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I–CONVERGENCE ON CONE METRIC SPACES

SUDIP KUMAR PAL, EKREM SAVAS AND HUSEYIN CAKALLI

Abstract. The concept of I–convergence is an important generaliza-
tion of statistical convergence which depends on the notion of an ideal
I of subsets of the set N of positive integers. In this paper we introduce
the ideas of I–Cauchy and I∗–Cauchy sequences in cone metric spaces
and study their properties. We also investigate the relation between this
new Cauchy type condition and the property of completeness.

1. Introduction

Since 1951 when Steinhaus [14] and Fast [5] defined statistical convergence
for sequences of real numbers, several generalizations and applications of this
notion have been investigated. In particular two interesting generalizations
of statistical convergence were introduced by Kostyrko et al [7] using the
notion of ideals of the set N of positive integers who named them as I and
I∗-convergence. Corresponding I-Cauchy condition was first introduced and
studied by Dems [4] . I∗-Cauchy sequences has been very recently introduced
by Nabiev et al [11] in metric spaces and further investigated by Das et al [2].

The concept of a cone metric space is a very recent and interesting gener-
alization of the notion of an usual metric space where the distance between
two points is given by an element of a Banach space endowed with a suit-
able partial order. after the initial introduction of this space by Guang and
Xian [10, 11], a lot of work have been done on this structure, in particu-
lar in fixed point theory. In this paper we proceed in a different direction
and study ideal convergence and related Cauchy conditions in cone metric
spaces. Our results automatically extend the results of [2], [4], [7], [11].
However it should be noted that due to the absence of real numbers (which
are replaced by elements of a Banach space), the methods of proofs are not
always analogous to the usual metric case.
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2. Preliminaries

Throughout the paper N will denote the set of all positive integers. A
family I ⊂ 2Y of subsets of a non-empty set Y is said to be an ideal in
Y if (i) A,B ∈ I implies A ∪ B ∈ I; (ii) A ∈ I,B ⊂ A implies B ∈ I,
while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y .
If I is a proper ideal in Y ( i.e. Y /∈ I , Y ̸= ϕ) then the family of sets
F (I) = {M ⊂ Y : there exists A ∈ I : M = Y \ A} is a filter in Y . It is
called the filter associated with the ideal I. Throughout I will denote an
admissible ideal of N.

A sequence {xn}n∈N in a metric space (X, d) is said to be I-convergent
to x ∈ X, if for each ϵ > 0 the set A(ϵ) = {n ∈ N : d(xn, x) ≥ ϵ} belongs to
I [5].

An admissible ideal I ⊂ 2N is said to satisfy the condition (AP ) if for any
sequence {A1, A2, . . . , } of mutually disjoint sets in I, there is a sequence
{B1, B2, . . . } of subsets of N such that Ai∆Bi (i = 1, 2, 3, . . . ) is finite and
B =

∪
j∈NBj ∈ I.

We now recall the following basic concepts from [10] which will be needed
throughout the paper. E will always denote a real Banach space and let P
be a subset of E. P is called a cone if and only if: (i) P is closed, nonempty,
and P ̸= {0}; (ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ; (iii)
x ∈ P and −x ∈ P implies x = 0.

Given a cone P ⊂ E, we can define a partial ordering ≤ with respect to P
by defining x ≤ y if and only if y − x ∈ P. We shall write x < y to indicate
that x ≤ y but x ̸= y, while x ≪ y will stand for y − x ∈ intP, where intP
stands for the interior of P.

The cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E, 0 ≤ x ≤ y we have ||x|| ≤ K||y||. The least positive number K
satisfying above is called the normal constant of P . The cone P is called
regular if every increasing sequence which is bounded from above is conver-
gent, i.e. if {xn}n∈N is a sequence such that x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y
for some y ∈ E, then there is x ∈ E such that ||xn − x|| → 0 as n → ∞.
Equivalently the cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent. It is well known that a regular
cone is a normal cone. Throughout we always assume that E is a Banach
space, P is a cone in E with intP ̸= ϕ and ≤ stand for the partial ordering
with respect to P.

Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies (d1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X; (d3) d(x, y) ≤ d(x, z) + d(y, z) for all
x, y, z ∈ X. Then d is called a cone metric on X, and (X, d) is called a cone
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metric space. It is obvious that the notion of cone metric spaces generalizes
the notion of metric spaces.

We now give an example of a cone metric space. Let E = R2, P =
{(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and d : X × X → E is given by
d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then it is easy to
verify that (X, d) is a cone metric space.

Let (X, d) be a cone metric space. Let {xn}n∈N be a sequence in X and
let x ∈ X. If for every c ∈ E with 0 ≪ c there is J ∈ N such that for all
n > J, d(xn, x) ≪ c, then {xn}n∈N is said to be convergent to x and x is
called the limit of the sequence {xn}n∈N. We denote this by lim

n→∞
xn = x.

If for any c ∈ E with 0 ≪ c, there is J ∈ N such that for all n,m >
J, d(xn, xm) ≪ c, then {xn}n∈N is called a Cauchy sequence in X. If every
Cauchy sequence in X is convergent in X then X is called a complete cone
metric space [10].

We first consider the following definitions.

Definition 1. Let (X, d) be a cone metric space. Let {xn}n∈N be a sequence
in X and let x ∈ X. If for every c ∈ E with 0 ≪ c (i.e. c−0 ∈ intP ) the set
{n ∈ N : c − d(xn, x) /∈ intP} ∈ I then {xn}n∈N is said to be I-convergent
to x and we write I − limn→∞xn = x.

Definition 2. A sequence {xn}n∈N in X is said to be I∗-convergent to x ∈ X
if and only if there exists a set M ∈ F (I),M = {m1 < m2 < · · · < mk <
. . . } such that limk→∞xmk

= x. i.e. for every c ∈ E with 0 ≪ c, there exists
p ∈ N such that c− d(xmk

, x) ∈ intP, for all k ≥ p.

It is known [16] that any cone metric space is a first countable Hausdorff
topological space with the topology induced by the open balls defined nat-
urally for each element z in X and for each element c in intP . So as in
[9] we can show that I∗-convergence always implies I-convergence but the
converse is not true. The two concepts are equivalent if and only if the ideal
I has condition (AP ).

Further, throughout our paper we consider only cone metric spaces X
with normal cone P and it is also known that

For a, b, c ∈ X, a ≤ b, b ≪ c ⇒ a << c. (*)

Note that the example of the cone metric space given above ( see also [10])
is such a cone metric space.

3. I and I∗-Cauchy conditions in cone metric spaces

We first introduce the following definitions.
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Definition 3. The sequence {xn}n∈N in X is said to be I−Cauchy if for
every c ∈ E with 0 ≪ c there exists J such that the set {n ∈ N : c −
d(xn, xJ) /∈ intP} ∈ I.

Definition 4. The sequence {xn}n∈N in X is said to be an I∗-Cauchy se-
quence if there exists a set M = {m1 < m2 < · · · < mk < . . . } ⊂ N
with M ∈ F (I) such that the subsequence {xmk

}k∈N is an ordinary Cauchy
sequence in X.

Theorem 1. Let I be an arbitrary admissible ideal. Then I−limn→∞xn = ξ
implies that {xn}n∈N is an I-Cauchy sequence.

Proof. Let I − limn→∞xn = ξ. Then for each c ∈ E with 0 ≪ c we have
A(c) = {n ∈ N : c − d(xn, ξ) /∈ intP} ∈ I. Since I is an admissible ideal,
there exists an n0 ∈ N such that n0 /∈ A(c). Let us put B(c) = {n ∈ N :
2c ≤ d(xn, xn0)}. Then if n ∈ B(c) it follows that d(xn, ξ) + d(xn0 , ξ) ≥
d(xn, xn0) ≥ 2c and d(xn0 , ξ) ≪ c and so we must have d(xn, ξ) ≥ c. This
implies c− d(xn, ξ) /∈ intP. Hence n ∈ A(c). Thus B(c) ⊂ A(c) ∈ I, for each
0 ≪ c. Therefore it follows that B(c) ∈ I and consequently {xn}n∈N is an
I-Cauchy sequence. �
Theorem 2. Let (X, d) be a cone metric space and let I be an admissible
ideal of N. If {xn}n∈N is an I∗-Cauchy sequence in X then it is an I-Cauchy
sequence.

