$\omega_{\mathcal{I},\gamma}$ -CONTINUOUS FUNCTIONS AND WEAKLY $\omega_{\mathcal{I},\gamma}$ -CONTINUOUS FUNCTIONS

C. CARPINTERO, E. ROSAS, M. SALAS-BROWN AND L. VÁSQUEZ

ABSTRACT. Using the $\omega_{\mathcal{I},\gamma}$ -closed sets defined in [3], we introduce the notions of $\omega_{\mathcal{I},\gamma}$ -continuous functions and weakly $\omega_{\mathcal{I},\gamma}$ -continuous functions. Characterizations and properties of this new class of functions are obtained and studied.

1. INTRODUCTION

In 2012, Carpintero et al. [3], introduced the concept of $\omega_{\mathcal{I},\gamma}$ -closed sets in terms of operators on topological spaces as a generalization of the concept given by Arhangel'skii [1] and Ekici et al. in [6]. The purpose of this article is to introduce and to study a new class of functions called $\omega_{\mathcal{I},\gamma}$ -continuous and weakly $\omega_{\mathcal{I},\gamma}$ -continuous in terms of the $\omega_{\mathcal{I},\gamma}$ -closed sets. These new functions form a more general class than the class of functions given in [4], [5], [6], [7], [12] and [13]. We give some characterizations and properties of the $\omega_{\mathcal{I},\gamma}$ -continuous functions and weakly $\omega_{\mathcal{I},\gamma}$ -continuous functions. Finally, we study some notions of compactness and connectedness on this new class of functions.

2. Preliminaries

An ideal \mathcal{I} on a nonempty set X [11] is a collection of subsets of X that satisfies the following properties:

(1) $A_1 \in \mathcal{I}$ and $A_2 \in \mathcal{I}$ imply that $A_1 \cup A_2 \in \mathcal{I}$;

(2) $A_1 \in \mathcal{I}$ and $A_2 \subset A_1$ imply that $A_2 \in \mathcal{I}$.

An operator associated to a topology τ on X [10] is an application $\gamma : 2^X \to 2^X$ such that $U \subset \gamma(U)$ for all $U \in \tau$. For a subset $A \subset X$, the γ -closure of A and the γ -interior of A are defined as follows:

(1)
$$\gamma$$
-Cl(A) = { $x \in X, \gamma(U) \cap A \neq \emptyset, U \in \tau, x \in U$ }.

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54D10.

Key words and phrases. $\omega_{\mathcal{I},\gamma}$ -sets, γ -open, $\omega_{\mathcal{I},\gamma}$ -spaces, $\omega_{\mathcal{I},\gamma}$ -connected spaces, $\omega_{\mathcal{I},\gamma}$ -compact spaces.

(2) γ -int(A) = { $x \in U, U \in \tau, \gamma(U) \subset A$ }.

A subset A of X is said to be γ -open if $A = \gamma$ -int(A), and the complement of a γ -open set is a γ -closed set. Thus when γ is the closure operator, we obtain the concept of θ -closure [17].

The properties of γ -closure and γ -interior have been studied in [10] and [15].

Throughout the present paper $(X, \tau, \mathcal{I}, \gamma)$ denote a topological space (X, τ) together with an ideal \mathcal{I} on X and an operator γ associated to a topology τ .

Definition 2.1. [3]. Let $(X, \tau, \mathcal{I}, \gamma)$ be given. A subset A of X is said to be $\omega_{\mathcal{I},\gamma}$ -closed set if

$$\gamma$$
-cl(B) \subset A for all $B \subset A, B \in \mathcal{I}$.

The complement of an $\omega_{\mathcal{I},\gamma}$ -closed set is called $\omega_{\mathcal{I},\gamma}$ -open. Each γ -open set is an $\omega_{\mathcal{I},\gamma}$ -open set [3].

In a similar form as for the closure and the interior of a subset A in a topological space, we can define [3]:

- (1) The $\omega_{\mathcal{I},\gamma}$ -closure of A, denoted by $\omega_{\mathcal{I},\gamma}$ -cl(A), is the intersection of all $\omega_{\mathcal{I},\gamma}$ -closed sets containing A.
- (2) The $\omega_{\mathcal{I},\gamma}$ -interior of A, denoted by $\omega_{\mathcal{I},\gamma}$ -int(A), is the union of all $\omega_{\mathcal{I},\gamma}$ -open sets contained in A.

The properties of $\omega_{\mathcal{I},\gamma}$ -closed sets and $\omega_{\mathcal{I},\gamma}$ -open sets have been studied in detail in [3].

3. Weakly forms of continuity using $\omega_{\mathcal{I},\gamma}$ -open sets

Using the $\omega_{\mathcal{I},\gamma}$ -open sets, we define a new weak form of continuity between topological spaces in order to generalize some forms of continuity studied in [4], [6], [5], [12], [13], [7], and we give some characterizations of those.

