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KANNAN TYPE MAPPING IN TVS-VALUED CONE
METRIC SPACES AND THEIR APPLICATION TO
URYSOHN INTEGRAL EQUATIONS

AKBAR AZAM AND ISMAT BEG

ABSTRACT. We obtain sufficient conditions for the existence of a com-
mon fixed point of three mappings satisfying Kannan type conditions in
TVS valued cone metric spaces. We also give an application by finding
the solution for a system of two Urysohn integral equations. Our results
generalize several well-known recent results in the literature.

1. INTRODUCTION AND PRELIMINARIES

A system = = Tz (i € ), of operator equations has one or more si-
multaneous solutions obtained by using the common fixed point technique.
Recently Beg et al [5, 3, 8, 11, 12], studied common fixed points of a pair
of maps on topological vector space (TVS) valued cone metric spaces. The
class of TVS cone metric spaces is larger than class of cone metric spaces,
used in [1, 2, 9, 10, 14, 15, 16, 17]. In this paper we obtain common fixed
points and points of coincidence of three mappings in TVS-valued cone met-
ric spaces without the assumption of normality. As an application we prove
the existence of the unique solution of a system of two Urysohn integral
equations. Our results improve and generalize several contemporary and
recent results in the literature (e.g., see [1, 6, 9, 13, 15, 19]).

Let (X,d) be a metric space. A mapping T : X — X is called a contrac-
tion [4] if there exists A € [0,1) such that

d(Tz, Ty) < M\d(z,y), (1)

for all z,y € X. Mapping T is called Kannan [13] if there exists o € [0, %)
such that

d(Tz,Ty) < a[d(z, Tx) +d(y, Ty)], (2)
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for all z,y € X. The main difference between contraction and Kannan map-
pings is that “contractions are always continuous where as Kannan mappings
are not necessarily continuous. The Banach contraction theorem [4] is an
extremely dynamic tool in mathematical analysis. However, the Kannan
fixed point theorem [13] is imperative because it characterizes complete-
ness of metric spaces [18], while Banach theorem cannot characterize the
metric completeness of X [7]. the Banach type contractive condition (i.e.
d(Sz,Ty) < kd(z,y)), for a pair S,T : X — X of mappings implies that
both S and T are equal, whereas, the condition

d(Sz,Ty) < ky [d(x, Sz) + d(y, Ty)],

does not assert that S = T. Thus Kannan type conditions are useful to
find common fixed point of a pair of nonlinear operators. An other type
of contractive condition, due to Chatterjea [6] , is based on an assumption
analogous to Kannan condition (2): there exists o € [O, %) such that
d(Tz,Ty) < o[d(z,Ty) +d(y, Tx)], (3)

for all z,y € X. It is well-known that the Banach contractions, Kannan
mappings and Chatterjea mappings are independent in general.

Let (E, T) be a topological vector space (TVS) and P a subset of E. Then,
P is called a cone whenever

(i) P is closed, non-empty and P # {6},
(ii) ax + by € P for all 2,y € P and non-negative real numbers a, b.
(iii) PN (—P)={6}.
For a given cone P C F, we can define a partial ordering < with respect
to Pby x < yifand only if y—x € P. z < y will stand for z < y and = # y,

while x < y will stand for y — x € intP, where int P denotes the interior of
P. A cone P is called solid if intP is nonempty.

Definition 1. [3, 5] Let X be a nonempty set. Suppose the mapping d :
X x X — F satisfies

(d1) 6 = d(z,y) for all z,y € X and d(x,y) = 0 if and only if z = v,
(d2) d(z,y) =d(y,z) for all z,y € X,
(d3) d(z,y) 2 d(z,2z) +d(z,y) for all z,y,z € X.

Then d is called a TVS-valued cone metric on X and (X,d) is called a
TVS-valued cone metric space.

If E is a real Banach space then (X, d) is called cone metric space [9].

Definition 2. [5] Let (X, d) be a TVS-valued cone metric space, z € X and
{zn}n>1 a sequence in X. Then
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(i) {xn}n>1 converges to x whenever for every ¢ € E with § < ¢ there
is a natural number N such that d(z,,z) < ¢ for all n > N. We
denote this by lim,, . z, = = or xz,, — x.