Proof is omitted.

Lemma 1. Let {Ai}i∈N be a countable family of subsets of N such that
Ai ∈ F (I) for each i where F (I) is the filter associated with an admissible
ideal I with the property (AP). Then there is a set A ∈ N such that A ∈ F (I)
and the sets A \Ai is finite for all i.

Theorem 3. If I has property (AP) then the concepts of I and I∗-Cauchy
conditions coincide.

Proof. Let {xn}n∈N be an I-Cauchy sequence in X. Then from the definition
there exists an J = J(c) such that the set A(c) = {n ∈ N : c − d(xn, xJ) /∈
intP} ∈ I for every c ∈ E with 0 ≪ c. Let x ∈ P with x ̸= 0. Now define
Ai = {n ∈ N : d(xn, xmi) <

x
i }, i = 1, 2, 3, . . . where mi = J(xi ). It is clear

that Ai ∈ F (I) for i = 1, 2, . . . . Since I has the property (AP) there exists
a set Q ⊂ N such that Q ∈ F (I) and Q \Ai is finite for all i.

Let c ∈ E with 0 ≪ c and let j ∈ N be such that 2x
j ≪ c. As Q \ Aj is

finite, there exists k = k(j) such that for all m,n ∈ Aj , we have m,n > k(j).
Therefore d(xn, xmj ) <

x
j and d(xm, xmj ) <

x
j for all m,n > k(j). Then it

readily follows that d(xn, xm) ≤ d(xn, xmj )+d(xm, xmj ) ≪ c form,n > k(j).
Thus {xn}n∈Q is an ordinary Cauchy sequence.
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The following example shows that in general I-Cauchy condition does not
imply I∗-Cauchy condition. �

Example 1. Let (X, d) be a cone metric space containing a Cauchy sequence
{xn}n∈N of distinct elements. Let N =

∪
j∈N∆j be a decomposition of N such

that each ∆j is finite and ∆i ∩ ∆j = ∅ for i ̸= j. Let I be the class of all
those subsets A of N which intersects only finite number of ∆j ’s. Then I is
a non trivial admissible ideal of N.

Define a sequence {yn}n∈N as yn = xj if n ∈ ∆j . Then clearly {yn}n∈N is
an I-Cauchy sequence. If possible assume that {yn}n∈N is also I∗-Cauchy.
Then there is an A ∈ F (I) such that {yn}n∈A is a Cauchy sequence. As
N \A ∈ I so there exists l ∈ N such that N \A ⊂ ∆1 ∪∆2 ∪ · · · ∪∆l. Let us
put d(xl+1, xl+2) = ϵ0. Then 0 < ϵ0. From the construction of ∆′

js it clearly
follows that for any given k ∈ N there are m ∈ ∆l+1 and n ∈ ∆l+2 such
that m,n ≥ k. Hence there is no k ∈ N such that whenever m,n ∈ A with
m,n ≥ k then d(ym, yn) ≪ ϵ where ϵ = ϵ0

2 . This contradicts the fact that
{yn}n∈A is Cauchy.

Theorem 4. Let (X, d) be a cone metric space containing at least one ac-
cumulation point. If for every sequence {xn}n∈N in X, I-Cauchy condition
implies I∗-Cauchy condition then I satisfies the condition(AP).

Proof. Let x0 be an accumulation point of X. Then there exists a sequence
{xn}n∈N of distinct points of X which converges to x0 and xn ̸= x0 for all
n ∈ N. Let {Ai : i = 1, 2, 3, . . . } be a sequence of mutually disjoint non
empty sets from I. define a sequence {yn}n∈N as yn = xj if n ∈ Aj and
yn = x0 if n /∈ Aj for any j ∈ N. Let c ∈ E with 0 ≪ c. Then there
exists l ∈ N such that d(x0, xn) ≪ c

2 for all n ≥ l. Then A( c2) = {n ∈ N :
c
2−d(x0, xn) /∈ intP} ⊂ A1∪A2∪· · ·∪Al ∈ I. Now clearly i, j /∈ A( c2) implies
that d(x0, yi) ≪ c

2 and d(x0, yj) ≪ c
2 which shows that d(yi, yj) ≪ c and

consequently {yn}n∈N is an I-Cauchy sequence. By our assumption {yn}n∈N
is then also I∗-Cauchy. Hence there existsH ∈ I such that B = N\H ∈ F (I)
and {yn}n∈B is an ordinary Cauchy sequence.

