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HYPERCYCLIC AND TOPOLOGICALLY MIXING

PROPERTIES OF ABSTRACT TIME-FRACTIONAL

EQUATIONS WITH DISCRETE SHIFTS

MARKO KOSTIĆ

Abstract. The most valuable theoretical results about hypercyclic and
topologically mixing properties of some special subclasses of the abstract
time-fractional equations of the following form:

Dαn
t u(t) +An−1D

αn−1
t u(t) + · · ·+A1D

α1
t u(t) = A0D

α
t u(t), t > 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1. (1)

where n ∈ N \ {1}, A0, A1, · · ·, An−1 are closed linear operators acting
on a separable infinite-dimensional complex Banach space E, 0 ≤ α1 <
· · · < αn, 0 ≤ α < αn, and Dα

t denotes the Caputo fractional derivative
of order α ([1]), have been recently clarified in [12]-[13]. In this paper, we
continue the analysis contained in [12]-[13] by assuming that, for every
j ∈ Nn−1, the operator Aj is a certain function of unilateral backward
shifts acting on weighted l1(C)-spaces.

1. Introduction and preliminaries

The basic hypercyclic and topologically mixing properties of some special
subclasses of the abstract time-fractional equations of the form (1) have
been recently analyzed by the author in [12]-[13]. The blank hypothesis
in [13] was that there exist complex constants c1, · · ·, cn−1 such that, for
every j ∈ Nn−1, the operator Aj satisfies the equality Aj = cjI, where we
denote by I the identity operator on E. In this paper, we shall consider
topologically mixing solutions of the equation (1) with A0, A1, · · ·, An−1

being functions of unilateral backward shift operators. Here we would like to
observe that various types of hypercyclic and topologically mixing properties
of backward shift operators on Banach or Fréchet sequence spaces have been
widely studied (cf. [2, 4, 6-8, 19-21] for further information in this direction).
On the other hand, fractional differential equations have gained importance
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and popularity during the past three decades or so, mainly due to their
applications in various fields of physics, chemistry, mathematical biology
and engineering. Concerning the theory of abstract fractional equations
and abstract Volterra integro-differential equations in Banach spaces, the
references [1, 5, 10, 18, 22] are of crucial importance.

We use the standard notation throughout the paper. By (E, || · ||) we
denote a separable infinite-dimensional complex Banach space; A0, · · ·, An−1

denote closed linear operators acting on E, n ∈ N \ {1}, 0 ≤ α1 < · · · < αn
and 0 ≤ α < αn. The space of continuous linear mappings from E into E is
denoted by L(E). For a closed linear operator B on E, we denote by D(B)
and D∞(B) its domain and the set

⋂
n∈ND(Bn), respectively. Given s ∈ R

in advance, put dse := inf{k ∈ Z : s ≤ k}. The Gamma function is denoted
by Γ(·) and the principal branch is always used to take the powers. Set
Nl := {1, · · ·, l}, N0

l := {0, 1, · · ·, l}, 0ζ := 0 and gζ(t) := tζ−1/Γ(ζ) (ζ > 0,
t > 0). Define mj := dαje, 1 ≤ j ≤ n, m := m0 := dαe and α0 := α. Put,
for every i ∈ N0

mn−1, Di := {j ∈ Nn−1 : mj − 1 ≥ i}.
We refer the reader to [15]-[16] for the most important facts concerning

the well-posedness of problem (1), in particular, for the notions of mild
(strong) solutions of (1). As a special case of (1), we quote the abstract
Cauchy problem

(ACPn) :

{
u(n)(t) +An−1u

(n−1)(t) + · · ·+A1u
′(t) +A0u(t) = 0, t ≥ 0,

u(k)(0) = uk, k = 0, · · ·, n− 1.

Fairly complete information on the general theory of abstract higher-order
differential equations can be obtained by consulting the monograph [22] by
T.-J. Xiao and J. Liang.

The following definition is generally enough for our purposes (cf. also
[15, Definition 2.2] for the notion of various types of (C1, C2)-existence and
uniqueness propagation families for (1)).

