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COEFFICIENT CONVEXITY OF DIVISORS OF xn − 1

ANDREAS DECKER AND PIETER MOREE

Abstract. We say a polynomial f ∈ Z[x] is strongly coefficient convex
if the set of coefficients of f consists of consecutive integers only. We
establish various results suggesting that the divisors of xn−1 that are in
Z[x] have the tendency to be strongly coefficient convex and have small
coefficients. The case where n = p2q with p and q primes is studied in
detail.

1. Introduction

Let f(x) =
∑∞

j=0 cjx
j be a polynomial. We put C0(f) = {cj}. Trivially

C0(f) = C(f) ∪ {0}, where C(f) = {cj : 0 ≤ j ≤ deg(f)} denotes the set of
coefficients of f . If there exist integers a and b such that C0(f) consists of
the consecutive integers a, a+1, . . . , b−1, b, then we say that f is coefficient
convex and write C0(f) = [a, b]. If C(f) = [a, b], then we say that f is
strongly coefficient convex. We say that f is flat if C(f) ⊆ [−1, 1]. Note that
if f is flat, then f is also coefficient convex. Typically we denote polynomial
coefficients by cj and dj .

The nth cyclotomic polynomial Φn(x) (see the next section for details)
has the property that its coefficients tend to be small in absolute value, e.g.,
for n < 105 it is flat. If n has at most three distinct odd prime factors, it can
be shown [5] that Φn is coefficient convex. A question that arises is to what
extent the smallness of the coefficients is particular to Φn(x). We will try to
answer this by investigating the coefficients of the other divisors of xn−1 as
well. Our work suggests that as far as the behavior of its coefficients goes,
Φn(x) does not have a special role amongst the divisors of xn − 1. Since
the number of divisors of xn − 1 rapidly increases, we are only able to say
something conclusive in case n has a modest number of divisors. If n = pq
or n = p2q, then xn − 1 has 16, respectively 64 monic divisors (these cases
are covered by Theorems 2, 3, 4 and 5).

2010 Mathematics Subject Classification. 11B83, 11C08.
Key words and phrases. Cyclotomic polynomials, coefficient sets of polynomials.



4 ANDREAS DECKER AND PIETER MOREE

An exception here is the case where n is a prime power, say n = pe. Then
the number of divisors can get large, but they have a simple structure. Using
the uniqueness of the base p representation Pomerance and Ryan [9] proved
that the divisors of xp

e − 1 are all flat. We leave it to the reader to prove
the following easy strengthening of this result.

Theorem 1. Let e ≥ 1 be an integer and g be a monic divisor of xp
e−1. We

have C(g) = {1} if g = (xp
j − 1)/(x− 1) for some 0 ≤ j ≤ e. Furthermore,

if p = 2 and g = (x − 1)(x2
j − 1)/(x2 − 1), then for 1 ≤ j ≤ e we have

C(g) = {−1, 1}. In the remaining cases we have

C(g) =

{
[0, 1] if g(1) ̸= 0;

[−1, 1] otherwise.

Theorem 2. Let p < q be primes. Except for (x−1)Φpq(x) and Φp(x)Φq(x)
all monic divisors of xpq−1 are flat. The set of coefficients of (x−1)Φpq(x)
is of the form {−2,−1, 1, 2} if p ≤ 3 and [−2, 2] otherwise. The set of
coefficients of Φp(x)Φq(x) is [1,min(p, q)].

Corollary 1. All divisors f ∈ Z[x] of xpq − 1 are coefficient convex.

Theorem 3. Let p and q be distinct primes. Then the monic polynomial

divisors of xp
2q−1 are coefficient convex, with the exception (in case q = 2),

(x+1)ΦpΦ2p2, where the coefficient set equals {−2, 0, 1, 2}. If min(p, q) > 3,
then all monic divisors - except x− 1 - are strongly coefficient convex.

Let B(n) be the maximum coefficient (in absolute value) that occurs
amongst all monic divisors of xn − 1. Pomerance and Ryan [9] conjectured
and Kaplan [6] proved that B(p2q) = min(p2, q). Letting B+(n) denote the
maximum amongst all the coefficients of all the monic divisors of xn − 1,
and −B−(n) the minimum, we have the following generalization of Kaplan’s
result.

Theorem 4. Let p and q be distinct primes. Let 1 ≤ p∗ ≤ q − 1 be the
inverse of p modulo q. We have B−(p

2q) = min(p, p∗) + min(p, q − p∗) and
B+(p

2q) = min(p2, q).

Note that if q < p, then the result gives B−(p
2q) = B+(p

2q) = q. (For a
more formal definition of B±(n) see Section 4.) The analogue of the latter
theorem in case n = pqr is not known, for some partial results see Kaplan
[6]. Ryan et al. [11] posed some conjectures on the basis of extensive nu-
merical calculation.

The results stated above (except for Theorem 1) are special cases of
Theorem 5, our main result, e.g., Theorem 2 can be read off from Ta-
ble 1A. In the derivation of Theorem 4 we have to use in addition that
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min(p, p∗)+min(p, q− p∗) ≥ min(p, q). A reformulation of Theorem 5 with-
out tables is given in Section 3.1.

Theorem 5. Let p and q be distinct primes. Let f(x) ∈ Z[x] be a monic

divisor of xp
2q − 1. Then there exists an integer 0 ≤ k ≤ 63 such that

f(x) = fk(x) = Φk0
1 Φk1

p Φk2
q Φk3

pqΦ
k4
p2
Φk5
p2q

,

with 0 ≤ kj ≤ 1 and k =
∑5

j=0 kj2
j the binary expansion of k. The set of

coefficients of fk, C(fk), is given in Table 1.

The difficulty of computing C(f) varies rather dramatically; from utterly
trivial to challenging in case of f25, f38 and f43.

For reasons of space various proofs of lemmas have been suppressed. They
can be found in the full version [4] of the paper.

2. Preliminaries

The nth cyclotomic polynomial Φn(x) is defined by

Φn(x) =

ϕ(n)∑
k=0

an(k)x
k =

∏
d|n

(xd − 1)µ(n/d), (1)

where µ(n) is the Möbius function and φ(n) Euler’s totient function. Let
p ̸= q be primes. From (1) we deduce, e.g., that

Φpq(x) =
(x− 1)(xpq − 1)

(xp − 1)(xq − 1)
, (2)

a formula that will be used repeatedly.
We will need the following elementary properties of Φn(x) (see, e.g.,

Thangadurai [12] for proofs and a nice introduction to cyclotomic poly-
nomials). Throughout we use the letters p and q to denote primes.

Lemma 1.
1) Φn(x) ∈ Z[x].
2) Φn(x) is irreducible over the rationals.
3) xn − 1 =

∏
d|nΦd(x).

4) Φp(x) = (xp − 1)/(x− 1) = 1 + x+ · · ·+ xp−1.
5) If p|n, then Φpn(x) = Φn(x

p).
6) If n > 1 is odd, then Φ2n(x) = Φn(−x).

7) For all positive integers n > 1, we have Φn(1/x)x
ϕ(n) = Φn(x), that is

Φn(x) is self-reciprocal.

