SARAJEVO JOURNAL OF MATHEMATICS DOI: 10.5644/SJM.09.1.03
Vol.9 (21) (2013), 37-45

NEW SHARP ERROR BOUNDS FOR SOME CORRECTED
QUADRATURE FORMULAE

ZHENG LIU

ABSTRACT. A generalization of the pre-Griiss inequality is used to de-
rive a new sharp Lo inequality which provides improved versions of some
corrected inequalities that appear in the literature. An application to
numerical integration is illustrated.

1. INTRODUCTION

In [4], the following sharp bounds for the errors in a unified corrected
quadrature formulae are obtained:

Theorem 1. Let f : [a,b] — R be such that [’ is absolutely continuous on
[a,b] and " € Ls[a,b], then for any 6 € [0,1],

[ i0a-0-afa-as(45) el 0]

o= aP 1) - )] < O 56 <150+ 9o ()

1

where o(f) = || f13 — 55 ([ F(£) dt)? and || fll2 = [0 f2(t) dt]z.

Inequality (1) is sharp in the sense that the constant ﬁ cannot be

1-30
24

replaced by a smaller one.

Specifically, if we take 0 = 1,0,%,1—75 and % in (1), we obtain, respec-
tively, the sharp corrected trapezoid type inequality, the sharp corrected
midpoint type inequality, the sharp Simpson type inequality, the sharp cor-
rected Simpson type inequality and the sharp corrected average midpoint-

trapezoid type inequality. These are:
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Inequalities (2) and (3) have been considered in [1] and [2], the inequality
(4) has been considered in [3] without a proof of its sharpness, while the
corrected Simpson rule has been considered in [7], [8] and [5].

In [6], there is the following a generalization of the pre-Griiss inequality.

Lemma. Let f, g,V € Ly(a,b), then,

/f dt—/ It dt/
- o / FOw() di / Sy d

where

and ¥ satisfies
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while, as usual, || - |2 is the norm in La(a,b). i.e.,

b
ngzfﬂwwdt

In this paper, we use this generalization of the pre-Griiss inequality to
derive a new sharp Lo inequality which provides better estimation of error.
An application in numerical integration is also considered.

2. MAIN RESULTS

Theorem 2. Let the assumptions of Theorem 1 hold, then for any 6 € [0, 1],

‘/abf(t) dt —(b—a) [(1 - 9)f(a+b) +0f(“)+f(b)}

2 2
5
a 1;439(b—a)2[f’(b)—f’( )] b ) 2\/ — 150 + 150°M (f; a,b),
(10)
where
o e O = @) 2F(%3) — f'(a) - FO))
Mgian) = {17 - FO=1 L
(11)
The inequality (10) is sharp.
Proof. Let
1 t € [a, &L
1) = ’ y 9 b
p() {_17 te(%—’_b7b7
and
(t=a)? _ 0(b=a) y _ .y _ 1=30(p _ )2 atb
U(t) = { (t—2b)2 O(b%a) - 1—2§9 0 a)2’ ' [CZ b2 !
2 + 2 (t_b)_ﬁ(b_a)a te(Tvb]v
where 6 € [0, 1].
It is not difficult to verify that
b
[ poyie=o, (12
b
/ W(t) dt = 0, (13)
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Also,
b
ol = [ eyt =b-a (15)
|02 :/:qﬁ(t)dtz (1’288‘6)5(4— 150 + 1562), (16)
and ,
| rawtar =21 (“57) = £y - 0 (1)

Integrating by parts,

/abf”(tmt) dt = /abf(t> dt — (b~ a) {(1 T (=) Y TACE: f(b)]

1-36
24

(b—a)’[f'(0) = f'(@)]. (18)

From (12), (14), (17) and (8),
= [ w2 [ Foa [
_H\I/Hg/a £ (1) dt/GPt)‘I’(t)dt

)= f@)= £(b). (19)

:2f,<a—21—b

From (12), (14) and (8),

sen =3~ ([ o0a) — g ([ oowo )

=b—a. (20)
From (16), (18) and (8),
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Thus from (19)—(21) and (7) we can obtain
2/'(%5%) = f'(a) = F'(0))? Lf'(6) = f'(a)]?