Definition 1.1. A sequence ((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) of strongly con-
tinuous operator families in L(E) is called a (global) resolvent propagation
family for (1) if Ri(0) = gi+1(0)I for all i ∈ N0

mn−1, Ri(t)Aj ⊆ AjRi(t) for

all t ≥ 0, i ∈ N0
mn−1 and j ∈ N0

n−1, and if the following functional equation
holds: [

Ri(·)x− gi+1(·)x
]

+
∑
j∈Di

gαn−αj ∗
[
Ri(·)Ajx− gi+1(·)Ajx

]
+

∑
j∈Nn−1\Di

(
gαn−αj ∗Ri(·)Ajx

)
(·)
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=

{ (
gαn−α ∗Ri(·)A0x

)
(·), m− 1 < i,

gαn−α ∗
[
Ri(·)A0x− gi+1(·)A0x

]
(·), m− 1 ≥ i,

for any i = 0, · · ·,mn − 1 and x ∈
⋂

0≤i≤n−1D(Ai).

The interested reader may consult the papers [11] and [15]-[16] for further
information concerning some other types of resolvent families which can
be useful in the analysis of (inhomogeneous) abstract Cauchy problems of
the form (1). The notions of exponential boundedness and analyticity of
resolvent propagation families will be understood in the sense of [15]; we
shall always assume that the operator Aj is densely defined for all j ∈
N0
n−1 as well as that every single operator family (Ri(t))t≥0 of the tuple

((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) is non-degenerate, i.e., that the supposition
Ri(t)x = 0, t ≥ 0 implies x = 0. With the exception of Example 2.2(i) below,
we shall always consider the case in which α = 0; then the problem (1) has
at most one mild (strong) solution ([15]).

Although the notion of a global ζ-times resolvent family (ζ > 0) is a very
special case of the general notion of a resolvent propagation family, it would
be very useful to introduce this notion in a separate definition.

Definition 1.2. Let ζ > 0, and let B be a closed densely defined linear
operator on E. A strongly continuous operator family (Rζ(t))t≥0 is called a
ζ-times regularized resolvent family having B as the integral generator iff
the following holds:

(i) Rζ(t)B ⊆ BRζ(t), t ≥ 0, Rζ(0) = I, and

(ii) Rζ(t)x = x+
∫ t

0 gζ(t− s)BRζ(s)x ds, t ≥ 0, x ∈ D(B).

Let β > 0. Denote by Eβ(z) the Mittag-Leffler function

Eβ(z) :=
∞∑
n=0

zn

Γ(βn+ 1)
, z ∈ C,

and by Φγ(t) the Wright function

Φγ(t) := L−1
(
Eγ(−λ)

)
(t), t ≥ 0,

where L−1 denotes the inverse Laplace transform. It is well known that the
function Φγ(t) can be extended to an entire function, and that there exists
a finite constant M > 0 such that 0 ≤ Φγ(t) ≤ M, t ≥ 0. For more details
on the Mittag-Leffler and Wright functions, we refer the reader to [1] and
references cited there.
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2. Topological dynamics of certain classes of abstract
time-fractional PDEs with unilateral backward shifts

Recall that E denotes a separable infinite-dimensional Banach space over
the field of complex numbers. In the sequel, we shall assume that A0, A1,
· · · , An−1 are bounded linear operators acting on E as well as that n ∈
N \ {1}, 0 ≤ α1 < · · · < αn, 0 ≤ α < αn, mj = dαje, 1 ≤ j ≤ n,
m = m0 = dαe, α0 = α, and that there exists a global resolvent propagation
family ((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) for (1). Then we know (see [15]) that

the unique mild solution of (1) is given by u(t) =
∑mn−1

i=0 Ri(t)xi, t ≥ 0.
We need the following definition from [12]-[13].

Definition 2.1. Let i ∈ N0
mn−1. Then it is said that (Ri(t))t≥0 is:

(i) hypercyclic iff there exists x ∈ E such that {Ri(t)x : t ≥ 0} is a
dense subset of E; such an element is called a hypercyclic vector of
(Ri(t))t≥0,

(ii) topologically transitive iff for every y, z ∈ E and for every ε > 0,
there exist x ∈ E and t ≥ 0 such that ||y−x||<ε and ||z−Ri(t)x||<ε,

(iii) topologically mixing iff for every y, z ∈ E and for every ε > 0, there
exists t0 ≥ 0 such that, for every t ≥ t0, there exists xt ∈ E such
that ||y−xt|| < ε and ||z −Ri(t)xt|| < ε.