Definition 3.1. Let $(X, \tau, \mathcal{I}, \gamma)$ and (Y, σ) be a topological space. A function $f: X \to Y$ is said to be $\omega_{\mathcal{I},\gamma}$ -continuous at $x \in X$ if for each open set V in Y such that $f(x) \in V$, there exists an $\omega_{\mathcal{I},\gamma}$ -open set U in X containing x such that $f(U) \subset V$. The function f is said to be $\omega_{\mathcal{I},\gamma}$ -continuous if it is $\omega_{\mathcal{I},\gamma}$ -continuous at each $x \in X$.

Observe that if we consider specific operators and ideals, we recover some well known notions of continuity in the literature as follows:

(1) If γ is the identity operator and \mathcal{I} is the ideal of the countable subsets of X, then the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the ω -continuous functions defined in [6].

- (2) If γ is the identity operator and the ideal \mathcal{I} is the power sets of X, then the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the continuous functions defined in [14].
- (3) If γ is the closure operator and the ideal \mathcal{I} is the power sets of X, then the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the θ -continuous functions defined in [7].
- (4) If γ is the interior closure operator and the ideal \mathcal{I} is the power sets of X, the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the super continuous functions defined in [13].
- (5) If γ is any operator and the ideal \mathcal{I} is the power sets of X, then the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the γ -continuous functions defined in [4].
- (6) If γ is the closure operator and \mathcal{I} is the ideal of the countable subsets of X, then the $\omega_{\mathcal{I},\gamma}$ -continuous functions coincide with the ω_* -continuous functions defined in [6].

Theorem 3.2. Let $(X, \tau, \mathcal{I}, \gamma)$ and (Y, σ) be a topological space. The function $f : X \to Y$ is $\omega_{\mathcal{I},\gamma}$ -continuous if and only if $f^{-1}(V)$ is an $\omega_{\mathcal{I},\gamma}$ -open subset in X for every open subset V of Y.

Proof. Let V be an open subset of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$, by hypothesis, there exists an $\omega_{\mathcal{I},\gamma}$ -open subset U of X containing x and $f(U) \subset V$, follows $x \in U \subset f^{-1}(V)$ and then, $x \in \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(V))$. Since $\omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(V)) \subset f^{-1}(V)$ then $f^{-1}(V) = \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(V))$ in consequence, $f^{-1}(V)$ is an $\omega_{\mathcal{I},\gamma}$ -open subset in X.

Reciprocally. Let $x \in X$ and V be an open set in Y such that $f(x) \in V$, follows $x \in f^{-1}(V)$. By hypothesis, $f^{-1}(V)$ is an $\omega_{\mathcal{I},\gamma}$ -open set in X. Therefore, there exists an $\omega_{\mathcal{I},\gamma}$ -open set U in X such that $x \in U \subset f^{-1}(V)$. Follows that, $f(U) \subset V$. In consequence, f is an $\omega_{\mathcal{I},\gamma}$ -continuous function.

Definition 3.3. [4] A function $f : X \to Y$ is said to be γ -continuous if $f^{-1}(V)$ is a γ -open subset in X for each open set V in Y.

The following theorem shows that the $\omega_{\mathcal{I},\gamma}$ -continuous functions are a more general class than that of the γ -continuous functions.

Theorem 3.4. Let $(X, \tau, \mathcal{I}, \gamma)$ and (Y, σ) be a topological space. If $f : X \to Y$ is a γ -continuous function then it is an $\omega_{\mathcal{I},\gamma}$ -continuous function.

Proof. Let V be an open subset in Y. Since f is a γ -continuous function then $f^{-1}(V)$ is a γ -open set in X and therefore $f^{-1}(V)$ is a $\omega_{\mathcal{I},\gamma}$ -open set in X; because all γ -open set is an $\omega_{\mathcal{I},\gamma}$ -open set. In consequence, f is an $\omega_{\mathcal{I},\gamma}$ -continuous function.

The converse of the above theorem is not true in general as we show in the following example:

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}, \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \gamma$ the interior closure operator and the ideal $\mathcal{I} = \{\emptyset, \{b\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ defined as:

$$f(x) = \begin{cases} a & \text{if } x = c \\ b & \text{if } x \neq c \end{cases}$$

We can see that f is $\omega_{\mathcal{I},\gamma}$ -continuous but not γ -continuous.

Theorem 3.6. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. The following statements are equivalent:

(1) f is an $\omega_{\mathcal{I},\gamma}$ -continuous function. (2) $f(\omega_{\mathcal{I},\gamma}\text{-}cl(A)) \subset cl(f(A))$ for all subsets A of X. (3) $\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(B)) \subset f^{-1}(cl(B))$ for all subsets B of Y. (4) $f^{-1}(int(B)) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(B))$ for all subsets B of Y. (5) $\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(K)) = f^{-1}(K)$ for all closed subsets K of Y. (6) $\omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(V)) = f^{-1}(V)$ for all open subsets V of Y.

Proof.