For a nonzero polynomial f ∈ C[x], we define its height H(f) to be the
largest coefficient of f in absolute value. For a nonzero polynomial f ∈ R[x],
we define H+(f), respectively H−(f) to be the largest, respectively smallest
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coefficient of f . (In that case H(f) = max{H+(f), |H−(f)|}.) As in [9], the
observation that if H(f) = m, then H((xk − 1)f(x)) ≤ 2m for any positive
integer k will be used a few times. We also use that if f, g ∈ Z[x] with
deg(f) ≤ deg(g), then

H(fg) ≤ (1 + deg(f))H(f)H(g). (3)

Another easy observation we need is that if k > deg(f), and m ≥ 1 is an
arbitrary integer, then

C0(f(x)(1 + xk + x2k + · · ·+ xkm)) = C0(f). (4)

If k > deg(f) + 1, then C(f(x)(1 + xk + x2k + · · ·+ xkm)) = C(f) ∪ {0}. A
closely related observation is that

C(Φp(x)f(x
p)) = C(f). (5)

To see this note that if in the coefficient string of f(=
∑

j cjx
j), that is in

the string c0c1c2 . . . cdeg(f), we replace each coefficient by its p-fold repetition
(e.g. c0c1 becomes c0c0c0c1c1c1 if p = 3), we get the coefficient string of
Φp(x)f(x

p).

2.1. Binary cyclotomic polynomials. In this subsection we consider the
binary cyclotomic polynomials Φpq(x) with p and q distinct primes.

In 1883 Migotti proved that Φpq is flat. Carlitz [3] noted that if we
drop the zero coefficients in Φpq(x), the positive and negative terms occur
alternately, as, e.g., in

Φ21(x) = x12 − x11 + x9 − x8 + x6 − x4 + x3 − x+ 1.

(To prove this, one can invoke Lemma 4 below together with (2).) Lam and
Leung [7] gave an explicit description of the coefficients of Φpq(x).

Lemma 2. ([7]). Let p and q be distinct odd primes. Let ρ and σ be
the (unique) non-negative integers for which 1 + pq = (ρ + 1)p + (σ + 1)q.
Let 0 ≤ m < pq. Then either m = α1p + β1q or m = α1p + β1q − pq
with 0 ≤ α1 ≤ q − 1 the unique integer such that α1p ≡ m(mod q) and
0 ≤ β1 ≤ p−1 the unique integer such that β1q ≡ m(mod p). The cyclotomic
coefficient apq(m) equals

1 if m = α1p+ β1q with 0 ≤ α1 ≤ ρ, 0 ≤ β1 ≤ σ;

−1 if m= α1p+ β1q − pq with ρ+ 1 ≤α1 ≤ q − 1, σ + 1 ≤ β1 ≤ p− 1;

0 otherwise.

The latter lemma does not include the case where p = 2 and q is odd.
However, by Lemma 1 we have Φ2q(x) = Φq(−x) = 1− x+ x2 − · · ·+ xq−1.

A rather specific observation we will need involving binary cyclotomic
polynomials is the following.
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Lemma 3. Let p and q be primes with p < q. Write q = fp2 + g with
0 < g < p2 and Φpq(x) =

∑
j ajx

j. We have

Φpq(x) =

fp−1∑
j=0

ajx
j + xfp − xfp+1 + x(f+1)p +

(p−1)(q−1)∑
j=(f+1)p+1

ajx
j .

Proof. See the extended version [4] of this paper. �

2.2. Inverse cyclotomic polynomials. We define Ψn(x) = (xn−1)/Φn(x)

=
∑n−φ(n)

k=0 cn(k)x
k to be the nth inverse cyclotomic polynomial. It is easy

to see, see, e.g., Moree [8], that Ψ1(x) = 1, Ψp(x) = x− 1 and

Ψpq(x) = −1−x−x2−. . .−xmin(p,q)−1+xmax(p,q)+xmax(p,q)+1+· · ·+xp+q−1.
(6)

For n < 561 the polynomials Ψn(x) are flat. Let 2 < p < q < r be odd
primes. It is not difficult to show that |cpqr(k)| ≤ [(p−1)(q−1)/r]+1 ≤ p−1,
where [x] denotes the largest integer ≤ x. Let us call a ternary inverse
cyclotomic polynomial Ψpqr(x) extremal if for some k we have |cpqr(k)| =
p − 1. Moree [8] showed that a ternary inverse cyclotomic polynomial is
extremal iff

q ≡ r ≡ ±1(mod p) and r <
(p− 1)

(p− 2)
(q − 1).

Moreover, he showed that for an extremal ternary inverse cyclotomic poly-
nomial Ψpqr(x) one has C(Ψpqr) = [−(p − 1), p − 1], and thus that it is
strongly coefficient convex.

2.3. Inclusion-exclusion polynomials. Let ρ = {r1, r2, . . . , rs} be a set
of natural numbers satisfying ri > 1 and (ri, rj) = 1 for i ̸= j, and put

n0 =
∏
i

ri, ni =
n0

ri
, ni,j =

n0

rirj
[i ̸= j], . . .

For each such ρ we define a function Qρ by

Qρ(x) =
(xn0 − 1)

∏
i<j(x

ni,j − 1) · · ·∏
i(x

ni − 1)
∏

i<j<k(x
ni,j,k − 1) · · ·

It turns out that Qρ is a polynomial, the inclusion–exclusion polynomial.
This class of divisors of xn0 − 1 was introduced by Bachman [1]. He showed
that with Dρ = {d : d|n0 and (d, ri) > 1 for all i}, we have Qρ(x) =∏

d∈D Φd(x). Furthermore, he showed that ternary (s = 3) inclusion-exclu-
sion polynomials are coefficient convex. Earlier Gallot and Moree [5] (for
alternative proofs, see Bzdȩga [2] and Rosset [10]) had shown that in case
s = 3 and r1, r2, r3 are distinct primes, this result is true.
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2.4. On the coefficient convexity of Φn and Ψn. In [5], Theorems 7
and 8 were announced and it was promised that the present paper would
contain the proofs. Here this promise is fulfilled.

In [5], the following result was established. (Its analogue for Ψn is false
in general.)

Theorem 6. ([5]). Let n be ternary, that is n = pqr with 2 < p < q < r
odd primes. Then, for k ≥ 1, |an(k)− an(k − 1)| ≤ 1.

It follows that if n is ternary, then Φn is strongly coefficient convex. Using
the latter result one easily proves the following one.

Theorem 7. Suppose that n has at most 3 distinct prime factors, then Φn

is coefficient convex.

Proof. In case n has at most two distinct odd factors, by Lemma 2 and
Lemma 1 we infer that Φn is flat and hence coefficient convex. Now suppose
that n is odd. Let κ(n) =

∏
p|n p be the square free kernel of n. Then, by

part 4 of Lemma 1 we have C(Φn) = C(Φγ(n)) ∪ {0} if κ(n) < n. The proof
is now completed on invoking Theorem 6. �

Numerical computation suggest that if n is ternary, then Φ2n is coefficient
convex. If this would be true, then in Theorem 7 one can replace ‘3 distinct
prime factors’ by ‘3 distinct odd prime factors’. This is best possible as the
following examples show:
n = 7735 = 5 · 7 · 13 · 17, C(n) = [−7, 5]\{−6}
n = 530689 = 17 · 19 · 31 · 53, C(n) = [−50, 52]\{−48, 47, 48, 49, 50, 51}.

Theorem 8. Suppose that n has at most 2, respectively 3, distinct odd prime
factors, then Ψn is flat, respectively, coefficient convex.

Proof. See the extended version [4] of this paper. �
2.5. Auxiliary polynomials. In this subsection we determine C(f) for var-
ious auxiliary polynomials f (where possible we have adopted the notation
of Theorem 5).

Lemma 4. Let u > 1 and v > 1 be coprime natural numbers. Put

τu,v(x) =
(x− 1)(xuv − 1)

(xu − 1)(xv − 1)
.

Then τu,v(x) ∈ Z[x] is a self-reciprocal flat divisor of xuv − 1. If 1 < u < v,
then

C(τu,v) =

{
{−1, 1} if u=2;

[−1, 1] otherwise.