In particular, the above definition specifies the basic hypercyclic proper-
ties of global ζ-times regularized resolvent families; observe also that the
notions of hypercyclicity and topologically transitivity (mixing) can be in-
troduced for an arbitrary strongly continuous operator family (R(t))t≥0 ⊆
L(E). Recall that the topological transitivity of (Ri(t))t≥0 for some i ∈
N0
mn−1 implies that (Ri(t))t≥0 is hypercyclic and that the set of all hyper-

cyclic vectors of (Ri(t))t≥0 is a dense Gδ-subset of E ([13]).
Before proceeding further, we would like to present two illustrate examples

of abstract time-fractional equations (1) with topologically mixing solutions.

Example 2.2.

(i) ([9], [13]) Let X be a symmetric space of non-compact type and rank

one, let p > 2, let the parabolic domain Pp, the operator ∆\
X,p and

the positive real number cp possess the same meaning as in [9], and
let P (z) =

∑n
j=0 ajz

j , z ∈ C be a non-constant complex polynomial

with an > 0. Suppose first ζ ∈ (1, 2), π − n arctan |p−2|
2
√
p−1
− ζ π2 > 0

and θ ∈
(
n arctan |p−2|

2
√
p−1

+ ζ π2 − π, π − n arctan |p−2|
2
√
p−1
− ζ π2

)
. Then

−eiθP (∆\
X,p) is the integral generator of an exponentially bounded,

analytic ζ-times regularized resolvent family (Rζ,θ,P (t))t≥0 of angle
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1
ζ

(
π − n arctan |p−2|

2
√
p−1
− ζ π2 − |θ|

)
. Furthermore, the condition

−eiθP
(
int
(
Pp
))
∩
{
te±iζ

π
2 : t ≥ 0

}
6= ∅

implies that (Rζ,θ,P (t))t≥0 is topologically mixing. Suppose now n =
2, 0 < a < 2, α2 = 2a, α1 = 0, α = a, c1 > 0, i = 0 and |θ| < min

(
π
2−

n arctan |p−2|
2
√
p−1

, π2 − n arctan |p−2|
2
√
p−1
− π

2a
)
. Then D0 = ∅ and the

operator −eiθP (∆\
X,p) is the integral generator of an exponentially

bounded, analytic resolvent propagation family ((Rθ,P,0(t))t≥0, · · ·,

(Rθ,P,d2ae−1(t))t≥0) of angle min
(π−n arctan

|p−2|
2
√
p−1
−|θ|

a − π
2 ,

π
2

)
. The

condition

−eiθP
(
int
(
Pp
))
∩
{(
it
)a

+ c1

(
it
)−a

: t ∈ R \ {0}
}
6= ∅

implies that (Rθ,P,0(t))t≥0 is topologically mixing.
(ii) ([3], [13]) Suppose ζ ∈ (0, 1), E = L2(R) and c > b/2 > 0. Set Ω :=
{λ ∈ C : <λ < c−b/2}, φ ∈ E∗ = E and Acu := u′′+2bxu′+cu acts

on E with domain D(Ac) := {u ∈ L2(R) ∩ W 2,2
loc (R) : Acu ∈ L2(R)}.

Then Ac is the integral generator of a topologically mixing ζ-times
regularized resolvent family (Rζ(t))t≥0, which cannot be hypercyclic
provided b < 0 or c ≤ b/2.

Let ζ > 0, and let (rk)k∈N be a sequence of positive real numbers satisfying
that there exists M > 0 such that rkr

−1
k+1 ≤ M for all k ∈ N. Consider the

weighted l1-space

l1r :=

{(
xk
)
k∈N : xk ∈ C,

∞∑
k=1

rk|xk| <∞
}
,

normed by ∥∥∥(xk)k∈N∥∥∥ :=
∞∑
k=1

rk
∣∣xk∣∣, (

xk
)
k∈N ∈ l

1
r .

Define now the unilateral backward shift A : l1r → l1r by A(xk)k∈N :=
(xk+1)k∈N, (xk)k∈N ∈ l1r . Clearly, A ∈ L(l1r) and the norm of A can be
majorized by the constant M mentioned above. Recall that H. R. Salas [19]
has proved that the operator I +A is hypercyclic. Details of his proof have
been essentially used by W. Desch, W. Schappacher and G. F. Webb [4],
where it has been shown that the strongly continuous semigroup (T (t))t≥0,
generated by A, is hypercyclic. Observe further that [1, Theorem 2.5] and
its proof imply that the operator A is the integral generator of a global
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exponentially bounded ζ-times regularized resolvent family(
Rζ(t) ≡

∞∑
k=0

tζk

Γ(ζk + 1)
Ak
)
t≥0

.

