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VARIATIONS ON A-BROWDER-TYPE THEOREMS

M. BERKANI*, M. KACHAD, H. ZARIOUH AND H. ZGUITTI

Abstract. We introduce and we study the new spectral properties
(SBw), (SBaw), (SBab) and (SBb). Among other results, we show
that if T is a bounded linear operator acting on a Banach space X, then
T possesses property (SBb) if and only if T possesses property (b) and
Π0(T ) = Πa(T ).

1. Introduction

This paper is a continuation of our recent investigations in the subject
of Weyl type theorems. As in [12], we investigate other new variants of
a-Browder’s and a-Weyl’s theorem, and we define the properties (SBw),
(SBb), (SBab) and (SBaw) (see Definitions 2.1 and 2.10) for bounded linear
operators, in connection with Weyl-type theorems. The essential results
obtained are summarized in the diagram presented in the last part of this
paper (see Table 1). For further definitions and symbols we refer the reader
to [12], and we also refer to [4, 5, 6, 9, 11, 13] for more details. The inclusion
of the meaning of various known theorems and properties (see Table 2) is
motivated by having a global overview of the subject. In addition, we have
the following usual notations that will be needed later:

E(T ) – eigenvalues of T isolated in the spectrum σ(T )
E0(T ) – eigenvalues of T of finite multiplicity isolated in σ(T )
Ea(T ) – eigenvalues of T isolated in the approximate

point spectrum σa(T )
E0

a(T ) – eigenvalues of T of finite multiplicity isolated in σa(T )
Π(T ) – poles of T
Π0(T ) – poles of T of finite rank
Πa(T ) – left poles of T
Π0

a(T ) – left poles of T of finite rank
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σBW (T ) – B-Weyl spectrum of T
σW (T ) – Weyl spectrum of T
σ
SBF−

+

(T ) – essential semi-B-Fredholm spectrum of T

σSF−

+

(T ) – Weyl essential approximate point spectrum of T

2. Main results

We denote by L(X) the Banach algebra of all operators acting on a Ba-
nach space X. For T ∈ L(X), let ∆a(T ) = σa(T ) \ σSF−

+

(T ), ∆g
a(T ) =

σa(T ) \ σSBF−

+

(T ) and let ∆g(T ) = σ(T ) \ σBW (T ).

An operator T ∈ L(X) is said to have the single valued extension property

at λ0 ∈ C (abbreviated SVEP at λ0), if for every open neighborhood U of
λ0, the only analytic function f : U −→ X which satisfies the equation
(T −λI)f(λ) = 0 for all λ ∈ U is the function f ≡ 0. An operator T ∈ L(X)
is said to have the SVEP if T has this property at every λ ∈ C. (See [16]
for more details about this concept).

Definition 2.1. A bounded linear operator T ∈ L(X) is said to possess
property (SBw) if ∆g

a(T ) = E0(T ) and is said to possess property (SBb) if
∆g

a(T ) = Π0(T ).

Recall that T ∈ L(X) satisfies property (w) if σa(T ) \ σSF−

+

(T ) = E0(T ).

Theorem 2.2. Let T ∈ L(X). Then T possesses property (SBw) if and

only if T possesses property (w) and σSBF−

+

(T ) = σSF−

+

(T ).

Proof. Suppose that T possesses property (SBw), that is ∆g
a(T ) = E0(T ).

Since ∆a(T ) ⊂ ∆g
a(T ) then ∆a(T ) ⊂ E0(T ). Now if λ ∈ E0(T ), then

T − λI is an upper semi-B-Fredholm operator. As λ is an eigenvalues of T
of finite multiplicity, then from [11, Lemma 2.2], T − λI is an upper semi-
Fredholm operator. Thus ∆a(T ) ⊃ E0(T ). Hence T possesses property (w).
We then have σSBF−

+

(T ) = σa(T ) \ E0(T ) and σSF−

+

(T ) = σa(T ) \ E0(T ).

So σSBF−

+

(T ) = σSF−

+

(T ).

