of the “if” part. Evidently, we have if x ~ hg(z), hs(p(x)) = hg(x)
and further reasoning is similar as in Proposition 1.1. We have for k(z) # 0

g(@(x)) _ [wm—k(@(w))-w(hs(w(ﬂf))) og*o SOfc(c,o@c))} (so(x))

_ [gpmfk(w<x>>+p<hs<so(x>>> og*o Sok(w(z)m} ()

_ [spm—k(ac)—l—l—&-p(hs(;t)) k(;z)—l—i—l} (SL’)

ogtop
= w([wm”“(x”p(h*g(x” og*o <p'“(”)]( )) = s0<g($))-

Similarly, for k(z) = 0 we have
g(cp(x)) _ [gpm—k(w(z))+p<hs(w<z>>> g o goW(x))} (gp(x))

[Spm k(@) +p(hs (2(2) o g* o (pkwmm} ()
[Som m+1+p(hg(x)) og* ° Som—l—s—l} (ZE)

w([wm kel tp(hs (@) o g o 90’“(’“”)]( )) = 90<g(fv))-
0

Proof of the “only if” part. Let g : X — X be a bijection commuting with
¢. Take an arbitrary selection S of the family of orbits {{xz, ¢(z), ¢*(z),. ..,
©™ 1(z)} : z € X}. One can observe that every function g* : S — S defined
in such a way that g*(s) = ¢ for a ¢ if and only if g(s) ~ ¢, is a bijection.
Let z € X and put s := hg(z). There exists p(s) € {0,1,...,m — 1} such
that ©P()(g*(s)) = g(s). Moreover we have

P (@) =5, "M (s) =
From the above
oM R@4P() o g* o gok(z)} (z) = M F@+p(s) {g* (S)} — k(@) +p(s) @

=" (g(s)) = g (¢ (s)) = g(a).
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Theorem 1.7. Let X be an arbitrary nonempty set andn > 2. Let ¢ : X —
X satisfy the Babbage equation (1.1). The bijection g : X — X commutes
with the solution ¢ if and only if g = J,,cp 9m, where gm : X (m) _, x(m)
have the form (1.6).

The proof results immediately from (X)) = X(™) Lemma 1.1 and
Theorem 1.6.

Example 1.8. Let X = B, where B is defined as in Example 1.5. Let ¢
be defined by ¢(07) = oy;,,),, for i € I3, j € I4. Let S be the same as in

Example 1.5, so S := {0}, : j € I4}. Take the bijection ¢g* : S — S defined
as follows: g*(o) = a[(]]+2)5. Define the function p : S — {0,1,2,3} by
p(0}) = (j)a. By the formula (1.6) we get the function g(o7) = 0811.2))45. One
can easily verify that g commutes with .

2. THE CASE OF OPEN ORBITS

Let X be an arbitrary nonempty set. Let ¢ : X — X be a bijection such
that

" (z) #x, Vn>1 (2.1)
In this case all orbits are as follows:
{0 972@), 072 (@), 07 (@), 2, 0(2), 0%(2), 9% (2), ' (@), ... ).
Now, we define the equivalence relation in X by
x~y & YP(r) =y, forapeZ.
Let S be a selection of the family of orbits

{1 973@), 72 @), 07 (@), 2, 0(2), (), (2), (), .. } i w € X ],

Then there exists a unique function hg : X — S such that hg(z) ~ x. Note
that hg(p(z)) = hs(z).

Theorem 2.1. Let X be an arbitrary nonempty set. Let ¢ : X — X be a
bijective function satisfying (2.1). The bijection g : X — X commutes with
the function o if and only if there exist a selection S of the family of orbits

{73 @), 072 @), 07 (@) 0(2), 2 (@), (@), 94 (a), .. } 1w e X,
a bigection g* : S — S and a function p: S — Z such that g has the form
g(z) i= [ o g 0 @] (2) 22)

where k : X — Z is defined by (1.2).
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Proof of the “if” part. Evidently, we have if x ~ hg(z), hs(p(x)) = hg(x)
and further reasoning is similar as in Proposition 1.1 and in Theorem 1.6.
Indeed, we have k(p(z)) = k(z) — 1 for all z € X, so

g<¢(x)> _ [(pfk(cp(x))er(hs(%(x))) og* o J“"@))} (@(fﬂ))
{(p D+p(hs (2(2) o g* o () )“}
{4,0 (z)+1+p(hs(@)) o g*o <p H_l} (z)

= ([ h@rlsD o g* 0 KO | (1)) = o(g(w)).
0

Proof of the “only if” part. Let g : X — X be a bijection commuting with
. Take an arbitrary selection S of the family of orbits

({0 97@), 72 @), 97 (@),2, 0(2), 0%(2), (@), ¢*(a),. .} mE X}

One can observe that every function g* : S — S defined in such a way that
g*(s) =t for at if and only if g(s) ~ ¢, is a bijection. Let € X and put
s := hg(z). There exists p(s) € Z such that ¢?(*)(g*(s)) = g(s). Moreover
we have

P (z) = 5, ¢ (5) = x.

