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LINEAR DIFFERENTIAL EQUATIONS WITH ANALYTIC

COEFFICIENTS OF [p, q]-ORDER IN THE UNIT DISC

ZINELAÂBIDINE LATREUCH AND BENHARRAT BELAÏDI

Abstract. In this paper, we investigate the complex higher order lin-
ear differential equations in which the coefficients are analytic functions
in the unit disc of [p, q]-order. We obtain several theorems about the
growth and oscillation of solutions of differential equations.

1. Introduction and main results

Nevanlinna theory has appeared to be a powerful tool in the field of com-
plex differential equations. For an introduction to the theory of differential
equations in the complex plane by using the Nevanlinna theory see [22] .
Active research in this field was started by H. Wittich [27] and his students
in the 1950’s and 1960’s. After that many authors have investigated the
complex differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0 (1.1)

and achieved many valuable results when the coefficients A0(z), . . . , Ak−1(z)
are entire functions of finite order [9,13,18,22]. L. G. Bernal, L. Kinnunen,
J. Tu and T. Long investigated the growth of solutions of (1.1) individu-
ally when the coefficients are entire functions of finite iterated order (see
[4,21,26]. The properties of the growth of (1.1) also have been studied by J.
Heittokangas, T. B. Cao and B. Beläıdi when the coefficients are analytic
functions in the unit disc ∆ = {z : |z| < 1} (see [2,3,5-8,11,15,17,23]). After
that A. El Farissi, B. Beläıdi and Z. Latreuch generalized the results of T.
B. Cao and investigated the growth of differential polynomial generated by
solutions of second order differential equations in the unit disc see Theorem
C). In [19], [20] O. P. Juneja and his co-authors investigated some properties
of entire functions of [p,q]-order, and obtain some results. J. Liu, J. Tu and
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L. Z. Shi applied the concepts of entire functions of [p, q]-order to investigate
the complex differential equation (1.1) (see [24]).

In this paper, we assume that the reader is familiar with the fundamental
results and the standard notation of the Nevanlinna’s theory on the complex
plane and in the unit disc ∆ = {z ∈ C : |z| < 1} , see [12, 14, 15, 25, 27] . In
addition, we will use λ (f) and λ (f) to denote respectively the exponents
of convergence of the zero-sequence and the sequence of distinct zeros of a
meromorphic function f in ∆, ρ (f) to denote the order, ρ2 (f) to denote
the hyper-order and τ (f) to denote the type of f. See [5, 11, 15, 23, 25] for
notations and definitions.

In the following, we will give similar definitions as in [19, 20] for analytic
and meromorphic functions of [p, q]-order, [p, q]-type and [p, q]-exponent of
convergence of the zero sequence in the unit disc.

Definition A. Let p ≥ q ≥ 1 be integers, and let f be a meromorphic
function in ∆, the [p, q]-order of f (z) is defined by

ρ[p,q] (f) = lim sup
r→1−

log+p T (r, f)

logq
1

1−r

.

For an analytic function f in ∆, we also define

ρM,[p,q] (f) = lim sup
r→1−

log+p+1M (r, f)

logq
1

1−r

.

Remark 1.1. It is easy to see that 0 ≤ ρ[p,q] (f) ≤ ∞ (0 ≤ ρM,[p,q] (f) ≤ ∞),
for any p ≥ q ≥ 1. By Definition A we have that ρ[1,1] = ρ (f) (ρM,[1,1] =

ρM (f)) and ρ[2,1] = ρ2 (f)
(
ρM,[2,1] = ρM,2 (f)

)
.

For the relationship between ρ[p,q] (f) and ρM,[p,q] (f) we have the following
double inequality:

Proposition 1.1. [3] Let p ≥ q ≥ 1 be integers, and let f be an analytic
function in ∆ of [p, q]-order.

(i) If p = q, then

ρ[p,q] (f) ≤ ρM,[p,q] (f) ≤ ρ[p,q] (f) + 1.

(ii) If p > q, then
ρ[p,q] (f) = ρM,[p,q] (f) .