A slight modification of the arguments given in the proof of [4, Theorem
5.2] implies that the following theorem holds good:

Theorem 2.3. Let ζ > 0, and let A be defined as above. Denote by
(Rζ(t))t≥0 the ζ-times regularized resolvent family generated by A. Then
(Rζ(t))t≥0 is topologically mixing.

The importance of Theorem 2.3 lies in the fact that, for any arbitrarily
large finite number ζ > 0, we have the existence of a topologically mixing ζ-
times regularized resolvent family on a Banach space, here concretely on l1r .

Now we would like to mention the following problem connected with the
existence of topologically mixing solutions of the abstract Cauchy problem
(ACPn) : if there exist at least two indices i, j ∈ N0

n−1 such that the
operators Ai and Aj are not scalar multiples of the identity operator, then
we could not find in the existing literature an example of the abstract Cauchy
problem (ACPn) with topologically mixing solution u(t). The main goal of
following theorem is to show that, for every n ≥ 2, there exists an example
of the abstract Cauchy problem (ACPn) with such properties. In order to
help one to better understand the proof, we will consider separately the
cases n = 2 and n > 2.

Theorem 2.4. Let A ∈ L(l1r) be as in the formulation of Theorem 2.3, and
let (T (t))t≥0 be the strongly continuous semigroup generated by A.

(i) Consider the abstract Cauchy problem(
P2

)
:

{
u′′(t)− (2A− I)u′(t) +A(A− I)u(t) = 0, t ≥ 0,

u(0) = x, u′(0) = y.

Then there exists a resolvent propagation family ((R0(t))t≥0,
(R1(t))t≥0) for (P2), given by R0(t)x = T (t)(x−Ax)+e−tT (t)Ax and
R1(t)x = T (t)(1−e−t)x (t ≥ 0, x ∈ l1r). Furthermore, (R0(t))t≥0 and
(R1(t))t≥0 are topologically mixing, and the operator family (R0(t)+
R1(t))t≥0 is also topologically mixing.

(ii) Suppose n > 2 and 0 < c1 < · · · < cn−1. Consider the abstract
Cauchy problem

(
Pn
)

:


n−1∏
i=0

(
d
dt −

(
−ci +A

))
u(t) = 0, t ≥ 0,

u(k)(0) = xk, k = 0, · · ·, n− 1,
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with c0 = 0. Then there exists a global exponentially bounded resol-
vent propagation family ((R0(t))t≥0, · · ·, (Rn−1(t))t≥0) for (Pn). Fur-
thermore, (Ri(t))t≥0 is topologically mixing for any i ∈ N0

n−1, and
the operator family (R0(t) + · · · + Rn−1(t))t≥0 is also topologically
mixing.

Proof. Notice that the problem (P2) is a special case of the problem (Pn)
with n = 2 and c1 = 1, so that the first statement in (i) is an almost
immediate consequence of [5, Theorem 25.6]. Suppose now that y = (yk)k∈N
and z = (zk)k∈N belong to the dense subset

D :=
{(
xk
)
k∈N : ∃L ∈ N ∀k > L xk = 0

}
of l1r . Let yk = zk = 0 for k > L. For any sufficiently large number t > 0, we
will construct the vector v(t) = (vk(t))k∈N ∈ l1r such that∥∥y−v(t)

∥∥ = O
(
t−1
)

as t→ +∞, and
∥∥z−R0(t)v(t)

∥∥ = O
(
t−1
)

as t→ +∞.
(2)

Towards this end, observe that

T
(
t
)(
xk
)
k∈N =

( ∞∑
j=k

tj−k

(j − k)!
xj

)
k∈N

, t ≥ 0,
(
xk
)
k∈N ∈ l

1
r ,

and

R0

(
t
)(
xk
)
k∈N =

( ∞∑
j=k

tj−k

(j − k)!

(
xj +

(
e−t − 1

)
xj+1

))
k∈N

, (3)

where t ≥ 0,
(
xk
)
k∈N ∈ l

1
r .

Define vk(t) := yk for 1 ≤ k ≤ L, and vk(t) := 0 for L + 1 ≤ k ≤ 2L
and k ≥ 3L+ 1. The numbers v2L+1(t), · · ·, v3L(t) are defined as the unique
solutions of system (cf. the first L elements of sequence appearing on the
right hand side of (3), with xj replaced by vj(t))

(S) :



∞∑
j=1

tj−1

(j−1)!