Now let Bj = Aj ∩ H for j ∈ N. Then each Bj ∈ I. Further ∪Bj =
H ∩ (∪Aj) ⊂ H. Therefore ∪Bj ∈ I. Now for the sets Ai ∩ B, i ∈ N
following three cases may arise.

Case (I) : Each Ai ∩B is included in a finite subset of N.
Case (II) : Only one of Ai∩B′s, namely, Ak ∩B is not included in a finite

subset of N.
Case (III) : More than one of Ai ∩ B′s are not included in finite subsets

of N.
If (I) holds then Aj∆Bj = Aj \ Bj = Aj \ H = Aj ∩ B is included in a

finite subset of N which shows that I has the property (AP). If (II) holds
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then we redefine Bk = Ak and Bj = Aj ∩ H for j ̸= k. Then
∪

n∈NBn =
[H ∩ (

∪
j ̸=kAj)] ⊂ H ∪ Ak and so ∪Bj ∈ I. Also since Ai∆Bi = Ai ∩ B for

i ̸= k and Ak∆Bk = ∅ so as in Case (I) the criterion for (AP) condition is
satisfied.

If (III) holds then there exists k, l ∈ N with k ̸= l such that Ak ∩ B and

Al ∩ B are not included in any finite subset of N. Let us put d(xk,xl)
2 = ϵ0.

Then 0 < ϵ0. Let ϵ > 0 be given. Choose c ∈ E such that K||c|| < ϵ. As
{yn}n∈B is a Cauchy sequence so there exists k0 ∈ N such that d(yi, yj) ≪ c
for all i, j ≥ k0; i, j ∈ B. Then ||d(yi, yj)|| << K||c|| < ε and so d(yi, yj) → 0
as i, j → ∞, i, j ∈ B.

Now since Ak ∩ B and Al ∩ B are not included in finite subsets of N so
we can choose i ∈ Ak ∩ B and j ∈ Al ∩ B with i, j ≥ k0. But yi = xk and
yj = xl and hence 0 < ϵ0 < d(xk, xl) = d(yi, yj) (in fact there are infinitely
many indices with that property). This contradicts the fact that {yn}n∈B is
Cauchy. Therefore case(III) can not arise and in view of Case (I) and Case
(II) I satisfies (AP) condition. �

4. I-Cauchy condition and completeness

Let us denote,

m(X)≡
{
the space of all bounded sequence in X endowed with sup-norm

}
.

F(I) = {x = {xn}n∈N ∈ m(X) : there is I − lim xn ∈ X}
F(I∗) = {{xn}n∈N ∈ m(X) : there is I∗ − lim xn ∈ X} .

We first show the following interesting implication of the completeness of
the space.

Theorem 5. Let (X, d) be a complete cone metric space and let I be an
admissible ideal of N. Then F(I) is a closed subspace of m(X).

Proof. Let x(m) = {x(m)
k }k∈N ∈ F (I) (m = 1, 2, 3, . . . ) and limm→∞x(m) = x

where x = {xk} ∈ m(X). That is, limm→∞d(x(m), x) = 0 (where d denoted
the sup metric in m(X)). We show that x ∈ F (I). By our assumption each

x(m) is I-convergent in X and let I − limm→∞x(m) = ξm, m = 1, 2, 3, . . . .
Since limm→∞x(m) = x, so {x(m)}m∈N is a Cauchy sequence in m(X).

