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NEW SHARP ERROR BOUNDS FOR SOME CORRECTED

QUADRATURE FORMULAE

ZHENG LIU

Abstract. A generalization of the pre-Grüss inequality is used to de-
rive a new sharp L2 inequality which provides improved versions of some
corrected inequalities that appear in the literature. An application to
numerical integration is illustrated.

1. Introduction

In [4], the following sharp bounds for the errors in a unified corrected
quadrature formulae are obtained:

Theorem 1. Let f : [a, b] → R be such that f ′ is absolutely continuous on
[a, b] and f ′′ ∈ L2[a, b], then for any θ ∈ [0, 1],∣∣∣∣ ∫ b

a
f(t) dt− (b− a)

[
(1− θ)f

(
a+ b

2

)
+ θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

24
√
5

(15θ2 − 15θ + 4)
1
2

√
σ(f ′′), (1)

where σ(f) = ∥f∥22 − 1
b−a(

∫ b
a f(t) dt)2 and ∥f∥2 := [

∫ b
a f2(t) dt]

1
2 .

Inequality (1) is sharp in the sense that the constant 1
24

√
5
cannot be

replaced by a smaller one.
Specifically, if we take θ = 1, 0, 13 ,

7
15 and 1

2 in (1), we obtain, respec-
tively, the sharp corrected trapezoid type inequality, the sharp corrected
midpoint type inequality, the sharp Simpson type inequality, the sharp cor-
rected Simpson type inequality and the sharp corrected average midpoint-
trapezoid type inequality. These are:
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∣∣∣∣ ∫ b

a
f(t) dt− b− a

2
[f(a)+f(b)]+

(b− a)2

12
[f ′(b)−f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

12
√
5

√
σ(f ′′),

(2)

∣∣∣∣ ∫ b

a
f(t) dt− (b−a)f

(
a+ b

2

)
− (b− a)2

24
[f ′(b)−f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

12
√
5

√
σ(f ′′),

(3)

∣∣∣∣ ∫ b

a
f(t) dt− b− a

6
[f(a) + 4f

(
a+ b

2

)
+ f(b)]

∣∣∣∣ ≤ (b− a)
5
2

12
√
30

√
σ(f ′′), (4)

∣∣∣∣ ∫ b

a
f(t) dt− b− a

30
[7f(a)+16f

(
a+ b

2

)
+7f(b)]+

(b− a)2

60
[f ′(b)−f ′(a)]

∣∣∣∣
≤ (b− a)

5
2

60
√
3

√
σ(f ′′) (5)

and∣∣∣∣ ∫ b

a
f(t) dt− b− a

4
[f(a) + 2f

(
a+ b

2

)
+ f(b)] +

(b− a)2

48
[f ′(b)− f ′(a)]

∣∣∣∣
≤ (b− a)

5
2

48
√
5

√
σ(f ′′). (6)

Inequalities (2) and (3) have been considered in [1] and [2], the inequality
(4) has been considered in [3] without a proof of its sharpness, while the
corrected Simpson rule has been considered in [7], [8] and [5].

In [6], there is the following a generalization of the pre-Grüss inequality.

Lemma. Let f, g,Ψ ∈ L2(a, b), then,

SΨ(f, g)
2 ≤ SΨ(f, f)SΨ(g, g), (7)

where

SΨ(f, g) =

∫ b

a
f(t)g(t) dt− 1

b− a

∫ b

a
f(t) dt

∫ b

a
g(t) dt

− 1

∥Ψ∥22

∫ b

a
f(t)Ψ(t) dt

∫ b

a
g(t)Ψ(t) dt (8)

and Ψ satisfies ∫ b

a
Ψ(t) dt = 0, (9)
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while, as usual, ∥ · ∥2 is the norm in L2(a, b). i.e.,

∥Ψ∥22 =
∫ b

a
Ψ2(t) dt.

