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A DISCRETE WEIGHTED MONTGOMERY IDENTITY
AND OSTROWSKI TYPE INEQUALITIES FOR
FUNCTIONS OF TWO VARIABLES

A. AGLIC ALJINOVIC AND J. PECARIC

ABSTRACT. A discrete analogue of the weighted Montgomery identity
for functions of two variables is presented and used to obtain new discrete
Ostrowski type inequalities.

1. INTRODUCTION

In [3] Ostrowski showed that

rw-i ks [ o< [fﬁ((b_f;’)} =) lF...

for every x € [a,b] whenever f : [a,b] — R is continuous on [a,b] and
differentiable on (a, b) with derivative f’: (a,b) — R bounded on (a,b) i.e.

Hf'HOO = sup |f'(t)] < +oc.
te(a,b)
The weighted Montgomery identity (Pecari¢ [7]) is

b b
f(x):/ w(t)f(t)dt+/ P (2,1) ' (1) dt, (1.1)

where f : [a,b] — R is differentiable on [a,b], f’ : [a,b] — R integrable
on [a,b] and w : [a,b] — [0,00) is some normalized weight function, i.e.
an integrable function satisfying f;w(t) dt =1, W(t) = [lw(z)dz for
t € [a,b]. The weighted Peano kernel is

W(t), a<t<uwz,

Py (w,t) =
Wt)—1 z<t<b.
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For the uniform weight function w(t) = 2=, t € [a,b] (1.1) reduces to
the Montgomery identity (see for instance [6]),

= “Faar+ / Plat) £ (1) (1:2)

where
i=a a<lt<uw,
P (z,t) =
t=b Tz <t<b.

b—a’

Note that Ostrowski’s inequality can be formulated in the equivalent form

b z—a)? —xz)?
) -1 [ e < SOy

which can easily be obtained using (1.2) since,
b b
/ P (x,t) f' (1) dt‘ < Hf’”oo/ |P (x,t)|dt

Tt —a blt—b , (z—a)’+(b—x)?
<([i=sfas [z a) 1. = =5 0=,
In a similar manner various generalizations of the Montgomery identity can
be used to obtain generalizations of the Ostrowski inequality.

In [8] Pecari¢ and Vukeli¢ presented integral weighted Montgomery identi-
ties for functions of two variables and applied them to obtain new inequalities
of the Ostrowski type for mappings of two independent variables of which
Theorem 1, below, is an example.

Theorem 1. Let q : [a,b] — R and h : [c,d] — R be two integrable func-
tions. Let also f : [a,b] X [¢,d] — R have continuous partial derivatives

6%2’”, afé‘:’t), and aaf(astt) on [a,b] X [c,d], then for all (z,y) € |a,b] X [c,d],

f(z,y)P // f(s, t)ds dt + P.(d /P afég Y) s

+Pa(b)/c P2 dt—// as(a Dasar, (1.3)
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and

A P,(s), a<s<zx ~ P.(t), c¢<t<y
_Pc(t)7 y<t§d '

P(s) = —Py(s), z<s<b >’ P) =

The special case of these identities for uniform weight functions were
obtained in [4] and [5].

A discrete version of the Montgomery identity was given in [9]. Its gener-
alizations were given in [1], [2] and also were used therein to obtain discrete
Ostrowski type inequalities.

The aim of this paper is to prove a discrete analogue of the weighted
Montgomery identity for function of two variables (1.3) and use it to obtain
some new discrete Ostrowski type inequalities.

In Section 2. the identity for functions of two independent variables is
presented. It is a discrete analogue of the result of [8] and, at the same
time, a generalization for functions of two variables of the discrete weighted
Montgomery identity obtained in [9].

In Section 3. this identity is used to obtain generalizations of Ostrowski
inequality which are discrete analogues of the results of [4], [5] and [8] as
well as generalizations for functions of two variable of the some results from
[1] and [2].

2. A DISCRETE WEIGHTED MONTGOMERY IDENTITY FOR FUNCTIONS OF
TWO VARIABLES

Let f : R — R be any real-to-real function. The difference operator A
is defined by

Af(z) = flz+1) = f(2), (2.1)
which is the finite analogue of the derivative and if f is any real-to-real
function, so too is Af.