Definition B. Let p ≥ q ≥ 1 be integers. The [p, q]-type of a meromorphic
function f (z) in ∆ of [p, q]-order ρ (0 < ρ <∞) is defined by

τ[p,q] (f) = lim sup
r→1−

log+p−1 T (r, f)(
logq−1

1
1−r

)ρ .
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Definition C. Let p ≥ q ≥ 1 be integers. The [p, q]-exponent of convergence
of the zero sequence of a meromorphic function f (z) in ∆ is defined by

λ[p,q] (f) = lim sup
r→1−

log+p N
(
r, 1f

)
logq

1
1−r

.

Similarly, the [p, q]-exponent of convergence of the sequence of distinct
zeros of f (z) is defined by

λ[p,q] (f) = lim sup
r→1−

log+p N
(
r, 1f

)
logq

1
1−r

.

In [6], Cao and Yi have investigated the growth, hyper-order and fixed
points of solutions of (1.1) and have obtained the following results.

Theorem A. [6] Let A0(z), . . . , Ak−1(z) be the coefficients of (1.1) analytic
in ∆. If max{ρ (Aj) : j = 1, . . . , k− 1} < ρ (A0) , then ρ (A0) ≤ ρ2 (f) ≤ αM

holds for all solutions f ̸≡ 0 of (1.1) , where αM = max{ρM (Aj) : j =
0, . . . , k − 1}.

Theorem B. [6] Under the hypotheses of Theorem A, if ρ2 (Aj) <∞ (j =

0, . . . , k−1), then every solution f ̸≡ 0 of (1.1) satisfies λ2 (f − z) = ρ2 (f) .

Recently in [11], the authors have investigated the growth and oscillation
of differential polynomials generated by solutions of second order differential
equations and obtained the following result.

Theorem C. [11] Let A0(z), A1(z), d0, d1, d2 be analytic functions in ∆
such that

max{ρ (A1) , ρ (dj) (j = 0, 1, 2)} < ρ (A0) = ρ (0 < ρ <∞),

τ (A0) = τ (0 < τ <∞),

and let φ ̸≡ 0 be an analytic function in ∆ with ρ (φ) < ∞. If f ̸≡ 0 is a
solution of the equation

f ′′ +A1 (z) f
′ +A0 (z) f = 0, (1.2)

then the differential polynomial gf = d2f
′′ + d1f

′ + d0f satisfies

λ (gf − φ) = λ (gf − φ) = ρ (gf ) = ρ (f) = ∞,

αM ≥ λ2 (gf − φ) = λ2 (gf − φ) = ρ2 (gf ) = ρ2 (f) ≥ ρ (A0) ,

where αM = max {ρM (Aj) : j = 0, 1} .
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The aim of this paper is to make use the concepts of analytic functions in
the unit disc of [p, q]-order and [p, q]-type to obtain several theorems about
the growth and oscillation of solutions of differential equations (1.1) and
(1.2).

Theorem 1.1. Let p ≥ q ≥ 1 be integers, and let Aj (z) (j = 0, . . . , k − 1)
be analytic functions in ∆ satisfying

max
{
ρ[p,q] (Aj) : j = 1, . . . , k − 1

}
< ρ[p,q] (A0) .

If f ̸≡ 0 is a solution of (1.1), then ρ[p,q] (f) = ∞ and

ρ[p,q] (A0) ≤ ρ[p+1,q] (f) ≤ max
{
ρM,[p,q] (Aj) : j = 0, . . . , k − 1

}
.

Furthermore, if p > q, then

ρ[p+1,q] (f) = ρ[p,q] (A0) .

Theorem 1.2. Let p ≥ q ≥ 1 be integers. Suppose that A0 (z) , . . . , Ak−1 (z)
satisfy the hypotheses of Theorem 1.1, and let φ ̸≡ 0 be an analytic function
in ∆ such that ρ[p,q] (φ) <∞. Then every solution f ̸≡ 0 of (1.1) satisfies

λ[p,q] (f − φ) = λ[p,q] (f − φ) = ρ[p,q] (f) = ∞

and

λ[p+1,q] (f − φ) = λ[p+1,q] (f − φ) = ρ[p+1,q] (f) .