306

 $\underbrace{(1) \to (2)}_{V} \text{ Let } y \in f(\omega_{\mathcal{I},\gamma}\text{-}cl(A)), \text{ then } y = f(x) \text{ with } x \in \omega_{\mathcal{I},\gamma}\text{-}cl(A). \text{ Let } V \text{ be an open set in } Y \text{ such that } y \in V, \text{ then } x \in f^{-1}(V). \text{ Since } f \text{ is an } \omega_{\mathcal{I},\gamma}\text{-continuous function, } f^{-1}(V) \text{ is an } \omega_{\mathcal{I},\gamma}\text{-open set in } X \text{ containing } x. \text{ But } x \in \omega_{\mathcal{I},\gamma}\text{-}cl(A), \text{ so that } f^{-1}(V) \cap A \neq \emptyset. \text{ It follows that } V \cap f(A) \neq \emptyset; \text{ and consequence } y \in cl(f(A)).$

 $(2) \rightarrow (3)$. Let B be any subset of Y. By hypothesis,

$$f(\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(B))) \quad \subset \quad cl(f(f^{-1}(B))).$$

Then,

$$\omega_{\mathcal{I},\gamma} - cl(f^{-1}(B)) \subset f^{-1}(cl(B)).$$

 $(3) \rightarrow (4)$. Let B be any subset of Y, then

$$X \setminus \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(B)) = \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(Y \setminus B))$$
$$\subset f^{-1}(cl(Y \setminus B))$$
$$= X \setminus f^{-1}(int(B)).$$

Taking complements, we obtain $f^{-1}(int(B)) \subset \omega_{\mathcal{I},\gamma}-int(f^{-1}(B))$.

 $(4) \rightarrow (5)$. Let K be any closed subset in Y, then

$$X \setminus f^{-1}(K) = f^{-1}(int(Y \setminus K)) \subset \omega_{\mathcal{I},\gamma} - int(f^{-1}(Y \setminus K))$$
$$= X \setminus \omega_{\mathcal{I},\gamma} - cl(f^{-1}(K)).$$

Taking complements, we obtain $\omega_{\mathcal{I},\gamma}$ - $cl(f^{-1}(K)) \subset f^{-1}(K)$, and therefore

$$\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(K)) = f^{-1}(K).$$

 $(5) \rightarrow (6)$. Let V be any open subset in Y, then

$$\begin{aligned} X \setminus f^{-1}(V) &= f^{-1}(Y \setminus V) \\ &= \omega_{\mathcal{I},\gamma} \text{-}cl(f^{-1}(Y \setminus V)) \\ &= \omega_{\mathcal{I},\gamma} \text{-}cl(X \setminus f^{-1}(V)) \\ &= X \setminus \omega_{\mathcal{I},\gamma} \text{-}int(f^{-1}(V)). \end{aligned}$$

Taking complements, we obtain

$$\omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(V)) = f^{-1}(V).$$

 $\underbrace{(6) \to (1)}_{\text{then } x \in I} \text{ Given } x \in X, \text{ let } V \text{ be any open subset in } Y \text{ such that } f(x) \in V;$ $\underbrace{\text{then } x \in f^{-1}(V) = \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(V)), \text{ and there exists an } \omega_{\mathcal{I},\gamma}\text{-}open \text{ set } U \text{ in } X, \text{ such that } x \in U \text{ and } U \subset f^{-1}(V). \text{ In consequence, } f(U) \subset V \text{ and } f \text{ is an } \omega_{\mathcal{I},\gamma}\text{-continuous function.} \qquad \Box$

Definition 3.7. Let $(X, \tau, \mathcal{I}, \gamma)$ and (Y, σ) be a topological space. A function $f: X \to Y$ is said to be weakly $\omega_{\mathcal{I},\gamma}$ -continuous at the point $x \in X$ if for every open subset V in Y containing f(x), there exists an $\omega_{\mathcal{I},\gamma}$ -open set U in X containing x and $f(U) \subset cl(V)$. The function f is said to be weakly $\omega_{\mathcal{I},\gamma}$ -continuous if it is weakly $\omega_{\mathcal{I},\gamma}$ -continuous at each point $x \in X$.

Observe that if we consider specific operators and ideals, we recover some well known notions of weak continuity in the literature as we show:

- (1) If γ is the identity operator and \mathcal{I} is the ideal of the countable subset of X, then the weakly $\omega_{\mathcal{I},\gamma}$ -continuous function coincides with the weakly ω -continuous function defined in [6].
- (2) If γ is the identity operator and the ideal \mathcal{I} is the power set of X, then the weakly $\omega_{\mathcal{I},\gamma}$ -continuous function coincides with the weakly continuous function defined in [12].
- (3) If γ is the closure operator and \mathcal{I} is the ideal of the countable subset of X, then the weakly $\omega_{\mathcal{I},\gamma}$ -continuous function coincides with the weakly ω_* -continuous functions defined in [6].
- (4) If γ is any operator and the ideal \mathcal{I} is the power set of X, then the weakly $\omega_{\mathcal{I},\gamma}$ -continuous function coincides with the weakly γ -continuous function defined in [5].