(ii) {zn}n>1 is a Cauchy sequence whenever for every ¢ € F with § < ¢
there is a natural number N such that d(z,, ) < ¢ for all n,m >
N.

(iii) (X,d) is a complete TVS valued cone metric space if every Cauchy
sequence is convergent.

A pair (F,T) of self-mappings on X is said to be weakly compatible
if FTx = TFx whenever Fx = Tx. A point y € X is called point of
coincidence of a family T}, j € J, of self-mappings on X if there exists a
point € X such that y = Tz for all j € J.

Lemma 3. [2] Let X be a nonempty set and the mappings S, T, F : X — X
have a unique point of coincidence v € X. If (S, F) and (T, F) are weakly
compatible, then ST and F have a unique common fized point.

2. COMMON FIXED POINT

Theorem 4. Let (X,d) be a complete TVS-valued cone metric space, P be
a solid cone, and mappings S, T, F : X — X satisfy:

d(Sz,Ty) 2 Ad(Fz,Sz) + Bd(Fy,Ty), (4)
for all x,y € X, where A, B are non-negative real numbers with A+ B < 1.
I
! S(X) UT(X) € F(X),
and F(X) or S(X)UT(X) is a complete subspace of X, then S,T and

F have a unique point of coincidence. Moreover if (S,F ) and (T,F) are
weakly compatible, then S, T and F have a unique common fixed point.

Proof. We shall first show that, if S, 7" and F' have a point of coincidence,
then it is unique. For this, assume that there exist two distinct points of
coincidence v, v* of mappings 5,7 and F' in X. It follows that there exists
u,u* € X such that

v=Fu=Su="Tu,
and

v* = Fu* = Su* =Tu".
From (4), we obtain
d(v,v*) = d(Su, Tu")
= Ad(Fu, Su) + Bd(Fu,Tu)
= (A+ B)d(v,v"),
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it implies that
v = v*, a contradiction.

Now, we prove the existence of a point of coincidence of the mappings S, T
and F. Let xg be an arbitrary point in X. Choose a point z; in X such that
Fx1 = Txp. This can be done since S(X)UT(X) C F(X). Similarly choose
a point o in X such that Fxo = Sz1. Continuing this process having chosen
Ty in X, we obtain x,41 in X such that
Froni1 = Taon
Fropyo = Sxopt1, n>0.
Suppose there exists n such that Fxs, = Faopy1. Then Fao, = Txo, and
from (4)
d (F-ana 51'271,) =d (Fx2n+17 San)
= d (T$2n, Sl‘Qn)
= Ad(Fxap, Stop) + Bd(Fxay, Txay)
= Ad(Fxop, Stan) + Bd(Fxopn, Fron 1)
= Ad(Fx2na S$2n)7
which yields Fxg, = Sxzg, and so, Fxg, = Sxe, = Txs, = y (say) is the
required unique point of coincidence of F, S and T. Similarly, if Fxony1 =
Fzxoyi9 for some n. Then Fropy1 = Stont1 = Txopy1 = y is the required
point. Thus in this sequel of proof we can suppose that Fzx, # Fx,41 for
all n. From (4)
d(Fxop, Fropy1) = d(Sxon—1,Tx2,)
= Ad(Fzan—1,Sr2, 1) + Bd(Fr2,, Tw2y,)
= Ad(Fzon—1, Fxay) + Bd(Fx2n, Frony1)
A

| A

d(Fzop—1, Ffv2n)

\ A

— B

Fxon_1,Fxay),
{1 118 }d( Ton—1, Frap)
and

d(Fxop—1, Faon) = d(Txon—2, Ston—1)
< A(Fxop—1,Sr2,-1) + Bd (Fzon—2,TTo,—2)
< A(Fzon—1, Fxon) + Bd (Fxon—2, F1o,-1)
B

= md(Fﬂhn 2, F'wop— 1)
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< max {154, 1—AB} d(Fzxop—2, Fxon_1).
It implies that
d(Fzopn, Front1) 2 Md(Frop—1, Fxay,),
where A = max {%, %}. As Fx, # Fxpy1 and A+ B < 1, therefore
0 < A< 1, and for all n,
d(Fzp, Frpe1) 2 MNd(Fxp—1, Fx,)
< Nd(Fap_o, Fry_1) = - < \'d(Fzg, Fx1),
Now for any m > n,
d(Fxy, Fry,) 2 d(Fay, Frpi1) + d(Fxpyq, Frpgo) + -+ d(Fxp—1, Fap,)
< AT e NPT d(Fag, Fay)

A"
j [1 )\] d(F(lZo,F&Zl).