Theorem 1.3. Let p ≥ q ≥ 1 be integers, and let A0(z), A1(z) be analytic
functions in ∆ such that ρ[p,q] (A1) < ρ[p,q] (A0) = ρ (0 < ρ < ∞) and
τ[p,q] (A0) = τ (0 < τ <∞) . Let d0, d1, d2 be analytic functions in ∆ that
do not all vanish identically such that

max
{
ρ[p,q] (dj) : j = 0, 1, 2

}
< ρ[p,q] (A0) .

If f ̸≡ 0 is a solution of (1.2) , then the differential polynomial gf = d2f
′′ +

d1f
′ + d0f satisfies

ρ[p,q] (gf ) = ρ[p,q] (f) = ∞

and

ρ[p+1,q] (gf ) = ρ[p+1,q] (f) .

Theorem 1.4. Let p ≥ q ≥ 1 be integers, and let A0(z), A1(z) be ana-
lytic functions in ∆ such that ρ[p,q] (A1) < ρ[p,q] (A0) = ρ (0 < ρ <∞) and
τ[p,q] (A0) = τ (0 < τ <∞) . Let d0, d1, d2 be analytic functions in ∆ that
do not all vanish identically such that

max
{
ρ[p,q] (dj) : j = 0, 1, 2

}
< ρ[p,q] (A1) ,
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and let φ ̸≡ 0 be an analytic function in ∆ such that ρ[p,q] (φ) <∞. If f ̸≡ 0
is a solution of (1.2) , then the differential polynomial gf = d2f

′′+d1f
′+d0f

satisfies

λ[p,q] (gf − φ) = λ[p,q] (gf − φ) = ρ[p,q] (f) = ∞

and

λ[p+1,q] (gf − φ) = λ[p+1,q] (gf − φ) = ρ[p+1,q] (f) .

2. Some preliminary lemmas

Lemma 2.1. [12,14,15] Let f be a meromorphic function in the unit disc
and let k ∈ N. Then

m

(
r,
f (k)

f

)
= S (r, f) ,

where S (r, f) = O
(
log+ T (r, f) + log

(
1

1−r

))
, possibly outside a set E0 ⊂

[0, 1) with
∫
E0

dr
1−r <∞.

Lemma 2.2. [1] Let g : (0, 1) → R and h : (0, 1) → R be monotone in-
creasing functions such that g (r) ≤ h (r) holds outside of an exceptional set
E1 ⊂ [0, 1) for which

∫
E1

dr
1−r < ∞. Then there exists a constant d ∈ (0, 1)

such that if s (r) = 1− d (1− r) , then g (r) ≤ h (s (r)) for all r ∈ [0, 1).

Lemma 2.3. Let p ≥ q ≥ 1 be integers. Let Aj (j = 0, . . . , k − 1) , F ̸≡ 0 be
analytic functions in ∆, and let f (z) be a solution of the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = F (2.1)

satisfying max
{
ρ[p,q] (Aj) (j = 0, . . . , k − 1) , ρ[p,q] (F )

}
< ρ[p,q] (f) = ρ ≤

∞. Then we have

λ[p,q] (f) = λ[p,q] (f) = ρ[p,q] (f)

and

λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) .

Proof. We prove the lemma when ρ[p,q] (f) = ρ <∞. For ρ[p,q] (f) = ρ = ∞
we use a similar proof. From the equation (2.1) we get

1

f
=

1

F

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (2.2)
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If f has a zero at z0 ∈ ∆ of order α (α > k) , then we get from (2.1) that F
has a zero at z0 of order at least α− k. Hence we have

n

(
r,

1

f

)
≤ kn

(
r,

1

f

)
+ n

(
r,

1

F

)
and

N

(
r,

1

f

)
≤ kN

(
r,

1

f

)
+N

(
r,

1

F

)
. (2.3)

By the Lemma 2.1 and (2.2) , we have

m

(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k−1∑
j=0

m (r,Aj)+O

(
log+ T (r, f) + log

1

1− r

)
(2.4)

holds for all |z| = r /∈ E0, where E0 is a subset of [0, 1[ with
∫
E0

dr
1−r < ∞.