307

308

Theorem 3.8. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. If $f^{-1}(cl(V))$ is an $\omega_{\mathcal{I},\gamma}$ -open set in X for all open subsets V in Y then f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Proof. Let $x \in X$ and V be an open subset in Y containing f(x). Then $f(x) \in cl(V)$ and therefore $x \in f^{-1}(cl(V))$. Take $U = f^{-1}(cl(V))$ and obtain by hypothesis that U is an $\omega_{\mathcal{I},\gamma}$ -open set in X containing x. Since, $f(U) = f(f^{-1}(cl(V))) \subset cl(V)$, it follows that f is an $\omega_{\mathcal{I},\gamma}$ -continuous function.

The converse of the above theorem is not true in general as we show in the following example:

Example 3.9. Let γ be the identity operator and \mathcal{I} be the ideal of the countable real sets. The identity function $i : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ where τ_u is the usual topology, is weakly $\omega_{\mathcal{I},\gamma}$ -continuous. In effect, for $x \in \mathbb{R}$, take V an open set in \mathbb{R} such that $i(x) \in V$, then V is $\omega_{\mathcal{I},\gamma}$ -open set in \mathbb{R} such that $i(V) \subset cl(V)$. It follows that, $i : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_u)$ is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function. But it is not an $\omega_{\mathcal{I},\gamma}$ -continuous function. Because, if we take V = (0, 1) open set in \mathbb{R} , then $i^{-1}(cl((0, 1))) = [0, 1]$ is not an $\omega_{\mathcal{I},\gamma}$ -open set.

The following theorem shows that the class of the weakly $\omega_{\mathcal{I},\gamma}$ -continuous functions contain the class of the $\omega_{\mathcal{I},\gamma}$ -continuous functions.

Theorem 3.10. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. If f is an $\omega_{\mathcal{I},\gamma}$ -continuous function then it is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Proof. Let $x \in X$ and V be an open subset in Y containing f(x). Since f is an $\omega_{\mathcal{I},\gamma}$ -continuous function, there exists an $\omega_{\mathcal{I},\gamma}$ -open set U in X such that $f(U) \subset V \subset cl(V)$. Therefore, f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function. \Box

The converse of the above theorem is not true in general as we show in the following example:

Example 3.11. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \gamma$ the interior closure operator and \mathcal{I} the ideal of the power set of X. The function $f : (X, \tau) \to (X, \tau)$ defined as follows:

$$f(x) = \begin{cases} a & \text{if } x = a \\ b & \text{if } x \neq a. \end{cases}$$

We can see that f is weakly $\omega_{\mathcal{I},\gamma}$ -continuous but not $\omega_{\mathcal{I},\gamma}$ -continuous.

Theorem 3.12. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. The following statements are equivalent:

(1) f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function. (2) $\omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(int(cl(K)))) \subset f^{-1}(cl(K))$ for all $K \subset Y$. (3) $\omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(int(U))) \subset f^{-1}(U)$ for all regular closed sets $U \subset Y$. (4) $\omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(U)) \subset f^{-1}(cl(U))$ for all open sets $U \subset Y$. (5) $f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(cl(U)))$ for all open sets $U \subset Y$. (6) $\omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(U)) \subset f^{-1}(cl(U))$ for all preopen sets $U \subset Y$. (7) $f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(cl(U)))$ for all preopen sets $U \subset Y$.

Proof.

 $\underbrace{(1) \to (2)}_{follows that there exists an open set U in Y such that <math>f(x) \notin cl(K)$. It follows that there exists an open set U in Y such that $f(x) \in U$ and $U \cap K = \emptyset$. We obtain $cl(U) \cap int(cl(K)) = \emptyset$. Since f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function, then there exists an $\omega_{\mathcal{I},\gamma}$ -open set V such that $x \in V$ and $f(V) \subset cl(U)$. It follows that $V \cap f^{-1}(int(cl(K))) = \emptyset$. In consequence, $x \in X \setminus \omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(int(cl(K))))$.

 $(2) \rightarrow (3)$. Let U be any regular closed set in Y. Then

$$\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(U))) = \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(cl(int(U)))))$$
$$\subset f^{-1}(cl(int(U))) = f^{-1}(U).$$

 $(3) \to (4)$. Let U be any open set in Y. Since cl(U) is a regular closed set in \overline{Y} ,

$$\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(U)) \subset \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(cl(U))))$$
$$\subset f^{-1}(cl(U)).$$

 $(4) \to (5)$. Let U be any open set in Y. Since $Y \setminus cl(U)$ is an open set in Y, then

$$X \setminus \omega_{\mathcal{I},\gamma} \text{-}int(f^{-1}(cl(U))) = \omega_{\mathcal{I},\gamma} \text{-}cl(f^{-1}(Y \setminus cl(U)))$$
$$\subset f^{-1}(cl(Y \setminus cl(U)))$$
$$\subset X \setminus f^{-1}(U).$$