The non-negative coefficients of τu,v alternate in sign.
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Proof. The assumption on u and v ensures that (xu−1, xv−1) = x−1. Using
this assumption we infer that τu,v(x) ∈ Z[x]. That τu,v(x) is a self-reciprocal
divisor of xuv − 1 is obvious. We study the coefficients of τu,v(x) by first
considering the Taylor series around x = 0 of the denominator of τu,v(x).
We claim that all coefficients rj with j < uv in (1 + xu + x2u + · · · )(1 +
xv + x2v + · · · ) =

∑
rjx

j are in [0, 1]. Now if rj ≥ 2 and j < uv, we can
find non-negative α1, α2, β1 and β2 such that j = α1u + β1v = α2u + β2v,
with α1 ̸= α2 both smaller than v. The latter equality implies however
v|(α1 − α2). This contradiction completes the proof of the claim. It follows
that C(τu,v) ⊆ [−1, 1] and that the non-negative signs alternate. The claim
regarding C(τu,v) follows on noting that τu,v = (xv +1)/(x+1) if u = 2 and
τu,v ≡ 1− x(mod x3) if u ≥ 3. �

In case p = 3, the next lemma shows that τ3,v(x) can be easily given
explicitly.

Lemma 5. Let v be a positive integer with 3 - v. If v ≡ 1(mod 3), put

fv(x) = (1−x)(1+x3+x6+· · ·+xv−1)+xv+(x−1)(xv+1+xv+4+· · ·+x2v−3).

If v ≡ 2(mod 3), put

fv(x) = (1−x)(1+x3+x6+· · ·+xv−2)+xv+(x−1)(xv+2+xv+5+· · ·+x2v−3).

We have τ3,v(x) = fv(x).

Proof. Modulo xv we have

τ3,v(x) =
(x− 1)(x3v − 1)

(x3 − 1)(xv − 1)
≡ (1− x)(1 + x3 + x6 + · · · ).

We infer that fv(x) ≡ τ3,v(x)(mod xv). We have deg(fv) = 2v − 2 =
deg(τ3,v), so to finish the proof it is enough to show that fv(x) is self-
reciprocal (clearly τ3,v(x) is self-reciprocal). That is, we have to show that

fv(1/x)x
2(v−1) = fv(x). That this is the case is easily seen on rewriting

fv(x), in case v ≡ 1(mod 3) as

(1−x)(1+x3+x6+ · · ·+xv−4)+xv−1+(x− 1)(xv+1+xv+4+ · · ·+x2v−3),

and as

(1−x)(1+x3+x6+ · · ·+xv−2)+xv−1+(x− 1)(xv−1+xv+2+ · · ·+x2v−3),

in case v ≡ 2(mod 3). �

Lemma 5 shows that identical consecutive coefficients do not appear in
τ3,v(x) if (3, v) = 1. The following lemma determines all polynomials τ3,v(x)
with this property.
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Lemma 6. Let 1 < u < v be coprime integers. Consecutive coefficients of
τu,v(x) are always distinct iff u ≤ 3.

Corollary 2. We have 0 ∈ C((x− 1)τu,v(x)) iff u > 3.

Proof. If u = 2 we have τ2,v(x) = (xv + 1)/(x + 1) and so consecutive
coefficients are always distinct. If u = 3 it is seen from Lemma 5 that this
property also holds. Proceeding as in the proof of Lemma 5 we find that
modulo xv we have τu,v(x) ≡ (1−x)(1+xu+x2u+ · · · ) and hence, if u ≥ 4,
the second and third coefficient of τu,v(x) both equal zero. �
Lemma 7. Let 1 < u < v be coprime numbers. Put h = (x− 1)τu,v(x). We
have

C(h) =

{
{−2,−1, 1, 2} if u ≤ 3;

[−2, 2] otherwise.

Proof. Put d = (u− 1)(v − 1). Using the self-reciprocity of τu,v(x) we infer

that τu,v(x) = xd − xd−1 + · · · − x + 1. On writing h(x) =
∑

j cjx
j , we

now deduce that c0 = −1, c1 = 2, cd = −2 and cd+1 = 1. Since clearly
C(h) ⊆ [−2, 2] (use Lemma 4), we infer that {−2,−1, 1, 2} ⊆ C(h) ⊆ [−2, 2].
On invoking Corollary 2, the proof is then completed. �
Lemma 8. Let u, v be natural numbers. Put

σu,v(x) =
(xu − 1)

(x− 1)

(xv − 1)

(x− 1)
=

u+v−2∑
j=0

cjx
j

W.l.o.g. assume that u ≤ v. We have

cj =


j + 1 if 0 ≤ j ≤ u− 1;

u if u ≤ j ≤ v − 1;

v + u− j − 1 if v ≤ j ≤ v + u− 2.

It follows that C(σu,v) = [1, u]. If (u, v) = 1, then σu,v(x)|xuv − 1.

Corollary 3. If u < v, then C((x− 1)σu,v(x)) = [−1, 1].

Corollary 4. If (u, v) = 1, then B(uv) ≥ B+(uv) = min(u, v).

Corollary 5. Put f22 = ΦpΦqΦp2. Then C(f22) = [1,min(p2, q)].

Proof of Lemma 8. See the extended version [4] of this paper. �
Lemma 9. Let p and q be distinct primes. Put f20 = ΦqΦp2 We have

C(f20) =

{
[1,min([ q−1

p ] + 1, p)] if p < q;

[0, 1] if p > q.

Consequently f20 is flat iff p > q.
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Proof. Left as an exercise to the interested reader. �
Lemma 10. Let a, b, c be positive integers. Put

ga,b,c(x) = (1+x+ · · ·+xa−1+2xa+ · · ·+2xa+b−1)(1+x+x2+ · · ·+xc−1).

Alternatively one can write

ga,b,c(x) =
(2xa+b − xa − 1

x− 1

)(xc − 1

x− 1

)
.

Suppose a is odd. Then g(= ga,b,c) is coefficient convex. We have C(g) =
[1, µ], with

µ =

{
2c if c ≤ b;

min(b+ c, a+ 2b) if c > b.

Corollary 6. Put g = xa+b+c−2ga,b,c(1/x). We have

g = ga,b,c =
(xa+b + xb − 2

x− 1

)(xc − 1

x− 1

)
.

If a is odd, then g is coefficient convex and C(g) = [1, µ].

Proof of Lemma 10. It is easy to find the maximum coefficient of g. It is the

coefficient convexity that is slightly less trivial. Write g =
∑a+b+c−2

j=0 djx
j .

We consider two cases.
Case 1. c ≥ a + b. We have to show that all coefficients 1, 2, . . . , µ, where
µ = a + 2b, occur. It is easy to see that {d0, . . . , da+b−1} contains all odd
numbers ≤ µ (here we use the assumption that a is odd). Likewise one sees
that {dc, . . . , da+b+c−2} contains all even integers ≤ µ.
Case 2. c < a + b. Here we proceed by induction with respect to c. For
c = 1 we have 1 and 2 as coefficients and we are done. Suppose the result
is true up to c1. We want to show it for c = c1 + 1. Here at most two
new coefficient values can arise, namely the previous maximum, µc1 , with 1
added and the previous maximum with 2 added. In the latter case (which
only arises if c ≤ b) we have to show that µc1 +1 also occurs as a coefficient.
The coefficient of da+c−1 = 2c is the new maximum here. Note that da+c−2 =
2c − 1. Thus using the induction hypothesis the set of coefficients equals
{1, 2, . . . , µc1 , µc1 + 1, µc1 + 2} and is hence coefficient convex. �

By [f ]xk we denote the coefficient of xk in f .

