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RECTANGULAR HEXAHEDRONS AS FERMAT BASES OF

QUADRICS

ZVONKO ČERIN

Abstract. The concepts of a Fermat base of a quadric and of a Fermat
locus of a rectangular hexahedron come from an old geometric problem
by Pierre de Fermat about a semicircle on a side of a rectangle with ratio
of adjacent sides equal to

√

2, which was resolved by synthetic methods
first by Leonard Euler in 1750. An arbitrary rectangular hexahedron
has a quadric as its Fermat locus. This quadric is either an ellipsoid, a
rotational paraboloid or a hyperboloid with two sheets. Conversely, for
every quadric from any of these three types one can ask to find all of its
rectangular hexahedron Fermat bases which share a line of symmetry
with the quadric.

1. Introduction
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Figure 1: The configuration of the Fermat problem
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For a rectangle R = ABB′A′ in the plane, let us call s(R) = |AB|
|AA′| its shape.

Among the numerous questions that Pierre de Fermat has formulated, the
following geometric problem is our main concern (see Fig. 1).

Fermat Problem. Let R = ABB′A′ be a rectangle with the shape
√
2 and

let Γ denote the semicircle on the side AB as a diameter. Prove that for
every point P ∈ Γ the relation |ABP |2 + |BAP |2 = |AB|2 holds, where AP

and BP are intersections of the line AB with the lines A′P and B′P .

The great Leonard Euler in [7] has provided the first rather long proof,
which is old fashioned (for his time), and avoids the analytic geometry (which
offers rather simple proofs). Several more concise synthetic proofs are now
known (see [11], [8, pp. 602, 603], [1, pp. 168, 169] and [9, pp. 181, 264]).

The author and G. M. Gianella have done some recent contributions in
[2], [3], [4], [5] and [6]. See also a nice description of Euler’s proof in [12].

In this paper we consider the space version of the Fermat problem for
quadrics extending our results in [5] which considers only spheres.

Let v be a positive real number. For a rectangular hexahedron H =
ABCDA′B′C ′D′ and a surface Γ in the 3-dimensional Euclidean space, we

use the notation H
v≃ Γ provided for every point P on Γ the relation

|ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 = v
(

|AC|2 + |BD|2
)

holds, where AP , BP , CP and DP are the intersections of the plane πT
determined by the top face T = ABCD of H with the lines A′P , B′P , C ′P
and D′P (see Fig. 2). In this situation, we say that H is an F v-base for Γ
or that Γ is an F v-locus of H (since Γ is generated from H).

Our idea is to put the rectangular hexahedron H = ABCDA′B′C ′D′ at
the center of the stage and try to determine the surface Γ such that the

relation H
v≃ Γ holds. Using analytic geometry, it is easy to show that Γ is

a quadric (i. e., a surface of order two). The type of this quadric depends

on the number v and the shape s = |AC|
|AA′| of the rectangle ACC ′A′. Only

three types are possible: an ellipsoid for 0 < v < 2, a rotational paraboloid
for v = 2 and a hyperboloid with two sheets for v > 2 and 2√

v−2
> s > 1√

v−2
.

In the rest of this paper, we search for conditions when will a rectangular
hexahedron be an F v-base of a given quadric. It turns out that the cases
of a rotational paraboloid, a hyperboloid with two sheets, an ellipsoid and
a sphere each have their own peculiarities so that we treat them separately.
In each of these results the surface and its rectangular hexahedron F v-base
share a line of symmetry.



FERMAT BASES OF QUADRICS 319

CP

BP

AP

D'

A'
B'

C'

A

C

B

P

D
DP

Γ

Figure 2: The space version of the Fermat problem

2. F v
-loci of rectangular hexahedrons

Theorem 1. Let v be a positive real number. Every rectangular hexahedron

H = ABCDA′B′C ′D′ is an F v-base of some quadric Γ. This quadric is an

ellipsoid for v < 2, a rotational paraboloid for v = 2 and a hyperboloid with

two sheets when v > 2 and 2√
v−2

> s > 1√
v−2

, where s = s(ACC ′A′) = |AC|
|AA′|

is the shape of the rectangle ACC ′A′.