Let 8 < ¢ be given, choose a symmetric neighborhood V of 6 such that ¢+
V C intP. Also, choose a natural number Ny such that {%] d(Fzo, Fz1) €

V, for all n > Nj. Then, %d(F:ﬁl,Fxo) < ¢, for all n > Ny. Thus,

n

A
d(Fxy, Fx,) < [1 )\] d(Fzo, Fr1) < c,

for all m > n. Therefore, {Fzy,}n>1 is a Cauchy sequence. Since F X is
complete, there exist u € X,v € FX such that Fz,, — v = Fu (this holds
also if S(X)UT(X) is complete with v € S(X)UT(X)). Choose a natural
number Ny such that for all n > Ny

1-B
d(FCL'n+1, Fl'n) < 6(214) and d(FSCn+1, FU) <
Then for all n > Ny
d(Fu,Tu) < d(Fu, Fxony2) + d(Front2, Tu)

< d(Fu, Front2) + d(Szant1, Tu)
= d(Fu, Froyy2) + Ad(Fxont1, Fronto) + Bd(Fu,Tu)

¢(1—-B)
—

IA

A
— Bd(FU, Faonia) + ﬁd(Fl?nJrlv Fxony0)

_|_

A
ol

c J—
3 =¢
Thus c

d(Fu,Tu) < g for all m > 1.
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So, = — d(Fu,Tu) € P, for all m > 1. Since = — 6 (as m — oo) and P
is closed, —d(Fu,Su) € P. But d(Fu,Tu) € P, therefore, d(Fu,Tu) = 0.
Hence

v=Fu="Tu,
and

d(Fu,Su) = d(Tu, Su) = Ad(Fu, Su) + Bd(Fu,Tu) = Ad(Fu, Su),

implies that v is a unique point of coincidence of F, S and T. If (S, F') and
(T, F ) are weakly compatible, then by Lemma 3, v is a unique common
fixed point of S, T and F. O

Example 5. Let X = 1,2,3 and F be the set of all real valued functions
on [0, 1] which also have continuous derivatives on X. Then E is a vector
space over R under the following operations:

(z+y) ) =z@)+y (), (az)(t)=az(t),

for all x,y € E,« € R. Let 7 be the strongest vector (locally convex) topol-
ogy on E. Then (X, 7) is a topological vector space which is not normable
and is not even metrizable. Define d : X x X — E as follows:

0 ife=y
d(z,y) (t) = elni+t) if oz #yand z,y € X — {2}
Y et ifx#yand z,y e X — {3}

e=m2)  if x £y and z,y € X — {1}.

Let P ={z € E : x(t) > 0 for all t}. Then (X,d) is a TVS-valued cone
metric space. Define a mappings F,T : X — X as follows:

ro- {3 $22 rer=s

Note that, for all ¢ € [0,1] and for a < 3

Therefore the previous relevant results on fixed points [9, 13, 15, 19] and on
common fixed points [1] are not applicable to obtain fixed point of T and
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common fixed point of F' and T'. In order to apply Theorem 4, consider the
mapping Sz = 3 for each z € X. Then,

0 ify#2
d(Sz,Ty) (t) = { o(in 441 ifzi2

and for B = %
4
Bd(Fy,Ty) (t) = ?et if y =2.

It follows that F, .S and T satisfy all conditions of Theorem 4 for A =0, B =
2 and we obtain F (3) = T'(3) = S(3) = 3.

In the following we use a Chatterjea type condition to obtain point of
coincidence and common fixed point of three mappings on a TVS-valued
cone metric space.

Theorem 6. Let (X,d) be a complete TVS-valued cone metric space, P be
a solid cone, and mappings S, T, F : X — X satisfy:

d(Sz, Ty) = Cd(Fy, Sz) + Dd(Fz,Ty), (5)

for all x,y € X, where C, D are non-negative real numbers with C+ D < 1.
If
S(X) UT(X) C F(X),

and F(X) or S(X)UT(X) is a complete subspace of X, then S,T and F
have a unique point of coincidence. Moreover if (S, F') and (T, F) are weakly
compatible, then S, T and F have a unique common fized point.