From the above

o F@FP() o g* o gpk(m} (z) = o k@+p(s) [g* (S)} — k@) +p(s) (t)

=M (g(5)) = 9 (¢7(s) ) = g(a).

3. FINAL REMARKS, EXAMPLES AND PROBLEMS

Remark 3.1. The results of this paper can be useful in finding all func-
tions commuting with a given one. Namely, by Theorem 1.7, we have a
ready to use description of commuting functions for all closed orbits of the
given bijective function. Similarly, in Theorem 2.1, we have a ready to use
construction of commuting functions for all open orbits of the given bijec-
tive function. Since the union of the closed orbits X and the union of open
orbits X are disjoint and ¢(X7) = X1, ¢(X717) = X171, then the presented
results are complete for the characterization of all commutative functions
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with a given bijection ¢. More precisely, the domain X of the bijection ¢
can be decomposed onto disjoint sets as follows

XUX u X))

where X = {2z € X : ¢™x) =z and ¢F(z) # 2 for 0 < k < n} and
X ={xr € X: ¢"x) #x for n > 1}. Theorems 1.6, 1.7 and Remark
1.2 describe the form of commuting function ¢ on the sets X, n > 1 and
Theorem 2.1 describes the form of g on the set X ().

Example 3.2. Let us consider the bijection ¢ : Ry — R, given by the
formula ¢(x) = 3x. Using the presented theorems we can construct all

functions g commuting with ¢. We have Ry = R(l) UR(OO), where R = {0}

and Rioo) = R4\ {0}. Therefore g(0) = 0 and to define g on the set RSF >) we
use Theorem 2.1. The interval [1, 3] forms a selection of the family of orbits

{7 @) 7)™ @), 7, 0(2), 92 (@), 0 (), 6" (2), .. }  weRET

Moreover
RS_OO) — U [3[7 3l+1[
l€Z
and for x € [3!,3F1[, I € Z - according with (1.2) - we have k(z) = —I. The
formula below gives a family of functions which commute with ¢.

_f 0 for = =0,
9(x) = { 3O+ g5 (37ly) for z € [31, 3 [and [ € Z,
where ¢* : [1,3[— [1,3[ is an arbitrary bijection and p : [1,3][— Z is an
arbitrary function. Taking the bijection ¢g* : [1,3[— [1, 3] defined by the
formula ¢g*(z) = 1 + 2sin §(z — 1) and taking the function p(s) = 7, for
€ [1, 3], we obtain from the above the form of the commuting function g
as follows

() = 0 for =0,
I\E) = 3.1 +2sin%(37'z —1)] for z€[3,3" [and i€ Z.

Example 3.3. For the bijection ¢ : Ry — Ry given by the formula ¢(z) =
73 we have R, = R(l) U ]R(OO) where R(l) = {0,1} and R(OO) R4\ {0,1}.
Let g7 : {0,1} — {O 1} be an arbltrary leectlon Let g5 : [g, 3[U[2,8[—

[, 3[U[2, 8] be an arbitrary bijection and p : [, 1[U[2,8[— Z be an arbitrary

function. We have

Rgroo) U[2_3L+1 2_31[ U U[23l, 23l+1[
leZ leZ

872
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and k(z) = —I, for z € [273""" 273" [U[23',23""'[, | € Z. The formula below
gives a family of functions which commute with .

@={ @ o e wetody
(5@ PO for we 273 273U, 28 [and 1 € Z.

Example 3.4. For the bijection ¢ : R — R given by the formula p(z) = —z3

we have R = R UR® URC) where R = {0}, R?) = {-1,1} and
R(®) =R\ {~1,0,1}. Theorems 1.6, 1.7 and Remark 1.2 describe the form
of the commuting function ¢ on the sets R, R(?) and Theorem 2.1 describes
the form of g on the set R(®), Determining the parameters as in the previous
examples we can obtain all functions commuting with the given function .

Problem 3.5. Characterize all functions commuting with a given finction
f X — X (not necessarily bijective), where X is an arbitrary nonempty
set, particularly for f: R — R.
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