In consequence, $f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))).$

 $(5) \to (1)$. Let $x \in X$ and U be any open subset in Y containing f(x). It follows that,

$$x \in f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))).$$

Take $V = \omega_{\mathcal{I},\gamma}$ -*int* $(f^{-1}(cl(U)))$ and obtain that $f(V) \subset cl(U)$ and f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

 $(1) \to (6)$. Let U be any preopen subset in Y and $x \in X \setminus f^{-1}(cl(U))$. It follows that $x \notin f^{-1}(cl(U)), f(x) \notin cl(U)$. Then there exists an open set

309

S such that $f(x) \in S$ and $S \cap U = \emptyset$. We obtain that $cl(U \cap S) = \emptyset$ and therefore

$$U \cap cl(S) \subset cl(U \cap S) = \emptyset.$$

Since f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function and $f(x) \in S$, there exists an $\omega_{\mathcal{I},\gamma}$ -open set V in X, with $x \in V$ and $f(V) \subset cl(S)$. It follows that $f(V) \cap U = \emptyset, V \cap f^{-1}(U) = \emptyset$. Therefore, $x \in X \setminus \omega_{\mathcal{I},\gamma} - cl(f^{-1}(U))$ and $\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(U)) \subset f^{-1}(cl(U)).$

 $(6) \rightarrow (7)$. Let U be any preopen subset in Y. Then

$$X \setminus \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))) = \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(Y \setminus cl(U)))$$
$$\subset f^{-1}(cl(Y \setminus cl(U)))$$
$$\subset X \setminus f^{-1}(U).$$

In consequence, $f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))).$

 $(7) \rightarrow (1)$. Let $x \in X$ and U be any open set in Y such that $f(x) \in U$. It follows that

$$x \in f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))).$$

Take $V = \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(cl(U)))$, obtain that $f(U) \subset cl(V)$ and f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Theorem 3.13. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. The following statements are equivalent:

- (1) f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.
- (2) $f(\omega_{\mathcal{I},\gamma}-cl(G)) \subset \theta cl(f(G))$ for any $G \subset X$.

(3) $\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(A)) \subset f^{-1}(\theta\text{-}cl(A)) \text{ for any } A \subset Y.$ (4) $\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(\theta\text{-}cl(A)))) \subset f^{-1}(\theta\text{-}cl(A))) \text{ for any } A \subset Y.$

Proof.

310

 $(1) \to (2)$. Let $G \subset X$ and $x \in \omega_{\mathcal{I},\gamma}$ -cl(G). Let V be any open set in Y such that $f(x) \in V$. Since f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function, then there exists an $\omega_{\mathcal{I},\gamma}$ -open set U in X containing x such that $f(U) \subset cl(V)$. Now $x \in \omega_{\mathcal{I},\gamma}$ -cl(G) and U is an $\omega_{\mathcal{I},\gamma}$ -open set with $x \in U$, so that $U \cap G \neq \emptyset$. It follows that

$$\emptyset \neq f(U) \cap f(G) \subset cl(V) \cap f(G).$$

In consequence, $f(x) \in \theta$ -cl(f(G)) and $f(\omega_{\mathcal{I},\gamma}$ - $cl(G)) \subset \theta$ -cl(f(G)). $(2) \rightarrow (3)$. Let A be any subset of Y, then

$$f(\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(A))) \subset \theta\text{-}cl(f(f^{-1}(A)))$$
$$\subset \theta\text{-}cl(A).$$

Therefore,

$$\omega_{\mathcal{I},\gamma} - cl(f^{-1}(A)) \subset f^{-1}(f(\omega_{\mathcal{I},\gamma} - cl(f^{-1}(A)))) \subset f^{-1}(\theta - cl(A)).$$

$$(3) \to (4)$$
. Let $A \subset Y$. Since θ -cl(A) is a closed set in Y, then

$$\begin{split} \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(\theta\text{-}cl(A)))) &\subset f^{-1}(\theta\text{-}cl(int(\theta\text{-}cl(A)))) \\ &= f^{-1}(cl(int(\theta\text{-}cl(A)))) \\ &\subset f^{-1}(\theta\text{-}cl(A)). \end{split}$$

 $(4) \to (1)$. Let U be any open set in Y, then $cl(U) = \theta - cl(U)$. It follows that $U \subset int(cl(U)) = int(\theta - cl(U))$ and we obtain

$$\omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(U)) \subset \omega_{\mathcal{I},\gamma}\text{-}cl(f^{-1}(int(\theta\text{-}cl(U))))$$
$$\subset f^{-1}(\theta\text{-}cl(U))$$
$$= f^{-1}(cl(U)).$$

By Theorem 3.12-(4), f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Definition 3.14. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space. A function $f : X \to Y$ is said to be coweakly $\omega_{\mathcal{I},\gamma}$ -continuous if $f^{-1}(Fr(U))$ is an $\omega_{\mathcal{I},\gamma}$ -closed set in X for each open set U in Y.