By (2.3) and (2.4) we get for all |z| = r /∈ E0

T (r, f) = T

(
r,

1

f

)
+O (1)

≤ kN

(
r,

1

f

)
+ T (r, F ) +

k−1∑
j=0

T (r,Aj) +O

(
log+ T (r, f) + log

1

1− r

)
.

(2.5)
Set max

{
ρ[p,q] (Aj) (j = 0, . . . , k − 1) , ρ[p,q] (F )

}
= β < ρ[p,q] (f) = ρ. For

any given (0 < 2ε < ρ− β) and r → 1−, we have

O

(
log+ T (r, f) + log

1

1− r

)
≤ 1

2
T (r, f) , (2.6)

k−1∑
j=0

T (r,Aj) + T (r, F ) ≤ (k + 1) expp

{
(β + ε) logq

(
1

1− r

)}

= o (1) expp

{
(ρ− ε) logq

(
1

1− r

)}
. (2.7)

Thus, by (2.5)− (2.7), we have

T (r, f) ≤ 2kN

(
r,

1

f

)
+ o (1) expp

{
(ρ− ε) logq

(
1

1− r

)}
(r /∈ E0) .

(2.8)
By using Lemma 2.2, we obtain from (2.8) that

λ[p,q] (f) = λ[p,q] (f) = ρ[p,q] (f) = ρ

and
λ[p+1,q] (f) = λ[p+1,q] (f) = ρ[p+1,q] (f) .

�
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By using Theorem 5.1 in [16], we easily obtain the following lemma. For
details see [3] .

Lemma 2.4. Let p ≥ q ≥ 1 be integers. If A0 (z) , . . . , Ak−1 (z) are analytic
functions of [p, q]-order in the unit disc ∆, then every solution f ̸≡ 0 of (1.1)
satisfies

ρ[p+1,q] (f) = ρM,[p+1,q] (f) ≤ max
{
ρM,[p,q] (Aj) : j = 0, 1, . . . , k − 1

}
.

The proofs of the following two lemmas are essentially the same as in the
corresponding results for the usual order and type. For details, see Chapter
2 of the book by Goldberg-Ostrovskii [12]. So, we omit the proofs.

Lemma 2.5. Let p ≥ q ≥ 1 be integers, and let f and g be meromorphic
functions of [p, q]-order in ∆. Then we have

ρ[p,q] (f + g) ≤ max
{
ρ[p,q] (f) , ρ[p,q] (g)

}
and

ρ[p,q] (fg) ≤ max
{
ρ[p,q] (f) , ρ[p,q] (g)

}
.

Furthermore, if ρ[p,q] (f) > ρ[p,q] (g) , then we obtain

ρ[p,q] (f + g) = ρ[p,q] (fg) = ρ[p,q] (f) .

Lemma 2.6. Let p ≥ q ≥ 1 be integers, and let f and g be meromorphic
functions of [p, q]-order in ∆ such that 0 < ρ[p,q] (f) , ρ[p,q] (g) < ∞ and
0 < τ[p,q] (f) , τ[p,q] (g) <∞. We have

(i) If ρ[p,q] (f) > ρ[p,q] (g) , then

τ[p,q] (f + g) = τ[p,q] (fg) = τ[p,q] (f) .

(ii) If ρ[p,q] (f) = ρ[p,q] (g) and τ[p,q] (f) ̸= τ[p,q] (g) , then

ρ[p,q] (f + g) = ρ[p,q] (fg) = ρ[p,q] (f) = ρ[p,q] (g) .

The following lemma is a simple consequence of Lemma 2.1. For details
see [3].

Lemma 2.7. Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function
in the unit disc ∆ such that ρ[p,q] (f) = ρ <∞, and let k ≥ 1 be an integer.
Then for any ε > 0,

m

(
r,
f (k)

f

)
= O

(
expp−1

{
(ρ+ ε) logq

(
1

1− r

)})
holds for all r outside a set E2 ⊂ [0, 1) with

∫
E2

dr
1−r <∞.
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By using the result of Chuang [10] about the relation between T (r, f ′)
and T (r, f), we can obtain the following lemma.

Lemma 2.8. Let p ≥ q ≥ 1 be integers, and let f be a meromorphic function
of [p, q]-order in ∆. Then ρ[p,q] (f

′) = ρ[p,q] (f).