Lemma 11. Let p and q be distinct primes. Put f24 = ΦpqΦp2. Let 1 ≤
p∗ ≤ q − 1 be the inverse of p modulo q. Write f24 =

∑
k ckx

k.
1) We have

C(f24) =

{
[−min(q − p∗, p),min(p∗, p)] if both p and q are odd;

[−min(q − p∗, p),min(p∗, p)]\{0} otherwise.
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Consequently, f24 is flat iff q = 2.
2) Let k ≥ 0 and min(p, q) > 2. We have c1+kp = −[σq−p∗,p(x)]xk and

ckp = [σp∗,p(x)]xk . If 2p∗ < q, then c2+kp = [xq−2p∗σp∗,p(x)]xk . If 2p∗ > q,

then c−1+kp = −[x2p
∗−qσq−p∗,p(x)]xk .

Proof. 1) The case where p or q is even is left to the reader. So let us assume
that both p and q are odd. The kth coefficient ck in f24 equals∑

k≥0
0≤k−jp<pq, 0≤j≤p−1

apq(k − jp).

Since this is a sum of binary cyclotomic coefficients by Lemma 2 we have

−(q − 1− ρ) ≤ ck ≤ ρ+ 1 and − p ≤ ck ≤ p.

On noting that ρ + 1 = p∗ we thus obtain that −m2 ≤ cj ≤ m1 with
m2 = min(q − p∗, p) and m1 = min(p∗, p). Using Lemma 2 we obtain that

cjp =
∑j

j1=0 apq(j1p) = j + 1 for 0 ≤ j ≤ m1 − 1. Likewise we find on using

that 1 = (ρ + 1)p + (σ + 1)q − pq that cjp+1 = −j − 1 for 0 ≤ j ≤ m2 − 1.
Since f24 ≡ 1− x(mod x3), it follows that 0 ∈ C(f24).
2) Note that c1+kp is the coefficient of x1+kp in

Φp(x
p)

∑
0≤j<q

apq(1 + jp)x1+jp.

Using Lemma 2 we then infer that the latter polynomial equals

−x
(xp(q−p∗) − 1

xp − 1

)(xp2 − 1

xp − 1

)
.

It follows that c1+kp is the coefficient of xk in −σq−p∗,p(x). A similar ar-
gument gives ckp = [σp∗,p(x)]xk . From 1 + pq = p∗p + q∗q we obtain
2 = 2p∗p + (2q∗ − p)q − pq. The assumption 2p∗ < q implies q∗ > p/2
and hence we have 1 ≤ 2p∗ < q and 1 ≤ 2q∗ − p < q∗. Reasoning as before
we then find that c2+kp is the coefficient of xk in xq−2p∗σp∗,p(x). Likewise
the final assertion is established. �

Lemma 12. Put f25 = (x − 1)ΦpqΦp2. Define γ(p, q) = min(p, p∗) +

min(p, q − p∗). Suppose min(p, q) > 2. Write f25 =
∑

djx
j. We have

{d1+kp}∞k=0 = [0, γ(p, q)]. If 2p∗ < q, then {d2+kp}∞k=0 = [−γ(p, q), 0]. If
2p∗ > q, then {dkp}∞k=0 = [−γ(p, q), 0].

Proof. See the extended version [4] of this paper. �

Lemma 13. Let q > 3 be a prime. Then the coefficients of the polynomial
g := (x− 1)(1 + x3 + x6)Φ3q(x) are all nonzero.
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Proof. Since g =
∑

cjx
j is anti-self-reciprocal, it suffices to show that cj ̸= 0

for 0 ≤ j ≤ q + 2. Modulo x2q, we have

g ≡ −(1− 2x+ x2)(1 + 2x3 + 3

∞∑
j=2

x3j)(1 + xq),

and so clearly c0, c1, . . . , cq−1 are all nonzero. By computation one checks
that also cq, cq+1 and cq+2 are nonzero. Alternatively the proof is completed
on noting that the sum of any two coefficients in (1 − 2x + x2)(1 + 2x3 +
3
∑∞

j=2 x
3j) that are q apart (here we use that q ≥ 5) is nonzero. �

Lemma 14. Let p > 3 be a prime. Then 0 ∈ C((x− 1)Φ3pΦp2).

Proof. Put f(x) = (x − 1)Φ3pΦp2 . If p ≡ 1(mod 3), then by Lemma 5 we
find that

f(x) ≡ −(1− x)2(1 + x3 + · · ·+ xp−4)− xp−1(mod xp+1),

and hence cp = 0. If p ≡ 2(mod 3), then by Lemma 5 we find that

f(x) ≡ −(1− x)2(1 + x3 + · · ·+ xp−2)− 2xp + 3xp+1(mod xp+3),

and hence cp+2 = 0. �

Lemma 15. Put f25 = (x − 1)ΦpqΦp2. Define γ(p, q) = min(p, p∗) +
min(p, q − p∗). Then

C(f25) =

{
[−γ(p, q), γ(p, q)]\{0} if p ≤ 3 and q ̸= 2;

[−γ(p, q), γ(p, q)] otherwise.

Consequently, f25 is never flat.

Proof. See the extended version [4] of this paper. �

Lemma 16. Let p and q be distinct primes. Put f26 = ΦpΦpqΦp2 and
f27 = (x− 1)f26. Then C(f26) = [0, 1] and C(f27) = [−1, 1].

Proof. Write f26 =
∑

j cjx
j and f27 =

∑
j djx

j . Note that f26 = (ΦpΦpq)

Φp(x
p) = Φp(x

q)Φp(x
p) and thus f26 has only non-negative coefficients.

Since the equation aq + bp = a′q + b′p with a, a′ ≤ p − 1 has only the
solution a = a′ and b = b′ it follows that C(f26) ⊆ [0, 1]. On checking that
c0 = 1 and c1 = 0 it follows that C(f26) = [0, 1] and hence C(f27) ⊆ [−1, 1].
Note that d0 = −1, d1 = 1. Using that, in case q = 2,

−f27 ≡
xp + 1

x+ 1
(mod xp+1),
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we easily compute that dj = 0 with

j =


3 if p = 2, q = 3;

4 if p = 2, q > 3;

p q = 2, p ≥ 3;

2 if p ≥ 3, q ≥ 3.

This concludes the proof. �

Lemma 17. Let p and q be distinct primes. Put f30 = ΦpΦqΦpqΦp2. We
have

C(f30) = [1,min(p, q)].

Proof. Note that f30 = (1 + x+ · · ·+ xpq−1)(1 + xp + · · ·+ x(p−1)p). Write
f30 =

∑
ckx

k. We have

0 ≤ ck =
∑

0≤k−jp<pq
0≤j≤p−1

1 ≤ min(p, q).

For 0 ≤ r ≤ min(p, q)− 1 we have crp = r+1. It is easy to see that 0 is not
in C(f30). �

Lemma 18. We have C(f36) = [−1, 1].

Proof. See the extended version [4] of this paper. �

The next three lemmas will be used in order to establish Lemma 22.

Lemma 19. Let p and q be distinct primes. Put f38 = ΦpΦqΦp2q. We have
C(f38) ⊆ [−min(p, q),min(p, q)].

Proof. Note that f38 = Φpf36 = Φqf34. On using that H(f34) = 1 (easy on
using (5)) and H(f36) = 1 (by Lemma 18) and invoking (3), it follows that
H(f38) ≤ min(p, q). �

Lemma 20. Let p and q be distinct odd primes. Put f38 = ΦpΦqΦp2q

and β(p, q) = min(p, q, q(mod p2), p2 − q(mod p2)). We have [−β(p, q), 0] ⊆
C(f38).

Proof. See the extended version [4] of this paper. �

Lemma 21. Let p and q be distinct odd primes. We have min C(f38) ≥
−β(p, q).