Theorem 3.15. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. If f is an $\omega_{\mathcal{I},\gamma}$ -continuous function then it is a coweakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Proof. Let U be any open set in Y; then,

$$Fr(U) = cl(U) \cap cl(Y \setminus U)$$

$$f^{-1}(Fr(U)) = f^{-1}(cl(U) \cap cl(Y \setminus U))$$

$$= f^{-1}(cl(U)) \cap f^{-1}(cl(Y \setminus U)).$$

Since f is an $\omega_{\mathcal{I},\gamma}$ -continuous function and cl(U), $cl(Y \setminus U)$ are closed subsets in Y, then $f^{-1}(cl(U))$ and $f^{-1}(cl(Y \setminus U))$ are $\omega_{\mathcal{I},\gamma}$ -closed sets in X. Using that the intersection of $\omega_{\mathcal{I},\gamma}$ -closed sets is an $\omega_{\mathcal{I},\gamma}$ -closed set [3], then $f^{-1}(Fr(U))$ is a $\omega_{\mathcal{I},\gamma}$ -closed set in X. This shows that f is a coweakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Example 3.16. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, \gamma$ the interior closure operator. \mathcal{I} the ideal of the power sets of X. Define $f : (X, \tau) \to (X, \tau)$ as follows:

$$f(x) = \begin{cases} a & \text{if } x = c \\ b & \text{if } x \neq c. \end{cases}$$

It is easy to see that f is a function coweakly $\omega_{\mathcal{I},\gamma}$ -continuous but is not $\omega_{\mathcal{I},\gamma}$ -continuous.

Remark 3.17. Observe that the class of the $\omega_{\mathcal{I},\gamma}$ -continuous functions is contained in the intersection of the classes of the weakly $\omega_{\mathcal{I},\gamma}$ -continuous functions and of the coweakly $\omega_{\mathcal{I},\gamma}$ -continuous functions. Equality is obtained when the operator γ is a regular operator.

The following example shows that if the operator γ is not a regular operator, there exists a function f that is both weakly $\omega_{\mathcal{I},\gamma}$ -continuous and coweakly $\omega_{\mathcal{I},\gamma}$ -continuous but not $\omega_{\mathcal{I},\gamma}$ -continuous.

Example 3.18. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}, \mathcal{I}$ the ideal of the power sets of X and γ the operator defined as:

$$\gamma(A) = \begin{cases} cl(A) & \text{if } b \notin A \\ \\ A & \text{if } x \in A. \end{cases}$$

It is easy to see that the operator γ is not a regular operator and the identity function $i : (X, \tau) \to (X, \tau)$ is coweakly $\omega_{\mathcal{I},\gamma}$ -continuous and weakly $\omega_{\mathcal{I},\gamma}$ -continuous but not $\omega_{\mathcal{I},\gamma}$ -continuous, because $\{a\}$ is an open set and $i^{-1}(\{a\}) = \{a\}$ is not an $\omega_{\mathcal{I},\gamma}$ -open set.

Theorem 3.19. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. The following statements are equivalent:

(1)
$$f$$
 is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function at $x \in X$.
(2) $x \in \omega_{\mathcal{I},\gamma}$ -int $(f^{-1}(cl(V)))$ for any open set V in Y with $f(x) \in V$.

Proof.

 $\begin{array}{l} (\underline{1}) \to (\underline{2}). \text{ Let } x \in X \text{ and } V \text{ be an open subset in } Y \text{ containing } f(x). \text{ Since } \\ \overline{f} \text{ is a weakly } \omega_{\mathcal{I},\gamma}\text{-continuous function, then there exists an } \omega_{\mathcal{I},\gamma}\text{-open set } \\ U \text{ in } X \text{ with } x \in U \text{ and } f(U) \subset cl(V). \text{ Since } U \subset f^{-1}(cl(V)) \text{ and } U \text{ is an } \\ \omega_{\mathcal{I},\gamma}\text{-open set, then } x \in U \subset \omega_{\mathcal{I},\gamma}\text{-}int(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(V))). (2) \to (1). \\ \text{Let } x \in \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(V))) \text{ for any open subset } V \text{ in } Y \text{ containing } f(x). \\ \text{Put } U = \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(V))). \text{ It follows that } U \text{ is an } \omega_{\mathcal{I},\gamma}\text{-}open \text{ set and } \\ f(U) \subset cl(V). \text{ Therefore, } f \text{ is a weakly } \omega_{\mathcal{I},\gamma}\text{-continuous function at } x \in X. \end{array}$

Definition 3.20. [6] A subset A of X is said to be an N-closed set relative to X if for any covering $\{A_i : i \in I\}$ of A by open sets in X, there exists a finite subcollection $I_0 \subset I$ such that $A \subset \bigcup_{i \in I_0} cl(A_i)$.

Theorem 3.21. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space. If $f : X \to Y$ is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous and Y is Hausdorff, the following statements hold:

(1) For each $(x, y) \notin G(f)$, there exist an $\omega_{\mathcal{I},\gamma}$ -open set $G \subset X$ and an open set $U \subset Y$ such that $x \in G$, $y \in U$ and $f(G) \cap int(cl(U)) = \emptyset$.