Let w1, wo, ..., w, be a finite sequence of real numbers and for 1 < k < n,
with

k n
Wk:Zwi, Wk: Z wi:Wn—Wk.
i=1 i=k+1
The discrete weighted Montgomery identity (see [9]) states that

£ = o S wif )+ D Du (k) AF (), (2.2)
"= i=1

where the discrete weighted Peano kernel is defined by

1 { Wi, 1<i<k-1,
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For uniform weights w; = 1, i = 1,...,n, and (2.2) reduces to the
discrete Montgomery identity

%Z D (ki) Af (i) (23)

i=1

where

: 1<
pii={ .7
Remark 1. More generally, for any = € R it holds that

flz+k)= szf x+1) +ZD (ki) Af (x+1).

Without loss of generality, it will subsequently be assumed that = 0.

Definition 1. For f : R? — R, the difference operators Ai and Ao are
defined as
Arf(i,j) = f(i+1,7) = f(i)),

these are the finite analogue of the first partial derivatives.

Theorem 2. Let f : R2 — R be any real function of two variables, n,m € N
and wi,wa, . .., Wy and ©1, P2, ..., Em finite sequences of positive real num-
bers. Further, let W;, = Zle wi, Wi = Wy, = Wy for 1 < k < n and
P, = Z§:1 i, ®; =Dy — O for 1 <1 <m, then,

f (k1) W<I> Zzwl% fa0+ Zzwl (1,5) Daf (i, )

i=1 j=1 =1 =1
+q)1mzn:i% w (K, 1) Avf (i, 7 JrZZD (ki) Dy (1, §) A1 Ao f (i, )
o o (2.4)
where
putbi =g { Gy, TEETEL
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Proof. Using (2.2) on the first variable, we have

fk,1) = Zwlle+ZD (k,i) Ay f (i,0)

and further, with regard to the second variable
1 m m
™ j=1 j=1

Applying A1 on the latter identity gives

Adf (i.1) = Z%Alf (i) + 3 Do (1) Maddof (i, ).
7j=1
Substituting the last two identities into the first leads to (2.4). O

For the special case of uniform weights, we obtain the following general-
ization of (2.3) for functions of two independent variables.

Corollary 1. Let f : R2 — R be any real function of two variables, n,m, k,
eEN, k<n,l<m. Then it holds

anZf ) ZZDQ 1,3) Ao f (i, )

=1 j=1 =1 j=1
1 n m n m
+EZZD1 (k7Z)A1f(Z7J)+ZZD1 (k72>D2 (L])AlAQ.f(Za])
=1 j=1 =1 j=1
(2.5)
where
, L 1<i<k-1,
Dl(k72)_{ %711’ kS S n,
L 1<j<i-1
D2(lyj):{ ™ o ’
Proof. If we take w; =1, i =1,...,nand ¢p; =1, j=1,...,m, we have
W; =i, Wi =n—iand ®; = j, <I>‘ = m — j. In this case (2.4) reduces to
(2.5). O

3. DISCRETE OSTROWSKI TYPE INEQUALITIES

Here we derive new Ostrowski type inequalities for functions f of two
variables.
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Definition 2. We say (p, q) is a pair of conjugate exponents if 1 < p,q < 0o
and%+%:1; orifp=1andq=o00; orifp=o00 and qg=1.

Theorem 3. Suppose that all the assumptions of Theorem 2 hold. Addi-

tionally assume that (p,q) is a pair of conjugate exponents, 1 < p,q < o0,
then,

Zszgoj f (@0 Zzwz (1,7) Ao f (i,5)