(
vj(t) +

(
e−t − 1

)
vj+1(t)

)
= z1

∞∑
j=2

tj−2

(j−2)!

(
vj(t) +

(
e−t − 1

)
vj+1(t)

)
= z2

· · ·
∞∑
j=L

tj−L

(j−L)!

(
vj(t) +

(
e−t − 1

)
vj+1(t)

)
= zL

i.e., v2L+1(t), · · ·, v3L(t) satisfy the following matrix equality:

A(t)
[
v2L+1(t) · · · v3L(t)

]T
=
[
z1 · · · zL

]T −B(t)
[
y1 · · · yL

]T
,
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where

A(t) =
[
aij(t)

]
L×L

=

[(
e−t − 1

) t2L−i+j−1

(2L− i+ j − 1)!
+

t2L−i+j

(2L− i+ j)!

]
L×L

and B(t) = [bij(t)]L×L with

bij(t) =


(
e−t − 1

)
tj−i−1

(j−i−1)! + tj−i

(j−i)! , for j > i,

1, for i = j,

0, for i > j.

Notice that any element aij(t) [bij(t)] of the matrix A(t) [B(t)] asymptoti-

cally behave as t → +∞ like the corresponding element of the matrix Ã(t)

[B̃(t)], where

Ã(t) =
[
ãij(t)

]
L×L

=

[
t2L−i+j

(2L− i+ j)!

]
L×L

and B̃(t) = [b̃ij(t)]L×L with

b̃ij(t) =


tj−i

(j−i)! , for j > i,

1, for i = j,

0, for i > j.

The matrices Ã(t) and B̃(t) play an important role in the proof of [4,
Theorem 5.2], which in combination with the above given arguments also
shows that there exists an absolute constant C2 > 0 such that, for every
k ∈ {2L+ 1, · · ·, 3L}, ∣∣vk(t)∣∣ ≤ C2t

L−k. (4)

Now it is not difficult to prove that (2) holds as well as that, for every
y1, z1 ∈ l1r and for every ε > 0, there exists t0 ≥ 0 such that, for every t ≥ t0,
there exists v1(t) ∈ l1r such that ||y1− v1(t)|| < ε and ||z1−R0(t)v1(t)|| < ε.
Hence, (R0(t))t≥0 is topologically mixing. The proof of the topologically
mixing property for (R1(t))t≥0 and (R0(t) + R1(t))t≥0 is quite similar and
as such will not be given. Consider now the assertion (ii). Denote by X the
operator Van der Monde matrix X = [xkl]n×n =

[
(−cl−1 + A)k−1

]
n×n. Let

i ∈ N0
n−1, let x ∈ l1r , and let[

y0,i(x) y1,i(x) · · · yn−1,i(x)
]T

= X−1
[
0 · · · x · · · 0

]T
,

where x appears in the ith place of the last vector column, starting from 0.
The existence of a global exponentially bounded resolvent propagation fam-
ily ((R0(t))t≥0, · · ·, (Rn−1(t))t≥0) for (Pn) follows again from an application
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of [5, Theorem 25.6]. This theorem yields that, for every i ∈ N0
n−1, one has:

Ri(t)x =
n−1∑
l=0

e−cltT (t)yl,i(x), t ≥ 0, x ∈ l1r .

Using the analysis given on page 15 of [17] (cf. the problems 245-246),
one can simply prove that there exist m ∈ N and complex polynomials
Pl,i(z) ≡ aml,iz

m + · · · + a0
l,i (0 ≤ l ≤ n − 1, 0 ≤ i ≤ n − 1) such that the

following holds:

(a) yl,i(x) = Pl,i(A)x (0 ≤ l ≤ n− 1, 0 ≤ i ≤ n− 1), where the operator
Pl,i(A) is defined in the obvious way,

(b) a0
0,i 6= 0 (0 ≤ i ≤ n− 1),

(c)
∑n−1

i=0 a
0
0,i 6= 0.

This implies that, for every x = (xk)k∈N ∈ l1r ,

Ri(t)
(
xk
)
k∈N =

(∑
j=k

tj−k

(j − k)!