Proof. See the extended version [4] of this paper. �

In the proof of the next lemma we use the notation C≤0(f) for C(f)∩Z≤0.
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Lemma 22. Let p and q be distinct primes. Put f38 = ΦpΦqΦp2q and

β(p, q) = min(p, q, q(mod p2), p2 − q(mod p2)). We have

C(f38) =


{−2, 0, 1, 2} if q = 2;

{−1, 1, 2} if p = 2 and q = 3;

[−β(p, q),min(p, q)] otherwise.

Proof. Put z1 = min(p, q). On noting that

f38 ≡ ΦpΦq ≡
1

(1− x)2
≡

z1∑
j=1

jxj−1(mod xz1),

we have [1,min(p, q)] ⊆ C(f38). This in combination with Lemma 19 shows
that C>0(f38) = [1,min(p, q)]. It remains to show that C≤0(f38) is as asserted
in the statement of the lemma.
1) The case q = 2. Here we have β(p, 2) = 2.
We have Φ2p2(x) = Φ2p(x

p) = Φp(−xp). Then f38(x) = (1 + x + . . . +

xp−1)(1 + x)(1 − xp + x2p − . . . + xp
2−p). Since (1 + x + . . . + xp−1)(1 −

xp + x2p − . . . + xp
2−p) = 1 + x + . . . + xp−1 − xp − xp+1 − . . . − x2p−1 +

. . .+ xp
2−p + xp

2−p+1 + . . .+ xp
2−1, we have f38(x) = 1 + 2x+ 2x2 + . . .+

2xp−1−2xp+1−2xp+2−· · ·−2x2p−1+2x2p+1+ . . .+2xp
2−1+xp

2
and hence

C(f38) = {−2, 0, 1, 2}.
2) The case p = 2. Here we have β(2, q) = 1.
If q = 3 we have to show (cf. statement of this lemma) that C≤0(f38) = {−1}
(which follows by direct calculation) and for q ≥ 5 that C≤0(f38) = [−1, 0].

We have

f38(x) = Φ2(x)Φq(x)Φ2q(x
2)

= (1 + 2x+ · · ·+ 2xq−1 + xq)(1− x2 + x4 − x6 + · · ·+ x2q−2).

Assume q ≥ 5. It is easy to see that d3 = 0. Furthermore,

dq+1 = (−1)(q−1)/2(1 +

(q−1)/2∑
j=1

(−1)j2) = −1.

It follows that C≤0(f38) = [−1, 0].
3) The case where both p and q are odd.
Here we invoke Lemma 20 and Lemma 21. �

Lemma 23. Let p and q be distinct primes. Put f39 = (x − 1)ΦpΦqΦp2q.
We have C(f39) = [−2, 2].

Proof. See the extended version [4] of this paper. �
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2.5.1. The polynomials f42 and f43. Let p and q be distinct primes. Put
f42 = ΦpΦpqΦp2q =

∑
cjx

j and f43 = (x−1)f42 =
∑

djx
j . It is not difficult

to find cases where only very few of the coefficients of f43 are equal to 2.
For example, if (p, q) is in the following set:

{(11, 241), (13, 377), (17, 577), (19, 181), (29, 421), (41, 3361), (43, 3697)},
there are precisely two coefficients equal to 2 (as computed by Yves Gallot).
This suggests that perhaps the following results are not so easy to establish.

Lemma 24. We have

C(f43) =

{
{−2,−1, 1, 2} if q = 2;

[−2, 2] otherwise.

The analogue of this result for f42 is easy enough. Note that

deg(f42) = p2(q − 1) + p− q.

Lemma 25. We have C(f42) = [−1, 1].

Proof. Write f42 =
∑

j cjx
j . Note that

f42 =
(xp − 1)(xp

2q − 1)

(xq − 1)(xp2 − 1)
.

Around x = 0, f42 has power series

(1 + xq + x2q + · · · )(1− xp + xp
2 − xp

2+p + · · ·+ x(q−1)p2 − x(q−1)p2+p). (7)

Note that if cj ≥ 2, then there exist non-negative α1, α2, β1 and β2 such that

α1 ̸= α2, β1 ̸= β2, j = α1q + β1p
2 = α2q + β2p

2 ≤ deg(f42) < p2q.

This is impossible. By a similar argument one sees that cj ≥ −1. Since
clearly [−1, 1] ⊆ C(f42), the proof is completed. �

Indeed, some work needs to be done to infer that {−2, 2} ⊆ C(f43). The
idea is to show that in f42 the combinations 1,−1 and −1, 1 appear as
consecutive coefficients and then use that f43 = (x− 1)f42.

Let us denote by ρ(a, b) the smallest non-negative integer m such that
m ≡ a(mod b).

Lemma 26. Write f42 =
∑

cjx
j and f43 =

∑
djx

j. Put

k1 = 1 + ρ((p− 1)p−2, q)p2 and k2 = 1 + ρ((p− 1)q−1, p2)q.

1) Suppose that 1 < k1 ≤ deg(f42). If furthermore,

ρ(q−1, p2)q + ρ(p−1, q)p2 > p2q (8)

and
ρ(−q−1, p)pq + ρ(−p−2, q)p2 + p+ 1 > p2q, (9)
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then ck1−1 = 1, ck1 = −1 and dk1 = 2.
2) Suppose that k2 ≤ deg(f42). If furthermore,

ρ(−q−1, p2)q + ρ(−p−1, q)p2 + p+ 1 > p2q (10)

and
ρ(q−1, p)pq + ρ(p−2, q)p2 > p2q, (11)

then ck2−1 = 1, ck2 = −1 and dk2 = 2.

Proof. We say that k is p-representable if we can write k = m1q+m2p
2 with

m1 ≥ 0 and 0 ≤ m2 ≤ q − 1. We say that k is m-representable if we can
write k = n1q + n2p

2 + p with n1 ≥ 0 and 0 ≤ n2 ≤ q − 1. From the proof
of Lemma 25 it follows that if k ≤ deg(f42), then k can be p-representable
in at most one way and be m-representable in at most one way. From this
and (7), we infer that if k ≤ deg(f42), then

ck =


1 if k is p-representable, but not m-representable;

−1 if k is m-representable, but not p-representable;

0 otherwise.

(12)

We have {
k1 ≡ 1(mod p2);

k1 ≡ p(mod q),
and

{
k2 ≡ p(mod p2);

k2 ≡ 1(mod q).
(13)

Suppose that k1 ≤ deg(f42). Clearly k1 is m-representable, because k1 > 1
implies k1 > p. Condition (8) ensures that k1 is not p-representable. Thus,
by (7), we have ck1 = −1. On the other hand we see that k1 − 1 is p-
representable, but not m-representable by (9). It follows that ck1−1 = 1.
Since dk1 = ck1−1 − ck1 = 1 − (−1) = 2, we have established part 1. Part
2 can be derived in a similar way, but here it is not needed to require
k2 > 1. �

We will show that some of the numbers appearing in the latter lemma
are actually equal. For this the reciprocity law formulated in Corollary 7
is needed. As usual by (m,n) we denote the greatest common divisor of m
and n.

Lemma 27. Suppose that a > 1 and b > 1 are coprime integers. Then

(a− ρ(b−1, a), ρ(a−1, b)) = (ρ(b−1, a), b− ρ(a−1, b)) = 1.

Corollary 7. Suppose that both a > 1 and b > 1 are odd and coprime. Then
the congruence ρ(a−1, b) ≡ ρ(b−1, a)(mod 2) holds.