In this paper, we use this generalization of the pre-Grüss inequality to
derive a new sharp L2 inequality which provides better estimation of error.
An application in numerical integration is also considered.

2. Main results

Theorem 2. Let the assumptions of Theorem 1 hold, then for any θ ∈ [0, 1],∣∣∣∣ ∫ b

a
f(t) dt− (b− a)

[
(1− θ)f

(a+ b

2

)
+ θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

24
√
5

√
4− 15θ + 15θ2M(f ; a, b),

(10)

where

M(f ; a, b) =

{
∥f ′′∥22 −

[f ′(b)− f ′(a)]2

b− a
−

[2f ′(a+b
2 )− f ′(a)− f ′(b)]2

b− a

} 1
2

.

(11)
The inequality (10) is sharp.

Proof. Let

p(t) =

{
1, t ∈ [a, a+b

2 ],

−1, t ∈ (a+b
2 , b],

and

Ψ(t) =

{
(t−a)2

2 − θ(b−a)
2 (t− a)− 1−3θ

24 (b− a)2, t ∈ [a, a+b
2 ],

(t−b)2

2 + θ(b−a)
2 (t− b)− 1−3θ

24 (b− a)2, t ∈ (a+b
2 , b],

where θ ∈ [0, 1].
It is not difficult to verify that∫ b

a
p(t) dt = 0, (12)∫ b

a
Ψ(t) dt = 0, (13)∫ b

a
p(t)Ψ(t) dt = 0. (14)
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Also,

∥p∥22 =
∫ b

a
p2(t) dt = b− a, (15)

∥Ψ∥22 =
∫ b

a
Ψ2(t) dt =

(b− a)5

2880
(4− 15θ + 15θ2), (16)

and ∫ b

a
f ′′(t)p(t) dt = 2f ′

(a+ b

2

)
− f ′(a)− f ′(b). (17)

Integrating by parts,∫ b

a
f ′′(t)Ψ(t) dt =

∫ b

a
f(t) dt− (b− a)

[
(1− θ)f

(a+ b

2

)
+ θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]. (18)

From (12), (14), (17) and (8),

SΨ(f
′′, p) =

∫ b

a
f ′′(t)p(t) dt− 1

b− a

∫ b

a
f ′′(t) dt

∫ b

a
p(t) dt

− 1

∥Ψ∥22

∫ b

a
f ′′(t)Ψ(t) dt

∫ b

a
p(t)Ψ(t) dt

= 2f ′
(a+ b

2

)
− f ′(a)− f ′(b). (19)

From (12), (14) and (8),

SΨ(p, p) = ∥p∥22 −
1

b− a

(∫ b

a
p(t) dt

)2

− 1

∥Ψ∥22

(∫ b

a
p(t)Ψ(t) dt

)2

= b− a. (20)

From (16), (18) and (8),

SΨ(f
′′, f ′′) = ∥f ′′∥22 −

1

b− a

(∫ b

a
f ′′(t) dt

)2
− 1

∥Ψ∥22

(∫ b

a
f ′′(t)Ψ(t) dt

)2

= ∥f ′′∥22 −
[f ′(b)− f ′(a)]2

b− a
− 2880

(4− 15θ + 15θ2)(b− a)5

×
{∫ b

a
f(t) dt− (b− a)

[
(1− θ)f

(a+ b

2

)
+ θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

}2

. (21)
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Thus from (19)–(21) and (7) we can obtain

[2f ′(a+b
2 )− f ′(a)− f ′(b)]2

b− a
≤ ∥f ′′∥22 −

[f ′(b)− f ′(a)]2

b− a

− 2880

(4−15θ+15θ2)(b−a)5

{∫ b

a
f(t) dt−(b−a)

[
(1−θ)f

(a+ b

2

)
+θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

}2

, (22)

which is equivalent to

2880

(4−15θ+15θ2)(b−a)5

{∫ b

a
f(t) dt−(b−a)