=1 j=1 11]1

I = . .
oo > 9Dy (ki) Avf (i, ) ‘ < |1 Dw (K, )l 1Dy (L), 1A1A2f]],,

i=1 j=1
(3.1)
where
1 .
gl =4 Zilg @M)7. i L<p<oo
P max; ‘g (l)| ) Zf p =00,
if g is function of one variable and
1
lgll, = (Zm Ig(i,j)lp)p , if 1<p< oo,
max; 5 ‘g (%])‘ ’ Zf p =00,
if g is function of two variables.
Proof. By using (2.4)
1 n m 1 n m
FO0) = g D D wigif (1) = 7= > ) wiDy (1,5) Aaf (i)
nEM = 1 =1 " =1 7j=1
1 n m .
S D k) A )|
moi=1 j=1
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< (S putaaar) (S amror)

i=1 j—1 = 13 1
=(§\Dw<kvz‘>rq) (ZlD . 5) ) (;;mlww)r )
we obtain (3.1). O

In the next three corollaries we give the special cases for uniform weights.
First, for n € N and m € R we denote by Sy, (n), the sum

1™ 4 2m 4 3™ o (n— 1)™
It is well known that if m € N (See [10])

Sm (n) = mi—l (m j 1) B; ™t
where B;, i > 0 are Bernoulli numbers, defined by,
i(m—i—l)Bi:{l, if m=0,
— i 0, if m#0.

Corollary 2. Let f : R2 — R be any real function of two variables, n,m, k,
eEN, k<n,l<m, then

’f(k,l)—njn;;f(i,l)
=1 )=

IS S D) M m_fzz ) A1 )|

i=1 j=1
+(z ) I8

s@(”;w—”;lf)(

Proof. We take w; =1, i =1,. gp 1,j—1 .,m, and p =00 in
(3.1) for which we have W; = i, W —i, ®; = <I> =m — j, giving,
kli n i
D, >||1—Z|D1 k) = n+2(1—n)
=1 i=k
1 kE(k—1) (n—k+1)(n—k)
== +
n 2 2

1 (n2-1 n+1\2
—— kE—
n( 4 +( 2 ))
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and similarly

-1 . m

1Dy (1), = ZyDzzy :ZiﬁZ(l—)

7j=1 i=k
(m -1 < m+1>2>
= - 5

Corollary 3. Let f : R2 = R be any real function of two variables, n,m, k,
eN, k<n,l<m, then

]f(k,w D) I ZCURES 3) A eTaCE)

i=1 j=1 i=1 j=1

_%ZZDl (k,7) Alf(i,j)‘

i=1 j=1

O

1
< —max{k—1,n—k} -max{l —1,m—1}-|[A1Axf]]; .

nm
Proof. We take w; =1, i=1,...,n; ¢; =1, j=1,...,mand p=1in
(3.1), with again, W; =i, W; =n — i, ®; = j, ®; = m — j, giving,

) 1
1D (.l = masx (1D (hy )]} = - max (s — 1,m — k)
and

1
1De (1, Yoo = mavx {ID2 (L)} = - max {1 = L,m ~ 1}

O

Corollary 4. Let f : R2 — R be any real function of two variables, n,m, k,
eN, k <n, 1 < m. Letalso (p,q) be a pair of conjugate exponents,
1 < p,q < oo, then

£ (k1) —%ZZ]‘ (i,1) ——ZZDz L) Daf (i,5)

i=1 j=1 =1 j=1
——ZZDl kyi)Arf(i,9)
=1 j=1
1 1
< (8q (k) + Sg (n =k +1)) (Sq (1) + 5q (m = L+ 1))]« - [Ar Do f]],-

(3.2)
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Proof. We take w; =1, i =1,...,nand ¢; =1, j=1,...,min (3.1),
W; =i, Wy =n —1, Qj:j,@:m—j giving,

wumm=<gwum/) <2ﬂ+zm_z>

and similarly

J=1

(Sy (1) + 8y (m — 1+ 1))

1
m

Remark 2. Taking ¢ € N in (3.2) is equivalent to having

HCUEFT SO

i=1 j=1

_7ZZD2 1,7) Aof (i, 5) ZZDI(kai)AIf(i7j)‘
i=1 j=1

=1 j=1

<— L zq: g (k‘ﬁl"’ T 1)‘1“*1) !
- q+1 1 ‘
1
. 1 g+1\ o (gri-i B gr1-i) |7
<m&;<i)&o =)™ ) A,

where B;, ¢ > 0 are Bernoulli numbers.
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