Proof. We shall use analytic geometry, which offers a simple proof. Let the
origin of the rectangular coordinate system in the 3-dimensional Euclidean
space be the midpoint O of the diagonal AC of the top face T = ABCD so
that the points A, B, C and D have coordinates (−a, b, 0), (a, b, 0), (a,−b, 0)
and (−a,−b, 0) for some positive real numbers a and b. The coordinates
of the points A′, B′, C ′ and D′ are (−a, b,m), (a, b,m), (a,−b,m) and
(−a,−b,m) for some real number m 6= 0.

An arbitrary point P on the required locus has coordinates (x, y, z).

From the similar right-angled triangles, we find AP

(

mx+a z
m−z

, my−b z
m−z

, 0
)

,

BP

(

mx−a z
m−z

, my−b z
m−z

, 0
)

, CP

(

mx−a z
m−z

, my+b z
z−m

, 0
)

and DP

(

mx+a z
m−z

, my+b z
z−m

, 0
)

.

Then |ACP |2+ |BDP |2 +|CAP |2+ |DBP |2 = v(|AC|2+ |BD|2) holds if and
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only if m2(x2 + y2) = c2
[

2 (m− z)2 v − (m− 2z)2
]

, where c is
√
a2 + b2.

Hence, the locus is a quadric.
The above equation has the familiar form Ξ = 0, with Ξ equal to

a11x
2 + a22y

2 + a33z
2 + 2 a12x y + 2 a13x z

+ 2 a23y z + 2 a14x+ 2 a24y + 2 a34z + a44,

with a11 = a22 = m2, a33 = 2 c2(2− v), a12 = a13 = a23 = a14 = a24 = 0,
a34 = 2mc2(v − 1) and a44 = m2 c2(1− 2 v).

It is well-known (see [10, 3.5]) that the invariants

I = a11 + a22 + a33 = 2
[

m2 + c2(2− v)
]

,

J =

∣

∣

∣

∣

a11 a12
a12 a22

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 a23
a23 a33

∣

∣

∣

∣

+

∣

∣

∣

∣

a33 a13
a13 a11

∣

∣

∣

∣

= m2[m2 + 4 c2(2− v)],

D =

∣

∣

∣

∣

∣

∣

a11 a12 a13
a12 a22 a23
a13 a23 a33

∣

∣

∣

∣

∣

∣

= 2m4 c2(2− v),

and

A =

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

∣

∣

∣

∣

∣

∣

∣

∣

= −2 c4 m6 v

together determine the properties of a quadric which do not depend on its
position on the space.

Since A 6= 0, the quadric is non-degenerate. For v = 2, we have D = 0
and I2 = 4J so that Γ is a rotational paraboloid.

For 0 < v < 2, the invariants satisfy A < 0, D > 0, I > 0 and J > 0 so
that Γ is an ellipsoid.

Finally, for v > 2, we have A < 0, D I = 4m4 λ
(

m2 + λ
)

and J = m2

(

m2 + 4λ
)

, where λ = c2(2− v). We must consider the following two cases:
(Case I) When is D I > 0 and J > 0? and (Case II) When is D I < 0 and
J < 0?

(Case I). Note that D I > 0 holds only for λ > 0 and λ < −m2. But, λ > 0
is not true for v > 2. Hence, λ < −m2. On the other hand, J > 0 is true

only for λ > −m2

4
. These two conditions on λ are incompatible so that this

case can not happen.
(Case II). The inequality D I < 0 holds only for 0 > λ > −m2 while the

inequality J < 0 holds only for λ < −m2

4
. Hence, −m2 < λ < −m2

4
. Since

s = 2 c
m

, we conclude that this case happens if and only if the inequality
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2√
v−2

> s > 1√
v−2

is true. According to Table 3.5-1 in [10], in this case the

quadric Γ is a hyperboloid with two sheets. �

3. The case of a rotational paraboloid

When v = 2, the Fermat configuration is tied to a rotational paraboloid.
This is explained in the following result (see Fig. 3).