[
(1−θ)f

(a+ b

2

)
+θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

}2

≤ ∥f ′∥22 −
[f(b)− f(a)]2

b− a
−

[2f ′(a+b
2 )− f ′(a)− f ′(b)]2

b− a
. (23)

Inequality (10) follows from (23).
In order to prove that the inequality (10) is sharp, for any θ ∈ [0, 1], we

define the function,

f(t) =

{
1
24 t

4 − θ
12 t

3, t ∈ [0, 12 ],
1
24(t− 1)4 + θ

12(t− 1)3 + 1−3θ
24 (t− 1

2), t ∈ (12 , 1]
(24)

from which it follows that

f ′(t) =

{
1
6 t

3 − θ
4 t

2, t ∈ [0, 12 ],
1
6(t− 1)3 + θ

4(t− 1)2 + 1−3θ
24 , t ∈ (12 , 1]

(25)

and

f ′′(t) =

{
1
2 t

2 − θ
2 t, t ∈ [0, 12 ],

1
2(t− 1)2 + θ

2(t− 1), t ∈ (12 , 1].
(26)

The function given in (24) is absolutely continuous since it is a continuous
piecewise polynomial function.

We now suppose that (10) holds with a constant K > 0 as∣∣∣∣ ∫ b

a
f(t) dt− (b− a)

[
(1− θ)f

(a+ b

2

)
+ θ

f(a) + f(b)

2

]
− 1− 3θ

24
(b− a)2[f ′(b)− f ′(a)]

∣∣∣∣ ≤ K(b− a)
5
2

√
4− 15θ + 15θ2M(f ; a, b),

(27)

where M(f ; a, b) is as defined in (11).
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Choosing a = 0, b = 1, and f as defined in (24), we get∫ 1

0
f(t) dt =

11− 35θ

1920
,

f(0) = 0, f(1) =
1− 3θ

48
, f(

1

2
) =

1− 4θ

384
,

f ′(0) = 0, f ′(1) =
1− 3θ

24
, f ′(

1

2
) =

1− 3θ

48
,∫ 1

0
(f ′′(t))2 dt =

3− 15θ + 20θ2

960

such that the LHS of (28) becomes 4−15θ+15θ2

2880 , and the RHS becomes
K(4−15θ+15θ2)

24
√
5

.

Thus from (27), we find that K ≥ 1
24

√
5
, proving that the constant 1

24
√
5

is the best possible in (10). �
Remark 1. It is obvious that the error estimation in (10) is better than
that in (1).

Remark 2. If we take θ = 1 and θ = 0 in (10), we obtain the following
sharp, corrected trapezoid type and corrected midpoint type inequalities,
respectively, as∣∣∣∣ ∫ b

a
f(t) dt−b− a

2
[f(a)+f(b)]+

(b− a)2

12
[f ′(b)−f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

12
√
5

M(f ; a, b)

(28)
and∣∣∣∣ ∫ b

a
f(t) dt−(b−a)f

(a+ b

2

)
− (b− a)2

24
[f ′(b)−f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

12
√
5

M(f ; a, b).

(29)

Remark 3. If θ = 1
3 in (10), we obtain a sharp Simpson type inequality of

the form∣∣∣∣ ∫ b

a
f(t) dt− b− a

6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]∣∣∣∣ ≤ (b− a)
5
2

12
√
30

M(f ; a, b), (30)

and if θ = 7
15 in (10), we obtain a sharp corrected Simpson type inequality

of the form∣∣∣∣ ∫ b

a
f(t) dt− b− a

30

[
7f(a) + 16f

(a+ b

2

)
+ 7f(b)

]
+

(b− a)2

60
[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

60
√
3

M(f ; a, b). (31)
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From (30) and (31), we see that the corrected Simpson rule provides better
results than the Simpson rule.