3. Proof of Theorem 1.1

Denote ρ[p,q] (A0) = ρ and let f ̸≡ 0 be a solution of (1.1). From equation
(1.1) we get

A0 = −

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f

)
, (3.1)

then, by Lemma 2.1

m (r,A0) ≤
k−1∑
j=1

m (r,Aj) +O

(
log+ T (r, f) + log

(
1

1− r

))
(3.2)

holds for all |z| = r /∈ E0, where E0 is a subset of [0, 1[ with
∫
E0

dr
1−r < ∞.

By Definition A, there exists a sequence {r′n} (r′n −→ 1−) such that

lim
r′n 7→1−

log+p T (r′n, A0)

logq
1

1−r′n

= ρ.

Set
∫
E0

dr
1−r := log γ <∞. Since

∫ 1− 1−r
′
n

γ+1

r′n

dr
1−r = log (γ + 1), then there exists

a point rn ∈
[
r
′
n, 1−

1−r
′
n

γ+1

]
−E0 ⊂ [0, 1). From

log+p T (rn, A0)

logq
1

1−rn

≥
log+p T

(
r
′
n, A0

)
logq

(
γ+1

1−r
′
n

) =
log+p T

(
r
′
n, A0

)
logq−1

[(
1 + log(γ+1)

log 1

1−r
′
n

)
log 1

1−r′n

] ,
it follows that

lim
rn→1−

log+p T (rn, A0)

logq
1

1−rn

= ρ.

Set max
{
ρ[p,q] (Aj) : j = 1, . . . , k − 1

}
= β < ρ[p,q] (A0) = ρ. So, for any

given ε (0 < 2ε < ρ− β) , we have

T (rn, A0) > expp

{
(ρ− ε) logq

(
1

1− rn

)}
(3.3)
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and for j = 1, . . . , k − 1

T (rn, Aj) ≤ expp

{
(β + ε) logq

(
1

1− rn

)}
(3.4)

hold for rn → 1−. By (3.2), (3.3) and (3.4), we get for rn → 1−

expp

{
(ρ− ε) logq

(
1

1− rn

)}
≤ (k − 1) expp

{
(β + ε) logq

(
1

1− rn

)}
+O

(
log

1

1− rn
T (rn, f)

)
. (3.5)

Noting that ρ− ε > β + ε, it follows from (3.5) that for rn → 1−

(1− o (1)) expp

{
(ρ− ε) logq

(
1

1− rn

)}
≤ O

(
log

1

1− rn
T (rn, f)

)
.

(3.6)
Hence, by (3.6) we obtain ρ[p,q] (f) = ∞ and

ρ[p+1,q] (f) = lim sup
rn→1−

log+p+1 T (rn, f)

logq
1

1−rn

≥ ρ− ε. (3.7)

Since ε > 0 is arbitrary we get from (3.7) that ρ[p+1,q] (f) ≥ ρ = ρ[p,q] (A0) .
On the other hand, by Lemma 2.4, we have

ρ[p+1,q] (f) = ρM,[p+1,q] (f) ≤ max
{
ρM,[p,q] (Aj) : j = 0, 1, . . . , k − 1

}
.

It yields

ρ[p,q] (A0) ≤ ρ[p+1,q] (f) = ρM,[p+1,q] (f)

≤ max{ρM,[p,q] (Aj) : j = 0, 1, . . . , k − 1}.

If p > q, then we have

max
{
ρM,[p,q] (Aj) : j = 0, 1, . . . , k − 1

}
= ρ[p,q] (A0) .

Therefore, we deduce that

ρ[p+1,q] (f) = ρ[p,q] (A0) .

4. Proof of Theorem 1.2

Suppose that f ̸≡ 0 is a solution of equation (1.1) . Then by Theorem 1.1,
we have ρ[p,q] (f) = ∞ and

ρ[p,q] (A0) ≤ ρ[p+1,q] (f) ≤ max
{
ρM,[p,q] (Aj) : j = 0, . . . , k − 1

}
.

Furthermore, if p > q, then

ρ[p+1,q] (f) = ρ[p,q] (A0) .