{[
am0,ixj+m + · · ·+ a0

0,ixj

]

+
n−1∑
l=1

e−clt
[
aml,ixj+m + · · ·+ a0

l,ixj

]})
k∈N

. (5)

Suppose now that y = (yk)k∈N and z = (zk)k∈N belong to D, and that yk =
zk = 0 for k > L. Now we will construct the vector w(t) = (wk(t))k∈N ∈ l1r
such that (2) holds with R0(·) and v(·) replaced respectively with Ri(·) and
w(·). The sequence w(t) is defined by wk(t) := yk for 1 ≤ k ≤ L, and
wk(t) := 0 for L+ 1 ≤ k ≤ 2L and k ≥ 3L+ 1; similarly as in the first part
of proof, the numbers w2L+1(t), · · ·, w3L(t) satisfy the following system of
equations (cf. (5) and the first part of proof):

(S′) :



∑
j=1

tj−1

(j−1)!

{[
am0,iwj+m(t) + · · ·+ a00,iwj(t)

]
+

n−1∑
l=1

e−clt
[
aml,iwj+m(t) + · · ·+ a0l,iwj(t)

]}
= z1∑

j=2

tj−2

(j−2)!

{[
am0,iwj+m(t) + · · ·+ a00,iwj(t)

]
+

n−1∑
l=1

e−clt
[
aml,iwj+m(t) + · · ·+ a0l,iwj(t)

]}
= z2

· · ·∑
j=L

tj−L

(j−L)!

{[
am0,iwj+m(t) + · · ·+ a00,iwj(t)

]
+

n−1∑
l=1

e−clt
[
aml,iwj+m(t) + · · ·+ a0l,iwj(t)

]}
= zL.
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It is clear that the matricial form of system (S′) looks like:

A1(t)
[
v2L+1(t) · · · v3L(t)

]T
=
[
z1 · · · zL

]T −B1(t)
[
y1 · · · yL

]T
,

where any element a1
kl(t) [b1kl(t)] of the matrix A1(t) [B1(t)] asymptotically

behave as t→ +∞ like a0
0,iãkl(t) [a0

0,ib̃kl(t)]; cf. also (b). Arguing as in the

proof of (i), we get that there exists C2 > 0 such that, for every k ∈{2L+1, ···,
3L}, the estimate (4) holds. The proof of the topologically mixing property
for (Ri(t))t≥0 is now completed through a routine argument. Using (c)
instead of (b), we obtain similarly that the operator family (R0(t) + · · · +
Rn−1(t))t≥0 is topologically mixing. �

Let A, l1r , (T (t))t≥0 and (Rζ(t))t≥0 be defined as before (ζ > 0), let
n ≥ 2, and let 0 < c1 < · · · < cn−1. Then it is clear that the problem
(Pn) is a special case of the abstract Cauchy problem (ACPn), with the
operators A0, A1, ···, An−1 being certain functions of A; for example, An−1 =∑n−1

j=1 cjI − nA and A0 = (−1)n
∏n−1
j=0 (−cj +A). Consider now the problem

(
P γn
)

:

{
Dnγ
t u(t)+An−1D

(n−1)γ
t u(t)+ · · ·+A1D

γ
t u(t) +A0u(t)=0, t > 0,

u(k)(0) = uk, k = 0, · · ·, dnγe − 1,

where γ ∈ (0, 1). Then the use of [15, Theorem 2.9-Theorem 2.10] implies
that there exists a global exponentially bounded resolvent propagation fam-
ily ((Rγ0(t))t≥0, · · ·, (Rγdnγe−1(t))t≥0) for (P γn ), given by

Rγi (t)x = L−1

((
λnγ +

n−1∑
j=0

λjγAj

)−1(
λnγ−i−1x+

∑
j∈D′i

λjγ−i−1Ajx
))

(t),

(6)
for any t ≥ 0, x ∈ l1r and i ∈ N0

dnγe−1, where D′i = {j ∈ N0
n−1 : djγe−1 ≥ i};

speaking matter-of-factly, we have that, for every t ≥ 0, x ∈ l1r and i ∈
N0
dnγe−1,

Rγi (t)x = gi ∗
[
P0(A)Rc0,γ(·)x+ · · ·+ Pn−1(A)Rcn−1,γ(·)x

]
(t)

+
∑
j∈D′i

Aj

{
gi+(n−j)γ ∗

[
P0(A)Rc0,γ(·)x+ · · ·+ Pn−1(A)Rcn−1,γ(·)x

]
(t)