Proof. 1t can be easily seen that if S, T and F have a point of coincidence,
then it is unique. Let zo be an arbitrary point in X. Choose a point x; in
X such that Fxy = Tzg. This can be done since S(X)UT(X) C F(X).
Similarly choose a point z2 in X such that Fze = Sz;. Continuing this
process having chosen z, in X, we obtain x,; in X such that

Faopt1 = Txoy
Fropyio = Sxopt1, n>0.

Suppose there exists n such that Fxg, = Fxa,t1. Then using (5), we obtain
Fxo, = Sxo, = Txy, =y (say) is the required unique point of coincidence
of F,S and T. Similarly, if Fxo,11 = Fxon4o for some n. Then Fxopy =
STont+1 = Txon+1 = y is the required point. Thus in this sequel of proof we
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can suppose that Fx, # Fx,1. From (5), we obtain

d(Fxop, Frony1) = d(Szan—1,Txop)

Cd(Fxay, Sxon—1) + Dd(Fxon_1,Tw2)
D [d(Fxon—1, Fxop) + d(Faon, Froni1)]
D
1-D

A TA

d(Fzop—1, Fxoy),

and

d(Fzon—_1, Fron) = d(Txon—2, STon—1)
=X Cd(Fxop—2,5to,—1) + Dd (Fxop_1,Txon—2)
= Cd(Fxon—2, Fxay)
= Cld(Fxon—2, Fxon—1) + d(Fron—1 Fxap)]

C
= md(FxQn—Qa Faop_1).

It follows that

d(Fxon, Frons1) =<

d(Fx2n—17Fx2n)

1-D
D C
= ﬁmd(FC@n—Q, F«TZn—l)
D c 1"
= |:1—_D1—C(:| d(F.%'O,F$1),
and
C
d(Fzont1, Fronso) =< md(FJ;anFan—&—l)
C D c 1"
< .
-1-C [1—D1—C} d(Fo, F)
Let
C C
“=1-¢ 1o
then, as Fx, # Fx,y1 and C+ D < 1,
C D D C

0<af= < 1.

1-C1-D 1-C1-D
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Now for p < q we have,

d(Faopi1, Faogr1) 2 d(Fagpir, Fropyo) + d(Fropio, Fropys)
+ -+ d(Frag, Frogs1)

< alaf)f d(Fz,, Fz1) +

+ -+ [afl! d(Fao, Faq)

IA

az aﬁ

1—apf

PN

L 1—ap

=

[aBPT d(Fay, Fay)

Z (aB)!| d(Fzo, Fz1)

i=p+1

a(a )P[L—ap]’”?
d(F.%'(),Fxl)

| (B [1i—ap)t

0(aB? | (epr

| 1—af

5(1+5)[ (0‘5)

of

d(Frap, Fragi1) = [

d(Firyy, Frag) < (14 >[(
and
d(Fraper, Firng) < (+ﬂ)[

Hence, for 0 <n < m

P
d(Fxp, Fa,) 2 ﬁ(fi)ﬁ] d(Fzo, Fz1)

} d(Fxo, Far)

:| d(Fl‘o, Fl’l),

} (Fzo, Fz1),
} d(Fxo, Fxy),

a(af)”

} d(Fxg, Fay).

251

where p is the integer part of 5. Let 6 < ¢ be given, choose a symmetric

neighborhood V' of 6 such that ¢4+ V C intP. Since

p—o0

1—ap
there exists a natural number N7 such that

=

for all p > N and so

o

lim [2(045)73] d(Fzo, Fz1) =0,
} d(Fxo, Fz1) €V,

} d(Fxo, Fz1) < ¢, for all p > Nj.
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Consequently, for all n,m € N, with 2N; < n < m, we have
d(Fzp, Fa,) < c.