Conversely, the condition σSBF−

+

(T ) = σSF−

+

(T ) entails that ∆g
a(T )=∆a(T ).

The property (w) for T implies that ∆g
a(T ) = E0(T ) and T possesses prop-

erty (SBw). �

Generally, property (w) does not imply property (SBw). Indeed, let U ∈
L(ℓ2(N)) be defined by U(x1, x2, x3, . . . ) = (0, x2, x3, . . . ). Then σa(U) =
{0, 1}, σ

SF−

+

(U) = {1} and E0(U) = {0}. Thus ∆a(U) = E0(U), i.e.

U possesses property (w). Moreover, σSBF−

+

(U) = ∅. This implies that

∆g
a(U) 6= E0(U) and U does not possess property (SBw).
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Remark 2.3. 1) The property (SBw) is not intermediate between prop-
erty (w) and property (gw). Indeed, let T = 0⊕S be defined on the Banach
space ℓ2(N) ⊕ ℓ2(N), where S is defined on ℓ2(N) by S(x1, x2, x3, . . . ) =
(0, 12x1,

1
3x2, . . . ). Then σa(T ) = σSBF−

+

(T ) = {0} and E(T ) = {0}. So

∆g
a(T ) 6= E(T ), i.e. T does not possesses property (gw). On the other hand,

since E0(T ) = ∅ we have ∆g
a(T ) = E0(T ), i.e. T possess property (SBw).

Now if we consider the operator U defined above, then E(U) = {0, 1}. So
∆g

a(U) = E(U), i.e. U possesses property (gw). But it does not possess
property (SBw).
2) Generally, the property (SBw) is not transmitted from an operator
T to its dual T ∗. To see this, consider the operator S be defined as in
part 1) of this remark, then S possesses property (SBw) because σa(S) =
σ
SBF−

+

(S) = {0} and E0(S) = ∅. But its adjoint which is defined by

S∗(x1, x2, x3, . . . ) = (12x2,
1
3x3,

1
4x4, . . . ) does not possess this property be-

cause σa(S
∗) = σSBF−

+

(S∗) = {0} and E0(S∗) = {0}.

From Theorem 2.2, we deduce immediately that an operator possessing
property (SBw) possesses property (SBb), but the converse does not hold in
general as shown by the following example: let T be the operator be defined
on the Hilbert space ℓ2(N) by T (x1, x2, x3, . . . ) = (12x2,

1
3x3,

1
4x4, . . . ). Then

σa(T ) = σ
SBF−

+

(T ) = {0}, E0(T ) = {0} and Π0(T ) = ∅. This implies that

∆g
a(T ) = Π0(T ) and ∆g

a(T ) 6= E0(T ), so that T possesses property (SBb),
but it does not possess property (SBw). However, we have the following
corollary in which we give a condition for the equivalence of these properties.

Corollary 2.4. Let T ∈ L(X). Then T possesses property (SBw) if and

only if T possesses property (SBb) and E0(T ) = Π0(T ).

The next theorem gives characterizations of operators possessing property
(SBb). Recall that T ∈ L(X) satisfies property (b) (respectively property
(gb)) if σa(T )\σSF−

+

(T ) = Π0(T ) ( respectively: σa(T )\σSBF−

+

(T ) = Π(T )).

Theorem 2.5. Let T ∈ L(X). Then the following statements are equivalent.

(i) T possesses property (SBb);
(ii) T possesses property (b) and σSBF−

+

(T ) = σSF−

+

(T );

(iii) T possesses property (b) and Π0(T ) = Πa(T );
(iv) T possesses property (gb) and Π0(T ) = Π(T ).

Proof.

(i) ⇐⇒ (ii). Suppose that T possesses property (SBb), that is ∆g
a(T ) =

Π0(T ). Since ∆a(T ) ⊂ ∆g
a(T ), ∆a(T ) ⊂ Π0(T ). As ∆a(T ) ⊃ Π0(T ) is always

true, then ∆a(T ) = Π0(T ) and T possesses property (b). We then have
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σSBF−

+

(T ) = σa(T ) \Π
0(T ) and σSF−

+

(T ) = σa(T ) \Π
0(T ). So σSBF−

+

(T ) =

σSF−

+

(T ). Conversely, the condition σSBF−

+

(T ) = σSF−

+

(T ) and property (b)

for T imply that ∆g
a(T ) = Π0(T ) and T possesses property (SBb).