}
,

where

Pj(A) =
∏

0≤l≤n−1
j 6=l

(
−cj + cl

)(
−cj +A

)n−1
, j ∈ N0

n−1,

and (Rcj ,γ(t))t≥0 denotes the γ-times regularized resolvent family generated

by −cj+A (j ∈ N0
n−1). Making use of [15, Theorem 2.9-Theorem 2.10] again,
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as well as the representation formula (6) and the proof of subordination
principle [1, Theorem 3.1], we obtain that:

Rγ0(t)x = t−γ
∫ ∞

0
Φγ

(
st−γ

)
R0(s)x ds, t > 0, x ∈ l1r , (7)

where ((R0(t))t≥0, · · ·, (Rn−1(t))t≥0) is the resolvent propagation family for
(Pn), defined already in the formulation of Theorem 2.4. With the same
notation as in the proof of afore-mentioned theorem, we obtain from (5)-(7)
that, for every x = (xk)k∈N ∈ l1r and t > 0,

Rγ0(t)
(
xk
)
k∈N= t−γ

(∫ ∞
0

Φγ

(
st−γ

)[∑
j=k

sj−k

(j − k)!

{[
am0,0xj+m + · · ·+ a0

0,0xj

]

+

n−1∑
l=1

e−cls
[
aml,0xj+m + · · ·+ a0

l,0xj

]}]
ds

)
k∈N

.

Applying [1, Theorem 3.1] to (T (t))t≥0 and (Rγ(t))t≥0, we get that:

t−γ
∫ ∞

0
Φγ

(
st−γ

)sl
l!
ds =

tγl

Γ(γl + 1)
, t > 0, l ∈ N0,

which further implies that, for every x = (xk)k∈N ∈ l1r and t > 0,

Rγ0(t)
(
xk
)
k∈N =

(∑
j=k

tγ(j−k)

Γ(γ(j − k) + 1)

[
am0,0xj+m + · · ·+ a0

0,0xj

]

+ t−γ
∞∑
j=k

n−1∑
l=1

∫ ∞
0

Φγ

(
st−γ

) sj−k

(j − k)!
e−cls

[
aml,0xj+m + · · ·+ a0

l,0xj

]
ds

)
k∈N

.

(8)

Observe also that

t−γ
∫ ∞

0
Φγ

(
st−γ

) n−1∑
l=1

sl

l!
e−cls ds ≤Mt−γ

n−1∑
l=1

∫ ∞
0

sl

l!
e−cls ds→ 0 as t→ +∞,

and that, for every t ≥ 0 and (xk)k∈N ∈ l1r ,

Rγ
(
t
)(
xk
)
k∈N =

( ∞∑
j=k

tγ(j−k)

Γ(γ(j − k) + 1)
xj

)
k∈N

, t ≥ 0,
(
xk
)
k∈N ∈ l

1
r .

Proceeding as in the proofs of Theorem 2.3 (in this case, there exists
C2 > 0 such that, for every k ∈ {2L+ 1, · · ·, 3L}, the corresponding vector

(vγk (t))k∈N ∈ l1r satisfies
∣∣vγk (t)

∣∣ ≤ C2t
γ(L−k)) and Theorem 2.4, we obtain

that the following theorem is true.

Theorem 2.5. The operator family (Rγ0(t))t≥0 is topologically mixing.
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Remark 2.6.

(i) If 0 < γ ≤ 1/n, then it makes no sense to define (Ri(t))t≥0 for
i ≥ 1; if this is not the case, then it is not clear whether there exists
an index i ∈ Ndnγe−1 such that the operator family (Ri(t))t≥0 is
topologically mixing.

(ii) Concerning the invariance of hypercyclic and topologically mixing
properties under the action of subordination principles, it should be
noted that the unilateral backward shifts have some advantages over
other operators used in the theory of hypercyclicity (cf. Theorem
2.3, Theorem 2.5, [1, Theorem 3.1], [11, Theorem 2.11, Theorem 3.9-
Theorem 3.1], [15, Theorem 4.1, Theorem 4.4] and [12] for further
information in this direction).

Finally, we would like to propose the following problem.

Problem. Suppose n ∈ N \ {1}, 0 ≤ α1 < · · · < αn and 0 ≤ α < αn. Is it
possible to construct a separable infinite-dimensional complex Banach space
E and closed linear operators A0, A1, · · ·, An−1 on E such that there exists
a global resolvent propagation family ((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) for (1)
satisfying that some (every) single operator family (Ri(t))t≥0 of this tuple
is topologically mixing?
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