Theorem 2. For every rotational paraboloid δ and every pair λ = (a, b) of

real numbers a and b both different from zero, there is a rectangular hexahed-

ron Hλ = AλBλCλDλA
′
λB

′
λC

′
λD

′
λ such that Hλ and δ have a common line

of symmetry and for a point P in the space the following two statements are

equivalent:

(a) A point P is on the rotational paraboloid δ.

(b) The sum |ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 is equal to the prod-

uct 2
(

|AC|2 + |BD|2
)

, where AP , BP , CP and DP are intersections

of the plane AλBλCλDλ with the lines A′
λP , B′

λ, C
′
λP and D′

λP .

Proof. Without loss of generality, we can assume that the line of symmetry
π of δ is the z-axis of the rectangular coordinate system in the 3-dimensional
Euclidean space, the equation of δ is a standard x2 + y2 = 2 k z for a positive
real number k and the coordinates of the vertices A, B, C, D, A′, B′, C ′

and D′ of a rectangular hexahedron ABCDA′B′C ′D′ are (−a, b, n), (a, b, n),
(a,−b n), (−a,−b, n), (−a, b,m), (a, b,m), (a,−bm) and (−a,−b,m), where
a, b, n and m are real numbers such that m 6= n, a 6= 0 and b 6= 0. An
arbitrary point P in the space has coordinates (x, y, z). Let α = n−m,
β = n− z and γ = z −m. The coordinates of the intersections AP , BP , CP

and DP are
(

αx+βa
γ

, αy−βb
γ

, n
)

,
(

αx−βa
γ

, αy−βb
γ

, n
)

,
(

αx−βa
γ

, αy+βb
γ

, n
)

and
(

αx+βa
γ

, αy+βb
γ

, n
)

. Then

|ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 − 2
(

|AC|2 + |BD|2
)

=
4αMp

γ2
,

where Mp = α2(x2 + y2) + c2(α− 4 γ) and c2 = a2 + b2.
Now, in order that P is on the rotational paraboloid δ, the polynomial Mp

should be of the form t
(

x2 + y2 − 2 k z
)

for some real number t 6= 0. This
gives the system of ten equations in variables a, b, n, m and t. The only so-

lution is n = 3 c2

2 k
, m = − c2

2 k
and t = 2 c2 that gives the required rectangular

hexahedron Hλ with vertices (−a, b, n0), (a, b, n0), (a,−b, n0), (−a,−b, n0),

(−a, b,m0), (a, b,m0), (a,−b,m0) and (−a,−b,m0), where n0 =
3 c2

2 k
and

m0 = − c2

2 k
. �
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Figure 3: Theorem 2 for a = 1, b = 2 and k = 1.

4. The case of an ellipsoid

When v < 2, some special ellipsoids have rectangular hexahedrons as their
F v-bases. This is the content of the following result (see Fig. 4). Note that
these rectangular hexahedrons have the z-axis as a line of symmetry.

Theorem 3. Let real numbers b, h, m and v satisfy b > 0, h > 0, m 6= 0

and 0 < v < 2. Let Γ be the ellipsoid x2

h2 + y2

h2 + z2

2 vm2 = 1. If b < h

√

2

v
− 1,

then there are two rectangular hexahedrons H = ABCD A′B′C ′D′ with ver-

tices (±e, b, d), (∓e, b, d), (∓e,−b, d), (±e, −b, d), (±e, b,m), (∓e, b,m),

(∓e,−b,m), (±e,−b,m), where d = m(v − 1) and e =
√

h2
(

2

v
− 1

)

− b2,

such that H and Γ have a common line of symmetry and for a point P in

the space the following two statements are equivalent:

(a) A point P is on the ellipsoid Γ.
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(b) The sum |ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 is equal to the prod-

uct v
(

|AC|2 + |BD|2
)

, where AP , BP , CP and Dd are the intersec-

tions of the plane ABCD with the lines A′P , B′, C ′P and D′P .

Figure 4: Theorem 3 for h = 1, b = 1

2
, v = 1 and m = 2.