(i) ⇐⇒ (iii). Assume that T possesses property (SBb), then T possesses
property (b). From [11, Theorem 2.5], T satisfies a-Browder’s theorem, and
since a-Browder’s theorem is equivalent to generalized a-Browder’s theo-
rem then ∆g

a(T ) = Πa(T ). Hence Π0(T ) = Πa(T ). Conversely, assume that
T possesses property (b) and Π0(T ) = Πa(T ). Then ∆g

a(T ) = Πa(T ) and
Π0(T ) = Πa(T ). Thus ∆

g
a(T ) = Π0(T ) and T possesses property (SBb).

(i) ⇐⇒ (iv). If T possesses property (SBb), that is ∆g
a(T ) = Π0(T ), then

∆g
a(T ) ⊂ Π(T ). Since we have always that ∆g

a(T ) ⊃ Π(T ), then ∆g
a(T ) =

Π(T ) = Π0(T ). So T possesses property (gb). The reverse implication is
trivial. �

Remark 2.6. 1) From Theorem 2.5, we have if T ∈ L(X) possesses property
(SBb) then it possesses property (gb). However, the converse is not true
in general: for example, let T be defined on ℓ2(N) by T (x1, x2, x3, . . . ) =
(0, 12x1, 0, 0, . . . ). Then σa(T ) = {0}, σSBF−

+

(T ) = ∅ and Π(T ) = Πa(T ) =

{0}. So ∆g
a(T ) = Π(T ), i.e. T possesses property (gb). But it does not

possess property (SBb), since Π0(T ) = ∅. Here σSF−

+

(T ) = {0}.

2) Property (SBb) as well as property (SBw), does not pass from an op-
erator to its dual. For this, we consider on the Hilbert space ℓ2(N) the oper-
ator T defined by T (x1, x2, x3, . . . ) = (ǫx1, 0, x2, x3, . . . ) for fixed 0 < ǫ < 1.
Then σ(T ) = D(0, 1) the closed unit disc in C and σa(T

∗) = C(0, 1) ∪ {ǫ}
where C(0, 1) is the unit circle of C. This implies that T ∗ has the SVEP,
which implies from [10, Theorem 2.5] that T possesses property (gb). As
Π(T ) = Π0(T ) = ∅, then T possesses property (SBb). On the other hand,
σSF−

+

(T ∗) = C(0, 1). Thus ∆a(T
∗) 6= Π0(T ∗) and T ∗ does not possess prop-

erty (b). Consequently T ∗ does not possess property (SBb).

Recall that an operator T ∈ L(X) is said to possess property (Bw) if
∆g(T ) = E0(T ) and is said to possess property (Bb) if ∆g(T ) = Π0(T ),
where ∆g(T ) = σ(T ) \ σBW (T ). The properties (Bw) and (Bb) have been
introduced very recently in [15] and [19], respectively as variants of Weyl’s
and Browder’s theorem. In the next theorem, we investigate the relationship
between property (SBw) and property (Bw).

Theorem 2.7. Let T ∈ L(X). Then T possesses property (SBw) if and

only if:

(i) T possesses property (Bw);
(ii) ind(T − λI) = 0 for all λ ∈ ∆g

a(T ); where ind(T − λI) is the index

of T − λI.
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Proof. Suppose that T possesses property (SBw) and let λ ∈ ∆g(T ). Since
σSBF−

+

(T ) ⊂ σBW (T ), then λ 6∈ σSBF−

+

(T ). We also have that λ ∈ σa(T ).