Proof. If ρ(a−1, b) is even, then a−ρ(b−1, a) must be odd and hence ρ(b−1, a)
is even. If ρ(a−1, b) is odd, then b − ρ(a−1, b) is even and hence ρ(b−1, a)
must be odd. �
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Proof of Lemma 27. Put δ(a, b) = ρ(a−1, b)ρ(b−1, a) − (a − ρ(b−1, a))(b −
ρ(a−1, b)). It is enough to show that δ(a, b) = 1. Since clearly −ab + 1 <
δ(a, b) < ab, it is enough to show that δ(a, b) ≡ 1(mod ab). We have

δ(a, b) ≡ ρ(b−1, a)b ≡ 1(mod a) and δ(a, b) ≡ ρ(a−1, b)a ≡ 1(mod b),

and on invoking the Chinese remainder theorem the proof is completed. �

Lemma 28. We have

ρ(q−1, p2)q + ρ(p−1, q)p2 = ρ(−q−1, p)pq + ρ(−p−2, q)p2 + p+ 1

and

ρ(−q−1, p2)q + ρ(−p−1, q)p2 + p+ 1 = ρ(q−1, p)pq + ρ(p−2, q)p2.

Proof. Denote the numbers appearing in the left hand sides of (8), (9), (10)
and (11), by r1(p, q), s1(p, q), r2(p, q), s2(p, q), respectively. We have to show
that r1(p, q) = s1(p, q) and r2(p, q) = s2(p, q). On noting that ρ(−q−1, p) =
p− ρ(q−1, p), etc., it is easily seen that r1(p, q) = s1(p, q) implies r2(p, q) =
s2(p, q), thus it is enough to show that r1(p, q) = s1(p, q). By considering
r1, r2, s1, s2 modulo p2 and q and invoking the Chinese remainder theorem
we infer that

kj ≡ rj(p, q) ≡ sj(p, q)(mod p2q) for 1 ≤ j ≤ 2. (14)

Note that

{rj(p, q), sj(p, q)} ⊆ {kj , kj + p2q} for 1 ≤ j ≤ 2. (15)

Thus it suffices to establish that r1(p, q) ≡ s1(p, q)(mod 2p2q) in order to
show that r1(p, q) = s1(p, q).

1) p = 2. Recall that the Legendre symbol (−1
q ) equals (−1)(q−1)/2 in case

q is odd. We have r1(2, q) = ρ(q−1, 4)q + ρ(1/2, q)4 = 4q + 2 − (−1
q )q, on

noting that ρ(q−1, 4) = 2− (−1
q ) and ρ(1/2, q) = (q + 1)/2. On noting that

ρ(−q−1, 2) = 1 and ρ(−1/4, q)4 = (2− (−1
q ))q − 1, one infers that

s1(2, q) = ρ(−q−1, 2)2q + ρ(−1/4, q)4 + 2 + 1 = 4q + 2− (
−1

q
)q = r1(2, q).

2) q = 2. By an argument easier than that for case 1 one infers that
r1(p, 2) = s1(p, 2) = 2p2 + 1.
3) p, q odd. It suffices to show that r1(p, q) ≡ s1(p, q)(mod 2). Now us-
ing Corollary 7 we have, modulo 2, ρ(q−1, p2) ≡ ρ(p−2, q) and ρ(p−1, q) ≡
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ρ(q−1, p) and hence

ρ(q−1, p2)q + ρ(p−1, q)p2 ≡ ρ(q−1, p2) + ρ(p−1, q) ≡ ρ(p−2, q) + ρ(q−1, p)

≡ q − ρ(p−2, q) + p− ρ(q−1, p)

≡ ρ(−p−2, q) + ρ(−q−1, p)

≡ ρ(−q−1, p)pq + ρ(−p−2, q)p2 + p+ 1,

which finishes the proof. �

Lemma 29. Write f43 =
∑

j djx
j. There is a unique integer 1 ≤ j ≤ 2 such

that the conditions of part j of Lemma 26 are satisfied and hence dkj = 2.
Furthermore, ddeg(f42)−kj+1 = −2.

Proof. We consider the cases p ̸≡ 1(mod q) and p ≡ 1(mod q) separately.
i) The case p ̸≡ 1(mod q).
We have q ≥ 3 and k1 > 1. From (13) we infer that k1+k2 ≡ 1+p(mod p2q).
Since clearly 1 + p < 1 + p2 ≤ k1 + k2 < 1 + p+ 2p2q, we infer that

k1 + k2 = 1 + p+ p2q. (16)

Let us suppose that k1 ≥ p2(q − 1) + p − q + 1 = deg(f43) = 1 + deg(f42).
By (16) we then have k2 ≤ p2+ q. Since q ≥ 3 and p2+ p ≥ 6 it follows that

k2 ≤ p2 + q ≤ 2p2 + p+ q − 6 = 3(p2 − 2) + p+ q − p2

≤ q(p2 − 2) + p+ q − p2 = qp2 + p− q − p2 = (q − 1)p2 + p− q,

so k2 ≤ deg(f42). Since r2(p, q) > p2 + q ≥ k2 and r2(p, q) ≡ k2(mod p2q),
we have r2(p, q) = k2 + p2q > p2q. Since r2(p, q) = s2(p, q) by Lemma 28, it
follows that if k1 > deg(f42) and thus the conditions of part 1 (of Lemma
26) are not satisfied, then the conditions of part 2 are satisfied. By a similar
argument we infer that if k2 > deg(f42) and thus the conditions of part 2
are not satisfied, then the conditions of part 1 are satisfied.

It remains to deal with the case where kj ≤ deg(f42) for 1 ≤ j ≤ 2. Note
that

r1(p, q) + r2(p, q) = 1 + p+ 2p2q. (17)

Hence rj(p, q) > p2q for some 1 ≤ j ≤ 2. Let us assume w.l.o.g. that
r2(p, q) > p2q. Now if r1(p, q) > p2q, then on using (15) we find

r1(p, q) + r2(p, q) = k1 + p2q + r2(p, q) > 1 + p2 + 2p2q,

contradicting (17) and hence the conditions of both part 1 and part 2 cannot
be satisfied at the same time.
ii) The case p ≡ 1(mod q).
Here we can write p = kq + 1, with k ≥ 1. We have k1 = 1 + 0p2 = 1 and
k2 = 1 + kq = p and hence the conditions of part 1 are not satisfied. We
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have to show that the conditions of part 2 are satisfied. Obviously k2 = p ≤
deg(f42). On noting that ρ(−q−1, p2) = k2q + 2k and ρ(−p−1, q) = q − 1,
the left side of equation (10) becomes:

(k2q+2k)q+(q−1)p2+p+1 = k2q2+2kq+p2q−p2+p+1 = p2q+p > p2q.

Similarly we have for the left side of equation (11):

(p− k)pq + 1 · p2 = p2q − p(p− 1) + p2 = p2q + p > p2q.

(Alternatively one can invoke Lemma 28 to deduce that the left hand side
of (11) equals the left hand side of (10) and hence exceeds p2q.)

In both cases i) and ii), we conclude that there is a unique integer j such
the conditions of part j of Lemma 26 are satisfied.

The final assertion follows on noting that f42 is self-reciprocal and using
that f43 = (x− 1)f42. �
Proof of Lemma 24. By (3) and Lemma 25 we find that C(f43) ⊆ [−2, 2].
By Lemma 29 we have {−2, 2} ⊆ C(f43). Since d0 = −1 and ddeg(f43) = 1,
it remains to be determined when 0 ∈ C(f43). If both p and q are odd, then
d2 = 0. If q = 2, then f43 has the power series (around x = 0)

f43 = (−1 + xp − xp
2
+ xp

2+p)(1− x+ x2 − x3 + x4 − x5 + · · · )
and since p is odd we find that dj ̸= 0 for j ≤ deg(f43) = p2 + p − 1 and
hence 0 ̸∈ C(f43).
If p = 2, then f43 has the power series (around x = 0)

f43 = (1 + xq + x2q + x3q)
∞∑
k=0

(−x4k + x4k+1 + x4k+2 − x4k+3).