80 ZINELAÂBIDINE LATREUCH AND BENHARRAT BELAÏDI

Set w = f−φ. Since ρ[p,q] (φ) <∞, then by Lemma 2.5, we have ρ[p,q] (w) =
ρ[p,q] (f − φ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (w)= ρ[p+1,q] (f − φ)= ρ[p+1,q] (f) .
Substituting f = w + φ into equation (1.1) , we obtain

w(k) +Ak−1 (z)w
(k−1) + · · ·+A0 (z)w

= −(φ(k) +Ak−1 (z)φ
(k−1) + · · ·+A0 (z)φ) =W. (4.1)

Since φ ̸≡ 0 and ρ[p,q] (φ) < ∞, then by Theorem 1.1, we have W ̸≡
0. Then by Lemma 2.3, we obtain λ[p,q] (w) = λ[p,q] (w) = ρ[p,q] (w) = ∞
and λp+1 (w) = λp+1 (w) = ρp+1 (w) , i.e., λ[p,q] (f − φ) = λ[p,q] (f − φ) =

ρ[p,q] (f) = ∞ and λ[p+1,q] (f − φ) = λ[p+1,q] (f − φ) = ρ[p+1,q] (f) .

5. Proof of Theorem 1.3

Suppose that f ̸≡ 0 is a solution of equation (1.2) . Then by Theorem 1.1,
we have ρ[p,q] (f) = ∞ and

ρ[p,q] (A0) ≤ ρ[p+1,q] (f) ≤ max
{
ρM,[p,q] (Aj) : j = 0, 1

}
.

Furthermore, if p > q, then

ρ[p+1,q] (f) = ρ[p,q] (A0) .

Substituting f ′′ = −A1f
′ −A0f into gf , we get

gf = (d1 − d2A1) f
′ + (d0 − d2A0) f. (5.1)

Differentiating both sides of equation (5.1) and replacing f ′′ with f ′′ =
−A1f

′ −A0f, we obtain

g′f =
[
d2A

2
1 − (d2A1)

′ − d1A1 − d2A0 + d0 + d′1
]
f ′

+
[
d2A0A1 − (d2A0)

′ − d1A0 + d′0
]
f. (5.2)

Set

α1 = d1 − d2A1, α0 = d0 − d2A0, (5.3)

β1 = d2A
2
1 − (d2A1)

′ − d1A1 − d2A0 + d0 + d′1, (5.4)

β0 = d2A0A1 − (d2A0)
′ − d1A0 + d′0. (5.5)

Then, we have

α1f
′ + α0f = gf , β1f

′ + β0f = g′f . (5.6)

Set

h = α1β0 − α0β1 = (d1 − d2A1)
(
d2A0A1 − (d2A0)

′ − d1A0 + d′0
)

− (d0 − d2A0)
(
d2A

2
1 − (d2A1)

′ − d1A1 − d2A0 + d0 + d′1
)
. (5.7)
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First we suppose that d2 ̸≡ 0. Now check all the terms of h. Since the term
d22A

2
1A0 is eliminated, by (5.7) we can write

h = −d22A2
0 − d0d2A

2
1 +

(
d′1d2 + 2d0d2 − d′2d1 − d21

)
A0

+
(
d′2d0 − d2d

′
0 + d0d1

)
A1 + d1d2A0A1

−d1d2A′
0 + d0d2A

′
1 + d22A

′
0A1 − d22A0A

′
1 + d′0d1 − d0d

′
1 − d20. (5.8)

By d2 ̸≡ 0, A0 ̸≡ 0 and Lemmas 2.5-2.6 we have ρ[p,q] (h) = ρ[p,q] (A0), thus
h ̸≡ 0. Now suppose d2 ≡ 0, d1 ̸≡ 0, by using a similar reasoning as above
we get h ̸≡ 0. Finally if d2 ≡ 0, d1 ≡ 0 and d0 ̸≡ 0, we have h = −d20 ̸≡ 0.
Hence h ̸≡ 0. By h ̸≡ 0, (5.6) and (5.7) , we obtain

f =
α1g

′
f − β1gf

h
. (5.9)

If ρ[p,q](gf ) < ∞, then by (5.9) , Lemma 2.5 and Lemma 2.8 we have
ρ[p,q](f) <∞, and this is a contradiction. Hence ρ[p,q] (gf ) = ρ[p,q] (f) = ∞.