Indeed, if λ 6∈ σa(T ), as λ 6∈ σBW (T ), then T−λI will be invertible and this is
impossible since λ ∈ σ(T ). As T possesses property (SBw), then λ ∈ E0(T ).
This implies that ∆g(T ) ⊂ E0(T ). To show the opposite inclusion, let λ ∈
E0(T ) be arbitrary. Since T possesses property (SBw), then λ 6∈ σ

SBF−

+

(T )

and so ind(T − λI) ≤ 0. As λ ∈ isoσ(T ), then T ∗ has the SVEP at λ. By
[7, Corollary 2.8], we deduce that ind(T − λI) ≥ 0. So ind(T − λI) = 0 and
λ 6∈ σBW (T ). Hence ∆g(T ) = E0(T ) and ind(T −λI) = 0 for all λ ∈ ∆g

a(T ).
Conversely, assume that T possesses property (Bw) and ind(T − λI) = 0
for all λ ∈ ∆g

a(T ). If λ ∈ ∆g
a(T ), then T −λI is a semi-B-Fredholm operator

such that ind(T − λI) = 0. Thus T − λI is a B-Weyl operator. Since T

possesses property (Bw), then λ ∈ E0(T ) and hence ∆g
a(T ) ⊂ E0(T ). Now

if λ ∈ E0(T ), then T − λI is a B-Weyl operator and λ ∈ σ(T ). Hence
λ ∈ ∆g

a(T ) and T possesses property (SBw). �

Similarly to Theorem 2.7, we have the following relationship between
property (SBb) and property (Bb) which we give without proof.

Theorem 2.8. Let T ∈ L(X). Then T possesses property (SBb) if and

only if:

(i) T possesses property (Bb);
(ii) ind(T − λI) = 0 for all λ ∈ ∆g

a(T ).

From Theorem 2.7 and Theorem 2.8, we have: the properties (SBw) and
(SBb) imply the properties (Bw) and (Bb), respectively. But the following
example shows that the converses do not hold in general.

Example 2.9. On the Banach space ℓ2(N)⊕ℓ2(N) we consider the operator
T = 0 ⊕ R where R is the unilateral right shift operator. Then σ(T ) =
σBW (T ) = D(0, 1) and E0(T ) = Π0(T ) = ∅. This implies that ∆g(T ) =
E0(T ) and ∆g(T ) = Π0(T ), i.e. T possesses property (Bw) and property
(Bb). On the other hand, σa(T ) = C(0, 1) ∪ {0} and σ

SBF−

+

(T ) = C(0, 1).

Thus ∆g
a(T ) 6= Π0(T ) and ∆g

a(T ) 6= E0(T ), i.e. T does not possess either
property (SBw) nor property (SBb). Here ∆g

a(T ) = {0} but ind(T ) 6= 0.

Definition 2.10. A bounded linear operator T ∈ L(X) is said to possess
property (SBaw) if ∆g

a(T ) = E0
a(T ) and is said to possess property (SBab)

if ∆g
a(T ) = Π0

a(T ).

From Theorem 2.5 we deduce that property (SBb) implies property (SBab),
but the converse is not true in general as shown by the following example:
let T = R ⊕ U be defined on the Banach space ℓ2(N) ⊕ ℓ2(N) where R

is the unilateral right shift operator defined on ℓ2(N), and U is defined as
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above. Then σa(T ) = C(0, 1) ∪ {0}, σSBF−

+

(T ) = C(0, 1) and Π0
a(T ) = {0}.

So T possesses property (SBab). But it does not possess property (SBb),
since Π0(T ) = ∅. Observe that the two properties (SBw) and (SBaw) for
T ∈ L(X) are independent. Indeed, the example R⊕U defined above shows
that property (SBaw) does not imply property (SBw) because E0

a(R⊕U) =
{0}, E0(R ⊕ U) = ∅. But the example R ⊕ S defined below (see Remark
2.16) shows that property (SBw) does not imply property (SBaw) because
E0(R ⊕ S) = ∅.

However, we give in the next corollary conditions for the equivalence of
two properties (SBb) and (SBab).

Corollary 2.11. Let T ∈ L(X). Then the following statements are equiva-

lent.

(i) T possesses property (SBb);
(ii) T possesses property (SBab) and Π0(T ) = Π0

a(T );
(iii) T possesses property (SBab) and Π0(T ) = Πa(T ).