From this we see that dq = 0 if q ≡ 1(mod 4) and dq+1 = 0 if q ≡ 3(mod 4).
Since q + 1 < deg(f43) = 3q − 1, it follows that 0 ∈ C(f43) if p = 2. �

3. The proof of the main theorem

Proof of Theorem 5. From xn − 1 =
∏

d|nΦd(x) and the fact that the Φd

are irreducible over the rationals, we infer that any divisor of xn − 1 with
integer coefficients is of the form ±

∏
d|nΦ

ed
d (x), with ei ∈ {0, 1}. Thus we

have 2d(n) monic divisors, where d(n) denotes the number of divisors of n.
From the identity

xp
2q − 1 = Φ1(x)Φp(x)Φq(x)Φpq(x)Φp2(x)Φp2q(x), (18)

we infer that xp
2q − 1 has 64 divisors. We denote these by f0, . . . , f63. If

k =
∑5

j=0 kj2
j is the base 2 expansion of k, then we put

fk(x) = Φ1(x)
k0Φp(x)

k1Φq(x)
k2Φpq(x)

k3Φp2(x)
k4Φp2q(x)

k5 .
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Thus {f0(x), . . . , f63(x)} is the set of all monic divisors of xp
2q−1. Note that

Φ1(x) = x−1, Φp(x) = 1+x+· · ·+xp−1 and Φq(x) = 1+x+· · ·+xq−1. Thus
these three divisors have all height 1. By Lemma 2 we have H(Φpq(x)) = 1.
On noting that Φp2(x) = Φp(x

p) and Φp2q(x) = Φpq(x
p), it then follows that

each of the six cyclotomic polynomials appearing in (18) is flat.
We will only establish the less trivial cases in Table 1, the easier ones

being left as exercises to the reader. (Note that for some polynomials like
f19 we have given more than one argument.)
-f0, f1, f2, f3, f4, f5, f16, f17, f18, f19: Use Theorem 1.
-f6. Use Lemma 8.
-f7. Use Corollary 3.
-f8: Use Lemma 4.
-f9. Use Lemma 7.
-f16, f17, f18, f32, f33, f34: Use identity (4).
-f20: See Lemma 9.
-f21, f37: Note that Φ1(x)Φq(x) = xq − 1.
-f22: See Corollary 5.

-f19, f23, f27. Use that Φ1(x)Φp(x)Φp2(x) = xp
2 − 1.

-f24: Invoke Lemma 11.
-f25: Invoke Lemma 15.
-f26, f27: Invoke Lemma 16.
-f28: We have f28 = Φp(x

p)Φq(x
p). On invoking the result that C(ΦpΦq) =

[1,min(p, q)] (follows by Lemma 8), the assertion follows.
-f29: If p = 2, then consecutive coefficients in f28 are distinct and hence
0 ̸∈ C(f29).
-f30: See Lemma 17.

-f31. Note that f31 = (xp
2q − 1)/Φp2q(x) = Ψp2q(x) = Ψpq(x

p). Thus,
C(f31) = [−1, 1] by (6).
-f34: Using (5) we find that C(f34) = C(f8).
-f35: f35 = (xp − 1)Φpq(x

p) = f9(x
p). It follows that C(f35) = C(f9) ∪ {0}.

Now invoke Lemma 7.
-f36: Invoke Lemma 18.
-f37: We have f37 = (xq − 1)Φpq(x

p). Noting that q+ jp ̸= kp, we infer that
C(f37) = [−1, 1].
-f38: Invoke Lemma 22.
-f39. Invoke Lemma 23.
-f40: We have f40 = τp2,q(x). Now invoke Lemma 4.
-f41. Invoke Lemma 7.
-f42. Invoke Lemma 25.
-f43. Invoke Lemma 24.

-f44: We have Φq(x)Φpq(x)Φpq(x
p) = (xp

2q − 1)/(xp
2 − 1).
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-f48, f49, . . . , f63.

Let 0 ≤ j ≤ 15. Note that

fj+48 = fjΦp2(x)Φp2q(x)

= fjΦp(x
p)Φpq(x

p) = fj(1 + xpq + x2pq + · · ·+ x(p−1)pq),

it follows by (4) that if deg(fj) < pq − 1, then C(fj+48) = C(fj) ∪ {0}.
We have deg(fj) ≥ pq − 1 iff
-q = 2, j = 11;
-p = 2, j = 13;
-j = 14;
-j = 15.
Using these two observations and Table 1A, one easily arrives at Table 1D.

�

Table 1

Table 1 comes in 4 parts, 1A, 1B, 1C and 1D, each listing C(f) for 16 monic

divisors of xp
2q − 1. For each of the tables there are some exceptions to the

set C(f) given in the table and these are listed directly below the table. If
min(p, q) > 3, then there are no exceptions and C(f) can be read off directly
from the table.

Table 1A

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)
0 0 0 0 0 0 0 {1}
1 1 0 0 0 0 0 {−1, 1}
2 0 1 0 0 0 0 {1}
3 1 1 0 0 0 0 [−1, 1]
4 0 0 1 0 0 0 {1}
5 1 0 1 0 0 0 [−1, 1]
6 0 1 1 0 0 0 [1,min(p, q)]
7 1 1 1 0 0 0 [−1, 1]
8 0 0 0 1 0 0 [−1, 1]
9 1 0 0 1 0 0 [−2, 2]
10 0 1 0 1 0 0 [0, 1]
11 1 1 0 1 0 0 [−1, 1]
12 0 0 1 1 0 0 [0, 1]
13 1 0 1 1 0 0 [−1, 1]
14 0 1 1 1 0 0 {1}
15 1 1 1 1 0 0 [−1, 1]
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If min(p, q) = 2, then C(f8) = {−1, 1}.
If min(p, q) ≤ 3, then C(f9) = {−2,−1, 1, 2}.
If q = 2, then C(f11) = {−1, 1}.
If p = 2, then C(f13) = {−1, 1}.

We put α(p, q) = min([ q−1
p ] + 1, p).

By p∗ we denote the unique integer with 1 ≤ p∗ < q such that pp∗ ≡
1(mod q).
We define γ(p, q) = min(p, p∗) + min(p, q − p∗).

Table 1B

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)
16 0 0 0 0 1 0 [0, 1]
17 1 0 0 0 1 0 [−1, 1]
18 0 1 0 0 1 0 {1}
19 1 1 0 0 1 0 [−1, 1]

20 0 0 1 0 1 0
[min([ qp ], 1),

α(p, q)]
21 1 0 1 0 1 0 [−1, 1]
22 0 1 1 0 1 0 [1,min(p2, q)]
23 1 1 1 0 1 0 [−1, 1]

24 0 0 0 1 1 0
[−min(p, q − p∗),

min(p, p∗)]
25 1 0 0 1 1 0 [−γ(p, q), γ(p, q)]
26 0 1 0 1 1 0 [0, 1]
27 1 1 0 1 1 0 [−1, 1]
28 0 0 1 1 1 0 [0,min(p, q)]

29 1 0 1 1 1 0
[−min(p, q),
min(p, q)]

30 0 1 1 1 1 0 [1,min(p, q)]
31 1 1 1 1 1 0 [−1, 1]

If p = 2, then C(f17) = {−1, 1}.
If min(p, q) = 2, then C(f24) = [−min(p, q − p∗),min(p, p∗)]\{0}.
If p ≤ 3 and q ̸= 2, then C(f25) = [−γ(p, q), γ(p, q)]\{0}.
If p = 2, then C(f29) = {−2,−1, 1, 2} = [−min(2, q),min(2, q)]\{0}.
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Table 1C