Now, we prove that ρ[p+1,q] (gf ) = ρ[p+1,q] (f). By (5.1) , Lemma 2.5 and
Lemma 2.8, we get ρ[p+1,q](gf ) ≤ ρ[p+1,q](f) and by (5.9) we have ρ[p+1,q] (f)
≤ ρ[p+1,q] (gf ) . This yields ρ[p+1,q] (gf ) = ρ[p+1,q] (f).

6. Proof of Theorem 1.4

Suppose that f ̸≡ 0 is a solution of equation (1.2) . Then, by Theo-
rem 1.3, we have ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (gf ) = ρ[p+1,q] (f) .

Set w (z) = d2f
′′
+ d1f

′
+ d0f − φ. Then, by ρ[p,q] (φ) < ∞, we have

ρ[p,q] (w) = ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and ρ[p+1,q] (w) = ρ[p+1,q] (gf ) =

ρ[p+1,q] (f). In order to prove λ[p,q] (gf − φ) = λ[p,q] (gf − φ) = ρ[p,q] (f) =

∞, λ[p+1,q] (gf − φ) = λ[p+1,q] (gf − φ) = ρ[p+1,q] (f) , we need to prove only

λ[p,q] (w) = λ[p,q] (w) = ρ[p,q] (f) =∞, λ[p+1,q] (w)=λ[p+1,q] (w)=ρ[p+1,q] (f) .
Using gf = w + φ, we get from (5.9)

f =
α1w

′ − β1w

h
+ ψ, (6.1)

where

ψ (z) =
α1φ

′ − β1φ

h
. (6.2)

Substituting (6.1) into equation (1.2) , we obtain

α1

h
w′′′ + ϕ2w

′′ + ϕ1w
′ + ϕ0w = −

(
ψ′′ +A1 (z)ψ

′ +A0 (z)ψ
)
= A, (6.3)

where ϕj (j = 0, 1, 2) are meromorphic functions in ∆ with ρ[p,q] (ϕj) < ∞
(j = 0, 1, 2).
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Now, we prove that ψ (z) ̸≡ 0. Assume that ψ (z) ≡ 0. Then from (6.2) ,
we obtain that

β1 = α1
φ′

φ
. (6.4)

Set ρ[p,q] (φ) = α <∞. Then, by (6.4) and Lemma 2.7, we have

m(r, β1) ≤ m(r, α1) +O

(
expp−1

{
(α+ ε) logq

(
1

1− r

)})
(6.5)

holds for all r outside a set E2 ⊂ [0, 1) with
∫
E2

dr
1−r <∞.

(i) If d2 ̸≡ 0, by Lemma 2.2 and (6.5) we obtain

ρ[p,q] (A0) ≤ ρ[p,q] (A1) .

This is a contradiction.
(ii) If d2 ≡ 0 and d1 ̸≡ 0, by Lemma 2.2 and (6.5) we obtain

ρ[p,q] (A1) ≤ ρ[p,q] (d1) .

This is a contradiction.
(iii) If d2 = d1 ≡ 0 and d0 ̸≡ 0, we have by (6.5)

β1 = d0 = α1
φ′

φ
≡ 0

which is a contradiction. Hence ψ (z) ̸≡ 0.
By ψ (z) ̸≡ 0 and ρ[p,q] (ψ) < ∞, it follows by Theorem 1.1 that A ̸≡ 0.

Then by h ̸≡ 0 and Lemma 2.3, we obtain λ[p,q] (w) = λ[p,q] (w) = ρ[p,q] (w) =

∞ and λ[p+1,q] (w) = λ[p+1,q] (w) = ρ[p+1,q] (w), that is, λ[p,q] (gf − φ) =

λ[p,q] (gf − φ) = ρ[p,q] (gf ) = ρ[p,q] (f) = ∞ and λ[p+1,q](gf − φ) = λ[p+1,q](gf
−φ) = ρ[p+1,q](f).
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