— <[lf115 - —
2880 b a+by  fla)+ f(b)
T (4—150+150%)(b—a)? {/a f(8) di—(b=a) [(1_9)f< 2 )+9 2 ]
1- 30

) 2
1 b=l e) - Falf (22

which is equivalent to

(4_159+2f§gg)(b_a)5 {/abf(t) dt—(b—a) {(1—9)f(“ : b)+ef(a) ' f(b)]

1—30 ) .
20— 0P 0) - (o))

. a 2 I(a+by "(a) — f' 2

Inequality (10) follows from (23).
In order to prove that the inequality (10) is sharp, for any 6 € [0, 1], we
define the function,

1,4 60,3 L
t t t €0, 5]
ft) = { 24 12> _ 120 24

( ) 214(t 1)4 192(t 1)3 1226@ %): le (%7 1] ( )

from which it follows that

113 — 82 t [0, 3]
/t _{ 6 4% B » 2 25
FO=V e o1y 52 te (L] (25)
and
142 04 teo,3]
”t :{ 2 29 » 2 26
1) TE-12+8%¢t-1), te (3,1 (26)

The function given in (24) is absolutely continuous since it is a continuous
piecewise polynomial function.
We now suppose that (10) holds with a constant K > 0 as

/ab f(t)dt - (b—a) [(1 —0r(“20) + M);f(b)}

1—30
24

< K(b—a)3\/4— 150 + 1502M (f; a, b),
(27)

(b= a)’[f'(b) = f'(a)]

where M(f;a,b) is as defined in (11).
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Choosing a = 0, b =1, and f as defined in (24), we get

350
/fd1920’

1-— 1—460
f(0)=0, f(1)= af()zw,
, B , _1 , _1—39

L2 o, 3—150 4 200>
/O(f () dt—T

such that the LHS of (28) becomes %, and the RHS becomes
K (4—150+15602)

24/5
Thus from (27), we find that K > o1 \/5, proving that the constant 51 f
is the best possible in (10). O

Remark 1. It is obvious that the error estimation in (10) is better than
that in (1).
Remark 2. If we take # = 1 and 6 = 0 in (10), we obtain the following

sharp, corrected trapezoid type and corrected midpoint type inequalities,
respectively, as

b b—a b—a)? ., . (b—a)s .
[ s o C o - @] < S arran
(29)
and
b a —a)? —a)3
[ ra-o-as(*50) - C 5w - @) < C 5w,
(29)

Remark 3. If § = % in (10), we obtain a sharp Simpson type inequality of
the form

‘/f D=5t 1)+ 4f(a+b)+f(b)”S(b_a)gM(f b, (30)

124/30
and if § = £ in (10), we obtain a sharp corrected Simpson type inequality
of the form
b— a+b
‘/ = [7f( )+ 167 (%5 >+7f(b)]
(b—a)? (b—a)?

6073 M(f;a,b). (31)
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From (30) and (31), we see that the corrected Simpson rule provides better
results than the Simpson rule.

Remark 4. If § = % in (10), we obtain the following sharp, corrected
average midpoint-trapezoid type inequality,

| -2 w2 (U5) + )]

(b= a)*
48

5

(b—a)2
48/5

It is interesting to note that the smallest bound for (10) is obtained at
0= % Thus the corrected averaged midpoint-trapezoid rule is optimal in
the current situation.

n 7o) f’(a)]‘ < M(fsab). (32)

Remark 5. It is also clear that the error estimates in (28)-(32) are better
than those in the corresponding results, (2)-(6).

3. APPLICATIONS IN NUMERICAL INTEGRATION

Application here is to the averaged midpoint-trapezoid quadrature rule.
Similar analysis can be performed on the other results considered in the
previous section.

Theorem 3. Let 7 = {9 = a < 21 < --- < &, = b} be a given subdivi-
sion of the interval [a,b] such that h; = zj41 —x; = h = b=a 4nd let the

n
assumptions of Theorem 1 hold, then,

’ /ab F(t)dt - Zg [f(:rz-) + 2f(%) + f($i+1)]

(b —a)?
48n?2

(b—a)%

O - )| < S < S o o

where

[f'() = f(a)]*
b—a b—a

+2§f’<mi>—2§f’(“§%)]2} - (30
=1 1=0

Mo(f) = {||f”||% - [f’(fvo) T ()

(S
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Proof. From (32) in Remark 4,

>

i+ Tip1 h?

[ s | st () ) |+ U )7 )

h% Titi ” 1 oo oo
< wml [ ora L e - £

- % [f’(xi) - 2f’(%) + f’(xm)] 2}%‘ (35)

By summing (35) over i from 0 to n — 1 and using the generalized triangle
inequality, we obtain,

r a7 3 | ras () ) A )~
< M ZO {7 orenae— e - rep
_ % [f/(xi) B 2f/(33z' +2$i+1) i f/($i+1)]2}2' (36)

By using the Cauchy inequality twice, it can be seen that,

n—1

Z { /a:iﬂ(f//(t))Z dt — %[f/(.fi—l—l) = f'()]?

=0

b—a iz
-5 ﬁ - 7::: |:f/(l’z) - 2f’(931 +2$i+1> + fl(xz+1)]2}2
< val g - PO ZLOE L) + o
n—1 / - n—1 LT+ T
P2y fe) -2 (BN e
=1 =0

Consequently, the inequality (33) with (34) follow from (36) and (37). O
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