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)
32 0 0 0 0 0 1 [−1, 1]
33 1 0 0 0 0 1 [−1, 1]
34 0 1 0 0 0 1 [−1, 1]
35 1 1 0 0 0 1 [−2, 2]
36 0 0 1 0 0 1 [−1, 1]
37 1 0 1 0 0 1 [−1, 1]

38 0 1 1 0 0 1
[−β(p, q),
min(p, q)]

39 1 1 1 0 0 1 [−2, 2]
40 0 0 0 1 0 1 [−1, 1]
41 1 0 0 1 0 1 [−2, 2]
42 0 1 0 1 0 1 [−1, 1]
43 1 1 0 1 0 1 [−2, 2]
44 0 0 1 1 0 1 [0, 1]
45 1 0 1 1 0 1 [−1, 1]
46 0 1 1 1 0 1 [0, 1]
47 1 1 1 1 0 1 [−1, 1]

We put β(p, q) = min(p, q, q(mod p2), p2 − q(mod p2)).
If p = 2, then C(f33) = {−1, 1}.
If min(p, q) = 2, then C(f34) = {−1, 1}.
If q = 2, then C(f38) = {−2, 0, 1, 2}.
If q = 3 and p = 2, then C(f38) = {−1, 1, 2}.
If q = 2, then C(f40) = {−1, 1}.
If q ≤ 3, then C(f41) = {−2,−1, 1, 2}.
If q = 2, then C(f43) = {−2,−1, 1, 2}.

Table 1D

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)
48 0 0 0 0 1 1 [0, 1]
49 1 0 0 0 1 1 [−1, 1]
50 0 1 0 0 1 1 [0, 1]
51 1 1 0 0 1 1 [−1, 1]
52 0 0 1 0 1 1 [0, 1]
53 1 0 1 0 1 1 [−1, 1]
54 0 1 1 0 1 1 [0,min(p, q)]
55 1 1 1 0 1 1 [−1, 1]
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Table 1D (continued)

f Φ1(x) Φp(x) Φq(x) Φpq(x) Φp2(x) Φp2q(x) C(f)
56 0 0 0 1 1 1 [−1, 1]
57 1 0 0 1 1 1 [−2, 2]
58 0 1 0 1 1 1 [0, 1]
59 1 1 0 1 1 1 [−1, 1]
60 0 0 1 1 1 1 [0, 1]
61 1 0 1 1 1 1 [−1, 1]
62 0 1 1 1 1 1 {1}
63 1 1 1 1 1 1 [−1, 1]

If q = 2, then C(f59) = {−1, 1}.
If p = 2, then C(f61) = {−1, 1}.

3.1. Compact reformulation of Theorem 5. For reference purposes a
more compact version of Theorem 5 might be useful. We give it here (this
reformulation was given by Yves Gallot).

Theorem 9. Let p and q be distinct primes. Let f(x) ∈ Z[x] be a monic

divisor of xp
2q − 1. There exists an integer k =

∑5
j=0 kj2

j with kj ∈ {0, 1 }
(the binary expansion of k) such that

f(x) = fk(x) = Φk0
1 · Φk1

p · Φk2
q · Φk3

pq · Φ
k4
p2

· Φk5
p2q

.

Let p∗ be the unique integer with 1 ≤ p < q such that pp∗ ≡ 1(mod q) and
I(fk) be the integer interval:

• [1, 1] for k ∈ {0, 2, 4, 14, 18, 62 },
• [0, 1] for k ∈ {10, 12, 16, 26, 44, 46, 48, 50, 52, 58, 60 },
• [−2, 2] for k ∈ {9, 35, 39, 41, 43, 57 },
• [1, min(p, q)] for k ∈ {6, 30 },
• [0, min(p, q)] for k ∈ {28, 54 },
• [min([q/p], 1),min([(q − 1)/p] + 1, p)] for k = 20,
• [1, min(p2, q)] for k = 22,
• [−min(p, q − p∗), min(p, p∗)] for k = 24,
• [−min(p, p∗) − min(p, q − p∗), min(p, p∗) + min(p, q − p∗)] for
k = 25,

• [−min(p, q), min(p, q)] for k = 29,
• [−min(p, q, q(mod p2), p2 − q(mod p2)), min(p, q)] for k = 38,
• [−1, 1] otherwise.

Then C0(fk) = I(fk) except for k = 38 and q = 2. If q = 2, C0(f38) =
C(f38) = {−2, 0, 1, 2 }. We have C(fk) = C0(fk) except for the following
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cases (where C(fk) = C0(fk) \ {0}):
• k = 1,
• k ∈ {13, 17, 29, 33, 61 } and p = 2,
• k ∈ {11, 40, 43, 59 } and q = 2,
• k ∈ {8, 24, 34 } and min(p, q) = 2,
• k = 9 and min(p, q) ≤ 3,
• k = 25 and p ≤ 3 and q ̸= 2,
• k = 38 and p = 2 and q = 3,
• k = 41 and q ≤ 3.

4. Heights of divisors of xn − 1

For a polynomial f ∈ Z[x], we define

H∗(f) = max{H(g) : g|f and g ∈ Z[x]}.
Put B(n) = H∗(xn − 1). So far little is known about this function, see
Pomerance and Ryan [9] and Thompson [13] for some results. In particular
Pomerance and Ryan observe that from their limited numerical data it seems
that if p and q are different primes, then B(p2q) = min(p2, q). This was
subsequently proved by Kaplan [6]. Our work presented here leads to a
reproof and a sharpening of this result (Theorem 4). Kaplan’s paper contains
various further results on B(n).

For a polynomial f ∈ Z[x], we define

H∗
±(f) = max{|H±(g)| : g|f and g ∈ Z[x]}.

Furthermore we define B±(n) = H∗
±(x

n−1). Numerical observations suggest
that often B+(n) > B−(n), and this is our main motivation for introducing
these functions. In fact, if p < q are primes, then B+(pq)=p and B−(pq)=2.

5. Flat divisors of xn − 1

Our work suggests that many divisors of xn−1 are flat. It seems therefore
natural to try to obtain an estimate for the number of flat divisors of xn−1.

The following result offers a modest contribution in this direction.

Theorem 10. Let p and q be distinct primes. Let fe be the number of flat
monic divisors of xp

eq − 1. Then fe+1 ≥ 2fe + 2e+2 − 1.

Proof. See the extended version [4] of this paper. �
Remark. By induction one easily proves that for e ≥ 2 we have

fe ≥ 2e−1f1 + (4e− 5)2e−1 + 1.

By Theorem 2 we have f1 = 14 and hence it follows that fe ≥ (4e+9)2e−1+1.
The total number of divisors of xp

eq − 1 is 22+2e, denote this by ne. Then
fe ≫

√
ne log ne. Can one improve on this?
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6. A variation

We have H(f6) = min(p, q) = B(pq). Likewise we have that H(f22) =
min(p2, q) = B(p2q). Both f6 and f22 are special in the sense that they
have only non-negative coefficients. It might therefore be more reasonable
to consider only balanced divisors of xn − 1, that is divisors having both
positive and negative coefficients. Let us denote this analogue of B(n) by
B′(n). Put

C(n) = max{|C0(f)| − 1 : f |xn − 1, f is balanced}.

Theorem 11. We have
1) B′(pq) = 2 and C(pq) = 4.
2) B′(p2q) = B−(p

2q) = min(p, p∗) +min(p, q− p∗) and C(p2q) = 2B′(p2q).

This result is a consequence of the inequality min(p, p∗)+min(p, q−p∗) ≥
min(p, q) and Theorem 5. It does not follow from earlier work in this area
([6, 9, 11]).

Acknowledgement. Yves Gallot numerically verified Theorem 5 in the
case that max(p, q) < 200 and provided a reformulation of our main result
not involving any tables (Theorem 9). Merci beaucoup, Yves!
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