Remark 4. If θ = 1
2 in (10), we obtain the following sharp, corrected

average midpoint-trapezoid type inequality,∣∣∣∣ ∫ b

a
f(t) dt− b− a

4

[
f(a) + 2f

(a+ b

2

)
+ f(b)

]
+

(b− a)2

48
[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

48
√
5

M(f ; a, b). (32)

It is interesting to note that the smallest bound for (10) is obtained at
θ = 1

2 . Thus the corrected averaged midpoint-trapezoid rule is optimal in
the current situation.

Remark 5. It is also clear that the error estimates in (28)-(32) are better
than those in the corresponding results, (2)-(6).

3. Applications in numerical integration

Application here is to the averaged midpoint-trapezoid quadrature rule.
Similar analysis can be performed on the other results considered in the
previous section.

Theorem 3. Let π = {x0 = a < x1 < · · · < xn = b} be a given subdivi-
sion of the interval [a, b] such that hi = xi+1 − xi = h = b−a

n and let the
assumptions of Theorem 1 hold, then,

∣∣∣∣ ∫ b

a
f(t) dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(xi + xi+1

2

)
+ f(xi+1)

]

+
(b− a)2

48n2
[f ′(b)− f ′(a)]

∣∣∣∣ ≤ (b− a)
5
2

48
√
5n2

Mn(f) ≤
(b− a)

5
2

48
√
5n2

√
σ(f ′′), (33)

where

Mn(f) =

{
∥f ′′∥22 −

[f ′(b)− f ′(a)]2

b− a
− 1

b− a

[
f ′(x0) + f ′(xn)

+ 2
n−1∑
i=1

f ′(xi)− 2
n−1∑
i=0

f ′
(xi + xi+1

2

)]2} 1
2

. (34)
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Proof. From (32) in Remark 4,∣∣∣∣ ∫ xi+1

xi

f(t) dt−h

4

[
f(xi)+2f

(xi + xi+1

2

)
+f(xi+1)

]
+
h2

48
[f ′(xi+1)−f ′(xi)]

∣∣∣∣
≤ h

5
2

48
√
5

{∫ xi+i

xi

(f ′′(t))2 dt− 1

h
[f ′(xi+1)− f ′(xi)]

2

− 1

h

[
f ′(xi)− 2f ′

(xi + xi+1

2

)
+ f ′(xi+1)

]2} 1
2

. (35)

By summing (35) over i from 0 to n− 1 and using the generalized triangle
inequality, we obtain,∣∣∣∣ ∫ b

a
f(t) dt−h

4

n−1∑
i=0

[
f(xi)+2f

(xi + xi+1

2

)
+f(xi+1)

]
+
h2

48
[f ′(xi+1)−f ′(xi)]

∣∣∣∣
≤ h

5
2

48
√
5

n−1∑
i=0

{∫ xi+i

xi

(f ′′(t))2 dt− 1

h
[f ′(xi+1)− f ′(xi)]

2

− 1

h

[
f ′(xi)− 2f ′

(xi + xi+1

2

)
+ f ′(xi+1)

]2} 1
2

. (36)

By using the Cauchy inequality twice, it can be seen that,

n−1∑
i=0

{∫ xi+1

xi

(f ′′(t))2 dt− 1

h
[f ′(xi+1)− f ′(xi)]

2

− 1

h

[
f ′(xi)− 2f ′

(xi + xi+1

2
+ f ′(xi+1

)]2} 1
2

≤
√
n

{
∥f ′′∥22 −

n

b− a

n−1∑
i=0

[f ′(xi+1)− f ′(xi)]
2

− n

b− a

n−1∑
i=0

[
f ′(xi)− 2f ′

(xi + xi+1

2

)
+ f ′(xi+1)

]2} 1
2

≤
√
n

{
∥f ′′∥22 −

[f ′(b)− f ′(a)]2

b− a
− 1

b− a

[
f ′(x0) + f ′(xn)

+ 2

n−1∑
i=1

f ′(xi)− 2

n−1∑
i=0

f ′
(xi + xi+1

2

)]2} 1
2

. (37)

Consequently, the inequality (33) with (34) follow from (36) and (37). �
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