313

(2) The inverse image of each N-closed set in Y is an $\omega_{\mathcal{I},\gamma}$ -closed set in X if γ is a regular operator.

Proof.

(1) Suppose that $(x, y) \notin G(f)$, so that $y \neq f(x)$. Since Y is Haussdorff, there exist open sets U and V such that $y \in U$, $f(x) \in V$ and $U \cap V = \emptyset$. It follows that $int(cl(U)) \cap cl(V) = \emptyset$. From the fact that f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function, there exists an $\omega_{\mathcal{I},\gamma}$ -open set G such that $x \in G$ with $f(G) \subset cl(V)$. Therefore, $f(G) \cap int(cl(U)) = \emptyset$.

(2) Suppose that there exists a N-closed set $W \subset Y$ such that $f^{-1}(W)$ is not an $\omega_{\mathcal{I},\gamma}$ -closed set in X; then there exists a point $x \in \omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(W)) \setminus$ $f^{-1}(W)$. Since $x \notin f^{-1}(W)$, then $(x, y) \notin G(f)$ for all $y \in Y$. By (1), there exist an $\omega_{\mathcal{I},\gamma}$ -open set $G_y(x) \subset X$ and B(y), an open subset of Y, such that $x \in G_y(x), y \in B(y)$ and $f(G_y(x)) \cap int(cl(B(y))) = \emptyset$. The family $\{B(y) : y \in W\}$ is a covering of W by open sets in Y. Since W is a N-closed set, then there exist a finite number of points y_1, y_2, \ldots, y_n in W such that $W \subset \bigcup_{j=1}^n int(cl(B(y_j)))$. Put $G = \bigcap_{j=1}^n G_{y_j}(x)$; then, $f(G) \cap W = \emptyset$. Observe that G is $\omega_{\mathcal{I},\gamma}$ -open because γ is a regular operator [3]. Since $x \in \omega_{\mathcal{I},\gamma}$ -cl $(f^{-1}(W))$, then $f(G) \cap W \neq \emptyset$. This is a contradiction. \Box

Theorem 3.22. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space and $f : X \to Y$ a function. If the graph function of f, say $g : X \to X \times Y$ defined by g(x) = (x, f(x)), is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function then $f : X \to Y$ is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function.

Proof. Suppose that g is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function, $x \in X$ and A is an open set in X such that $f(x) \in A$. Then, $X \times A$ is an open set such that $g(x) \in X \times A$. Since g is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function, there exists an $\omega_{\mathcal{I},\gamma}$ -open set B containing x such that $g(B) \subset cl(X \times A) = X \times cl(A)$. It follows that, $f(B) \subset cl(A)$ and f is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous function. \Box

4. $\omega_{\mathcal{I},\gamma}$ -connected spaces and $\omega_{\mathcal{I},\gamma}$ -compact spaces

In this section we introduce the notions of connectedness and compactness associated with the $\omega_{\mathcal{I},\gamma}$ -open sets. Also, we study the behavior of these notions under the action of weakly $\omega_{\mathcal{I},\gamma}$ -continuous functions.

Definition 4.1. Let $(X, \tau, \mathcal{I}, \gamma)$ be given. An $\omega_{\mathcal{I},\gamma}$ -separation of X is a pair U, V of nonempty disjoint $\omega_{\mathcal{I},\gamma}$ -open sets of X whose union is X. The space X is said to be an $\omega_{\mathcal{I},\gamma}$ -connected if there exists no $\omega_{\mathcal{I},\gamma}$ -separation of X.

Theorem 4.2. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space. If $f : X \to Y$ is a weakly $\omega_{\mathcal{I},\gamma}$ -continuous, surjective function and X is an $\omega_{\mathcal{I},\gamma}$ -connected space, then Y is a connected space.

Proof. Suppose that Y is not a connected space, then there exist a nonempty open sets U and V such that $Y = U \cup V$ and $U \cap V = \emptyset$. This implies that U and V are clopen subsets in Y. By Theorem 3.12, $f^{-1}(U) \subset \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(cl(U))) = \omega_{\mathcal{I},\gamma}\text{-}int(f^{-1}(U))$. It follows that, $f^{-1}(U)$ is an $\omega_{\mathcal{I},\gamma}$ open set in X. Similarly, $f^{-1}(U)$ is an $\omega_{\mathcal{I},\gamma}$ -open set in X. Therefore, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, $X = f^{-1}(U) \cup f^{-1}(V)$ and $f^{-1}(U)$, $f^{-1}(V)$ are nonempty. In follows that X is not an $\omega_{\mathcal{I},\gamma}$ -connected space.

Definition 4.3. Let $(X, \tau, \mathcal{I}, \gamma)$ be given. A subset A of X is said to be an $\omega_{\mathcal{I},\gamma}$ -compact space relative to X if for any covering $\{U_{\alpha} : \alpha \in I\}$ of A by $\omega_{\mathcal{I},\gamma}$ -open sets in X, there exists a finite subset I_0 of I such that $A \subset \bigcup \{U_{\alpha} : \alpha \in I_0\}$. The space X is said to be $\omega_{\mathcal{I},\gamma}$ -compact if it is $\omega_{\mathcal{I},\gamma}$ -compact as a subspace.