Proof. Without loss of generality, we can assume that the above line of sym-
metry is the z-axis of the rectangular coordinate system in the 3-dimensional
Euclidean space and that the coordinates of the vertices A, B, C, D, A′, B′,
C ′ and D′ of a rectangular hexahedron H are (−a, b, n), (a, b, n), (a,−b n),
(−a,−b, n), (−a, b,m), (a, b,m), (a,−bm) and (−a,−b,m), where a, b, n

and m are real numbers such that m 6= n, a 6= 0 and b 6= 0. An arbitrary
point P in the space has coordinates (x, y, z). Let α = n−m, β = n− z and
γ = z −m. The coordinates of the intersections AP , BP , CP and DP have
been computed above. Then

|ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 − v
(

|AC|2 + |BD|2
)

=
4αMe

γ2
,
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where Me is the following quadratic polynomial in x, y and z:

α2(x2 + y2) + c2
[

2(2 − v)z2 + 4(d− n)z − 2 v m2 + (m+ n)2
]

.

Now, in order that P is on the ellipsoid Γ, the polynomial Me should be of

the form t
(

x2

h2 + y2

h2 + z2

2 vm2 − 1
)

for some real number t 6= 0. This gives the

system of ten equations in variables a, n and t. The two solutions are a = ±e,
n = d and t = h2 m2(v − 2)2 that give the two rectangular hexahedrons H

from the statement of the theorem. �

Of course, we can apply the above arguments also to the remaining two
lines of symmetry of an ellipsoid so that there are three special ellipsoids with
two semi-axes equal and the third of the form m

√
2 v each with two basic

rectangular hexahedron F v-bases analogous to the ones described above (for
the z-axis).

The case of a sphere is somewhat special because every line through
its center is a line of symmetry for the sphere. By repeating the above
proof and solving the system, assuming that the polynomial Me has the

form t
(

x2

h2 + y2

h2 + z2

h2 − 1
)

for some real number t 6= 0, we conclude that for

0 < v < 2 and b < m
√

1− v
2

the value a is
√

(

1− v
2

)

m2 − b2 and the radius

h of the sphere is m
√

v
2

while n = d as above.

5. The case of a hyperboloid with two sheets

When v > 2, some special hyperboloids with two sheets have rectangular
hexahedrons as their F v-bases. This is explained in the following result.
Once again these rectangular hexahedrons have the z-axis as a line of sym-
metry (see Fig. 5).

Theorem 4. Let real numbers b, h, m and v satisfy b > 0, h > 0, m 6= 0
and v > 2. Let Γ be the hyperboloid with two sheets that has the equa-

tion z2

2 vm2 − x2

h2 − y2

h2 = 1. If b < h

√

1− 2

v
, then there are two rectangular

hexahedrons H = ABCDA′B′C ′D′ with the vertices (±f, b, d), (∓f, b, d),
(∓f,−b, d), (±f,−b, d), (±f, b,m), (∓f, b,m), (∓f,−b,m), (±f,−b,m),

where d and f are m(v − 1) and

√

h2
(

1− 2

v

)

− b2, such that H and Γ share

a line of symmetry and for a point P in the space the following two state-

ments are equivalent:

(a) A point P is on the hyperboloid Γ.

(b) The sum |ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 is equal to the prod-

uct v
(

|AC|2 + |BD|2
)

, where AP , BP , CP and Dd are the intersec-

tions of the plane ABCD with the lines A′P , B′, C ′P and D′P .
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Figure 5: Theorem 4 for h = 1, b = 1

2
, v = 3 and m = 2.

Proof. We can repeat the above proof for the ellipsoid and require that the

polynomial Me is of the form t
(

z2

2 vm2 − x2

h2 − y2

h2 − 1
)

for some real number

t 6= 0. This gives the system of ten equations in variables a, n and t. The
two solutions are a = ±f , n = d and t = −h2 m2(v − 2)2 that give the two
rectangular hexahedrons H from the statement of the theorem. �

6. Conclusion

This note considers the 3-dimensional versions of some recent results by
the author and G. M. Gianella that have their origin in an old geometric
problem of Fermat in the plane for semicircles and rectangles. The first
step of generalization was to replace semicircles with arbitrary conics. In
the space rectangles are replaced by rectangular hexahedrons and conics by
three kinds of quadrics. As in the plane, this results are proved using methods
from analytic geometry. Of course, it remains to deal with arbitrary quadrics
perhaps with some other solids.
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