Proof.

(i) ⇐⇒ (ii) Suppose that T possesses property (SBb). By Theorem 2.5,
T possesses property (b). This implies from [11, Corollary 2.7] that Π0(T ) =
Π0

a(T ). Thus ∆
g
a(T ) = Π0

a(T ) and T possesses property (SBab). The reverse
implication is trivial.

(ii) ⇐⇒ (iii) Follows directly by Theorem 2.5. �

Theorem 2.12. Let T ∈ L(X). Then T possesses property (SBaw) if and

only if T satisfies a-Weyl’s theorem and σSBF−

+

(T ) = σSF−

+

(T ).

Proof. Suppose that T possesses property (SBaw), that is ∆g
a(T ) = E0

a(T ).
Since ∆a(T ) ⊂ ∆g

a(T ) then ∆a(T ) ⊂ E0
a(T ). Now if λ ∈ E0

a(T ), then T −λI

is an upper semi-B-Fredholm operator. Since λ is an eigenvalues of T of
finite multiplicity, by [11, Lemma 2.2] we have T − λI is an upper semi-
Fredholm operator. Thus ∆a(T ) ⊃ E0

a(T ) and ∆a(T ) = E0
a(T ). So T

satisfies a-Weyl’s theorem. We then have σSBF−

+

(T ) = σa(T ) \ E0
a(T ) and

σSF−

+

(T ) = σa(T ) \E
0
a(T ). So σSBF−

+

(T ) = σSF−

+

(T ).

Conversely, the condition σSBF−

+

(T ) = σSF−

+

(T ) entails that ∆g
a(T ) =

∆a(T ) and a-Weyl’s theorem for T implies that ∆g
a(T ) = E0

a(T ). So T

possesses property (SBaw). �

Remark 2.13. 1) The operator T defined as in part 1) of Remark 2.6
shows that generally, a-Weyl’s theorem does not imply the property (SBaw).
Indeed, since σSBF−

+

(T ) = E0
a(T ) = ∅, σa(T ) = σSF−

+

(T ) = {0} then

∆a(T ) = E0
a(T ), but ∆

g
a(T ) 6= E0

a(T ).
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2) The property (SBaw) is not intermediate between a-Weyl’s theo-
rem and generalized a-Weyl’s theorem. Indeed, we define T on the Ba-
nach space ℓ2(N) ⊕ ℓ2(N) by T = I ⊕ S where I is the identity opera-
tor on ℓ2(N) and S is an injective quasinilpotent operator on ℓ2(N) which
is not nilpotent. Then σa(T ) = {0, 1}, σSBF−

+

(T ) = {0}, Ea(T ) = {1}

and E0
a(T ) = ∅. So ∆g

a(T ) = Ea(T ), i.e. T satisfies the generalized a-
Weyl’s theorem, but it does not possess property (SBaw) because ∆g

a(T ) 6=
E0

a(T ). On the other hand, let Q be defined for each x = (ξi) ∈ ℓ1 by
Q(ξ1, ξ2, ξ3, . . . , ξk, . . . ) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . . ), where (αi) is a
sequence of complex numbers such that 0 < |αi| ≤ 1 and

∑
∞

i=1 |αi| < ∞
and define T on X = ℓ1 ⊕ ℓ1 by T = Q⊕ 0. Then σa(T ) = {0}, E0

a(T ) = ∅,
Ea(T ) = {0} and σSBF−

+

(T ) = {0}. Thus ∆g
a(T ) = E0

a(T ), i.e. T possesses

property (SBaw), but it does not satisfy the generalized a-Weyl’s theorem
because ∆g

a(T ) 6= Ea(T ).
3) The operator defined as in part 2) of Remark 2.3 shows that in general,

property (SBaw) is not transmitted from an operator to its dual.

Theorem 2.14. Let T ∈ L(X). Then the following statements are equiva-

lent:

(i) T possesses property (SBab);
(ii) T satisfies a-Browder’s theorem and σSBF−

+

(T ) = σSF−

+

(T );

(iii) T satisfies a-Browder’s theorem and Π0
a(T ) = Πa(T ).