Theorem 4.4. Let $(X, \tau, \mathcal{I}, \gamma)$ be an $\omega_{\mathcal{I},\gamma}$ -compact space. Then, every $\omega_{\mathcal{I},\gamma}$ -closed set B is an $\omega_{\mathcal{I},\gamma}$ -compact space.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be a covering of B by $\omega_{\mathcal{I},\gamma}$ -open subsets in X. This implies $B \subset \bigcup_{\alpha \in I} U_{\alpha}$ and $(X \setminus B) \cup (\bigcup_{\alpha \in I} U_{\alpha}) = X$. By hypothesis, X is an $\omega_{\mathcal{I},\gamma}$ -compact space, so there exists a finite subset I_0 of I such that $B \subset \bigcup_{\alpha \in I_0} U_{\alpha}$. It follows that B is an $\omega_{\mathcal{I},\gamma}$ -compact space. \Box

Theorem 4.5. Let $(X, \tau, \mathcal{I}, \gamma)$, (Y, σ) be a topological space. If $f : X \to Y$ is an $\omega_{\mathcal{I},\gamma}$ -continuous function and X is an $\omega_{\mathcal{I},\gamma}$ -compact space then f(X) is a compact set.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be a covering of f(X) by open subsets in Y. Since f is an $\omega_{\mathcal{I},\gamma}$ -continuous function, $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a covering of X by $\omega_{\mathcal{I},\gamma}$ -open subsets in X. By hypothesis, X is an $\omega_{\mathcal{I},\gamma}$ -compact space, it follows that there exists a finite subset I_0 of I such that $X = \bigcup_{\alpha=1}^n f^{-1}(U_{\alpha})$. Then,

$$f(X) = f\left(\bigcup_{\alpha=1}^{n} f^{-1}(U_{\alpha})\right)$$
$$= f\left(f^{-1}\left(\bigcup_{\alpha=1}^{n} U_{\alpha}\right)\right)$$
$$\subset \bigcup_{\alpha=1}^{n} U_{\alpha}.$$

This says that $\{U_1, \ldots, U_n\}$ is a finite open subcover of f(X). Therefore, f(X) is a compact set.

References

- A. V. Arhangel'skii, Bicompacta that satisfy the Suslin condition hereditarily. Tightness and free sequences, Dokl. Akad. Nauk SSR, 199 (1971), 1227–1230.
- [2] A. Csszr, γ-compact spaces, Acta Math. Hungar., 87 (1–2) (2000), 99–107.
- [3] C. Carpintero, E. Rosas, M. Salas, J. Sanabria and L. Vsquez, Generalization of ω-closed sets via operators and ideals, Sarajevo J. Math., 9 (2) 2013, xx-xx.
- [4] A. A, El-Atik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt 1997.
- [5] E. Ekici, S. Jafari, M. Caldas and T. Noiri, Weakly γ-continuous functions, Novi Sad J. Math., 38 (2) (2008), 47–56.
- [6] E. Ekici and S. Jafari S, On ω^{*}-closed sets and their topology, Acta Univ. Apulensis, 22 (2010), 175–184.
- [7] S. V. Fomin, Extension of topological spaces, Ann. Math., 44 (1943), 471–480.
- [8] S. Hussain and B. Ahmad B, γ-connected spaces, Int. J. Pure Appl. Math., 39 (1) (2007), 33–40.
- [9] S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Sci., 6 (5) (1998), 689–696.
- [10] S. Kasahara, Operation-compact spaces, Math. Japon., 24 (1979), 97–105.
- [11] K. Kuratowski, Topologies I, Warszawa, (1933).
- [12] N. Levine N, Decomposition of continuity in topological spaces, Am. Math. Mon., 68 (1961), 44–46.
- [13] B. M. Munshi and D. S. Bassan, Super continuous functions, Indian J. Pure Appl. Math., (1982), 229–236.
- [14] J. R. Munkres, 2002, Topologa, Prentice Hall, Madrid.
- [15] E. Rosas and J. Vielma, Operator-compact and operator connected spaces, Sci. Math., 1 (2) (1998), 1–6.
- [16] A. Srivastava and S. Gupta, On various properties of δ-compact spaces, Bull. Calcutta Math. Soc., 97 (3) (2005), 217-222.
- [17] N. V. Veličko, H-closed topological spaces, Am. Math. Soc. Transl., 78 (1968), 103–118.
- [18] X. Wang, δ-connected spaces, (Chinese) Pure Appl. Math., 20 (3) (2004), 243–247.

(Received: December 4, 2012) (Revised: February 27, 2013) Departamento de Matemáticas Universidad de Oriente Núcleo De Sucre Cumaná Venezuela carpintero.carlos@gmail.com ennisrafael@gmail.com salasbrown@gmail.com eligiovm85@gmail.com