Therefore, {Fz,},>1 is a Cauchy sequence. Since FX is complete, there
exist u € X,v € FX such that Flz,, — v = Fu (this hold also if S(X)UT(X)
is complete with v € S(X)UT(X)). Choose a natural number Ny such that
for all n > Ny
c
d(F‘TTH-hFu) < m7
where M = max {%, %} . Then for all n > Ny

d(Fu,Tu) < d(Fu, Frony2) + d(Fxonta, Tu)

= d(Fu, Fxont2) + d(Stont1, Tu)

(Fu, Frony2) + Cd(Fu, Stony1) + Dd(Fxony1,Tu)
(Fu, Fxony2) + Cd(Fu, Fronio) + Dd(Fropi1, Tu)
(Fu, Fxony2) + Cd(Fu, Fro,2)

D[d(Fxont1, Fu) + d(Fu, Tu)]

=< (ig) d(Fu, Fxoni2) + %d(FﬂsgnH, Fu)

c ¢
= Md(Fu, F$2n+2) + Md(Fl’zn+1, FU) < 5 + 5 =c
By a similar argument F'u = T'uw = Su, which implies that v is a unique point
of coincidence of F,S and T. If (S, F) and (7T, F) are weakly compatible,
then by Lemma 3, v is a unique common fixed point of S,T and F.
O

The following example shows that the above theorem is an improvement
and a real generalization of results [1, 6, 9, 13, 15, 19].

Example 7. Let (X, d) be the TVS-valued cone metric space of Example
5. Define a mappings F,T : X — X as follows:

@ ={; ;s FE=x

Note that,for all ¢ € [0,1] and for a < 3

d(T(3),T(2) (t) = d(1,3) (t) = e 7+):
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Therefore the previous relevant results on fixed points [6, 9, 15, 19] and on
common fixed points [1] are not applicable to obtain fixed point of 7" and
common fixed point of F' and T'. In order to apply the Theorem 6, consider
the mapping Sx = 1 for each x € X. Then,

0 if 2
d(Sz,Ty) (t) = { e(n7+t) f z i 2

and for D = %
Dd(Fz,Ty) (t) = %et if y = 2.
It follows that S and T satisfy all conditions of Theorem 6 and we obtain
F(1)=T(1)=5(1) =1.
3. APPLICATION

In this section we prove an existence theorem for the common solution
for two Urysohn integral equations. Let X = C([a,b],R™),E is a topological
vector space of Example 5

P={zxeFE:xz(t)>0foralltel01]},
and d : X x X — F is defined as follows:
d(z,y) (t) = (lz — ylloo) €.

It is easily seen that (X, d) is a complete TVS-valued cone metric space.

Theorem 8. Consider the Urysohn integral equations

b
(1) = / Ki(t, 5,2(5))ds + g(1), (6)

b
o) = [ Kalt.s,a(9)ds + b, ™)
a
where t € [a,b] CR, z,g9,h € X.
Suppose that Ky, K5 : [a,b] X [a,b] x R" — R™ are such that F,,G, € X

for each z € X, where

b b
By (1) = / Ki(t, s,2(5))ds, G (1) = / Ko(t, s, 2(s))ds for all ¢ € [a,b].
If there exist 0 < h < 1 such that for every z,y € X
(1 (8) = Gy (t) + 9(t) = h(t)]] ) € < hM (z,y) €',
for all z,y € X, where

B 1Fs () + 9(t) — 2t |Gy (£) + (1) — y(®)..
M(z,y) ‘max{ 1F2 () + g(t) — y(tl] - 1Gy (1) + }
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Then the system of integral equations (6) and (7) have a unique common
solution.

Proof. Define F, S, T : X — X by
F(z)=2z, Sk)=F,+g, T((x)=Gy+h.
If
M(z,y) = [|Fe (t) + 9(t) — 2] ,
it is easily seen that

(I8 = Tlloo)e" < h (IS (z) — zllc) €'

for every x,y € X. By Theorem 4 if A = h, B = 0, the Urysohn integral
equations (6) and (7) have a unique common solution. If

M(z,y) = |Gy (t) + h(t) =y ()| ,
then
(IS = Tlloo)e’ < h(IT () = yllo) €'
for every x,y € X. Again by Theorem 4 if A = 0, B = h, the Urysohn

integral equations (6) and (7) have a unique common solution. Similarly in
other cases the result follows by Theorem 6. ([
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