Proof.

(i) ⇐⇒ (ii) If T possesses property (SBab), that is ∆g
a(T ) = Π0

a(T ), then
∆a(T ) ⊂ Π0

a(T ). As ∆a(T ) ⊃ Π0
a(T ) is always true, then ∆a(T ) = Π0

a(T ),
i.e. T satisfies a-Browder’s theorem. We then have σSBF−

+

(T ) = σa(T ) \

Π0
a(T ) and σSF−

+

(T ) = σa(T )\Π
0
a(T ). So σSBF−

+

(T ) = σSF−

+

(T ). The reverse

implication is trivial.
(i) ⇐⇒ (iii) If T possesses property (SBab), then T satisfies a-Browder’s

theorem. Hence ∆g
a(T ) = Πa(T ) = Π0

a(T ). Conversely, if T satisfies a-
Browder’s theorem, then T satisfies generalized a-Browder’s theorem ∆g

a(T )
= Πa(T ). As Πa(T ) = Π0

a(T ) then ∆g
a(T ) = Π0

a(T ) and T possesses property
(SBab). �

Corollary 2.15. Let T ∈ L(X). Then the following statements are equiva-

lent:

(i) T possesses property (SBaw);
(ii) T possesses property (SBab) and E0

a(T ) = Π0
a(T );

(iii) T possesses property (SBab) and E0
a(T ) = Πa(T ).
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Proof.

(i) =⇒ (ii) If T satisfies property (SBaw), then from Theorem 2.12 and
[8, Corollary 3.5] we conclude that T satisfies a-Browder’s theorem and
σSBF−

+

(T ) = σSF−

+

(T ). So T possesses property (SBab) and E0
a(T ) = Π0

a(T ).

(ii) =⇒ (iii) Obvious, see Theorem 2.14.
(iii) =⇒ (i) The property (SBab) entails that ∆g

a(T ) = Πa(T ). As E
0
a(T )

= Πa(T ), then ∆g
a(T ) = E0

a(T ), a desired. �

Remark 2.16. 1) From Theorem 2.14, we have property (SBab) for T ∈
L(X) implies a-Browder’s theorem for T . But the operator T = 0 shows
that the converse is not true in general, since σa(T ) = σ

SF−

+

(T ) = {0},

Π0
a(T ) = ∅ and σSBF−

+

(T ) = ∅. We also observe that Πa(T ) = {0}.

2) Similarly, we have by Corollary 2.15 that if T ∈ L(X) possesses prop-
erty (SBaw) then it possesses property (SBab), but generally, the con-
verse is not true as the following example shows: let R ⊕ S be defined on
the Banach space ℓ2(N) ⊕ ℓ2(N) where R is the unilateral right shift op-
erator and S be defined on ℓ2(N) by S(x1, x2, x3, . . . ) = (12x2,

1
3x3, . . . ),

then σa(R ⊕ S) = σSBF−

+

(R ⊕ S) = C(0, 1) ∪ {0}, Π0
a(R ⊕ S) = ∅ and

E0
a(R⊕S) = {0}. This proves that R⊕S possesses property (SBab), but it

does not possess property (SBaw). Here Πa(R⊕ S) = ∅.

3. Summary of results

In this last part, we give a summary of known Weyl type theorems as
in [8], including the properties introduced in [1, 11, 12, 17, 19] and in this
paper. We use the abbreviations W , gW , (Bw), (w), (gw), (SBw), (aw),
(gaw), (Baw), aW , gaW and (SBaw) to signify that an operator T ∈ L(X)
obeys Weyl’s theorem, generalized Weyl’s theorem, property (Bw), property
(w), property (gw), property (SBw), property (aw), property (gaw), prop-
erty (Baw), a-Weyl’s theorem, generalized a-Weyl’s theorem and property
(SBaw), respectively. Similarly, the abbreviations B, gB, aB, gaB, (Bb),
(Bab), (b), (gb), (ab), (gab), (SBb) and (SBab) have analogous meaning
with respect to Browder’s theorem or the properties introduced in [11] or
the properties introduced in [12] or the properties introduced in [19] or the
new properties introduced in this paper.

In the following diagram, which extends the similar diagram given in
[12], arrows signify implications between Weyl type theorems, Browder type
theorems, property (Bw), property (Bb), property (Baw), property (Bab),
property (SBw), property (SBb), property (SBaw) and property (SBab).
The numbers near the arrows are references to the results in the present pa-
per (numbers without brackets) or to the bibliography therein (the numbers
in square brackets).
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N
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R
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W

D
E
R
-T

Y
P
E

T
H
E
O
R
E
M
S

2
7
9

gW

x





[13]

gW gaB (gaw)
[12]

−−−−−−→ (aw)

x





[1]

x





[11]





y

[12]

(gw)
[11]

−−−−−−→ (gb)
[12]

−−−−−−→ (gab)
[12]

−−−−−−→ gB
[8]

←−−−−−− gW
[8]

←−−−−−− gaW
[8]

−−−−−−→ gaB
[8]

−−−−−−→ gB





y

[1]





y

[11]





y

[12]





y

[8]





y

[8]





y

[8] m [2] m [2]

(w) −−−−−−→
[11]

(b) −−−−−−→
[12]

(ab) −−−−−−→
[12]

B ←−−−−−−
[3]

W ←−−−−−−
[18]

aW −−−−−−→
[8]

aB −−−−−−→
[14]

B





y

[17]





y

[11]

x





[12]

x





[19]

x





[19]

x





2.12

x





2.14

W aB (aw) (Bb) ←−−−−−−
[19]

(Bw) (SBaw) −−−−−−→
2.15

(SBab)





y

[13]

x





[19]

x





[19]

x





2.11

W (Bab) ←−−−−−−
[19]

(Baw) (SBw) −−−−−−→
2.4

(SBb) −−−−−−→
2.5

(gb)





y

[19]





y

[19]





y

2.7





y

2.8

(ab) (aw) (Bw) (Bb)

Table 1
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The following table summarizes the meaning of various theorems and
properties.

W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = Π0(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = Π(T )

(Bw) σ(T ) \ σBW (T ) = E0(T ) (Bb) σ(T ) \ σBW (T ) = Π0(T )

(w) σa(T ) \ σSF
−

+

(T ) = E0(T ) (b) σa(T ) \ σSF
−

+

(T ) = Π0(T )

(gw) σa(T ) \ σSBF
−

+

(T ) = E(T ) (gb) σa(T ) \ σSBF
−

+

(T ) = Π(T )

(SBw) σa(T ) \ σSBF
−

+

(T ) = E0(T ) (SBb) σa(T ) \ σSBF
−

+

(T ) = Π0(T )

(aw) σ(T ) \ σW (T ) = E0

a(T ) (ab) σ(T ) \ σW (T ) = Π0

a(T )

(gaw) σ(T ) \ σBW (T ) = Ea(T ) (gab) σ(T ) \ σBW (T ) = Πa(T )

(Baw) σ(T ) \ σBW (T ) = E0

a(T ) (Bab) σ(T ) \ σBW (T ) = Π0

a(T )

aW σa(T ) \ σSF
−

+

(T ) = E0

a(T ) aB σa(T ) \ σSF
−

+

(T ) = Π0

a(T )

gaW σa(T ) \ σSBF
−

+

(T ) = Ea(T ) gaB σa(T ) \ σSBF
−

+

(T ) = Πa(T )

(SBaw) σa(T ) \ σSBF
−

+

(T ) = E0

a(T ) (SBab) σa(T ) \ σSBF
−

+

(T ) = Π0

a(T )

Table 2
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[14] S. V. Djordjević and Y. M. Han, Browder’s theorems and spectral continuity , Glasgow
Math. J., 42 (2000), 479–486.

[15] A. Gupta, N. Kashyap, Property (Bw) and Weyl type theorems, Bull. Math. Anal.
Appl., 3 (2) (2011), 1–7.

[16] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Claren-
don Press Oxford, (2000).
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