Let ϵ ∈ E with 0 ≪ ϵ. Then there exists m0 such that for all u, v > m0,

d(x(u), x(v)) ≪ ϵ
3 . Fix u, v > m0. Note that the set U( ϵ3) = {j : d(x

(u)
j , ξu) ≪

ϵ
3}, V ( ϵ3) = {j : d(x

(v)
j , ξv) ≪ ϵ

3} belongs to F (I). Thus their intersection

is non-void. For any element s ∈ U( ϵ3) ∩ V ( ϵ3) we have d(x
(u)
s , ξu) <

ϵ
3 and

d(x
(v)
s , ξv) <

ϵ
3 . Thus d(ξu, ξv) ≤ d(ξu, x

(u)
s ) + d(x

(u)
s , x

(v)
s ) + d(x

(v)
s , ξv) ≪ ϵ
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( since d(x(u), x((v))) ≪ ϵ
3 so this implies that sups d(x

(u)
s , x

(v)
s ) ≪ ϵ

3 which

implies that d(x
(u)
s , x

(v)
s ) ≪ ϵ

3 , for any s).
Hence {ξm}m∈N is a Cauchy sequence in X. Since X is complete there

exists ξ = limm→∞ξm ∈ X. Let η ∈ E with 0 ≪ η. Choose v0 such that for
v > v0 we have simultaneously d(ξv, ξ) ≪ η

3 and d(x(v), x) ≪ η
3 . Then for

each n ∈ N we have d(xn, ξ) ≤ d(xn, x
(v)
n ) + d(x

(v)
n , ξv) + d(ξv, ξ). Let us put

A(η) = {n : η − d(xn, ξ) /∈ intP}, A(η)c = {n : η − d(xn, ξ) ≪ η}

Av

(η
3

)
=

{
n :

η

3
− d(xvn, ξv) /∈ intP

}
, Av

(η
3

)c
=

{
n : d(xvn, ξv) ≪

η

3

}
.

Thus for n ∈ Av(η)
c the inequality d(xn, ξ) ≪ η and the inclusion Av(

η
3 )

c ⊂
A(η)c holds. We now observe that Av(

η
3 ) ∈ I. Also we have A(η) ⊂ Av(

η
3 )

which shows that A(η) ∈ I. Hence x ∈ m(X). �

Theorem 6. For every admissible ideal I of N we have F(I∗) = F(I).

The proof is straight forward and so is omitted.

We will need the following result.

Lemma 2. Let (X, d) be a complete cone metric space and let {Fn}n∈N be a
decreasing sequence of non empty closed subsets of X such that diam(Fn) →
0. Then the intersection ∩∞

n=1Fn contains exactly one point.

Proof. Let us construct a sequence {xn}n∈N in X by selecting a point xn ∈
Fn for each n. Since the sets Fn are nested, consequently xn ∈ Fm for all
n ≥ m. We now show that {xn}n∈N is a Cauchy sequence. Let c ∈ E
with 0 ≪ c. Since diam(Fn) → 0, there exists a positive integer N such
that diam(FN ) ≪ c. Note that xn, xm ∈ FN for all n,m ≥ N and so we
have d(xn, xm) ≤ diam(FN ) ≪ c. Therefore we have d(xn, xm) ≪ c for all
n,m ≥ N which implies that {xn}n∈N is a Cauchy sequence. Since (X, d) is
complete there exists x ∈ X such that xn → x.

Now we claim that x ∈ ∩∞
n=1Fn. Let n be fixed. Then the subsequence

{xn, xn+1, . . . } of {xn}n∈N is contained in Fn and still converges to x. But
Fn being a closed subspace of the complete cone metric space X is also
complete and so x ∈ Fn. This is true for each n ∈ N and hence x ∈ ∩∞

n=1Fn.
Finally let y ∈ ∩∞

n=1Fn. Then x, y ∈ Fn for each n. Therefore 0 ≤ d(x, y) ≤
diam(Fn). Now diam(Fn) → 0 as n → ∞. Thus for c ∈ E with 0 ≪ c, there
exists m ∈ N such that diam(Fn) ≪ c for all n ≥ m which shows that
d(x, y) ≪ c. Since c ∈ E is arbitrary we have d(x, y) = 0 which implies that
x = y. �
Theorem 7. If (X, d) is a complete cone metric space then every I-Cauchy
sequence in X is I-convergent in X.
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Proof. Let {xn}n∈N be an I-Cauchy sequence in X. Let y ∈ P and y ̸= 0.
Consider the sequence ϵm = y

m , m = 1, 2, 3, . . . . Then {ϵm}m∈N ∈ P and
||ϵm|| → 0. Now according to I-Cauchy condition pick numbers k(m) ∈
N,m ∈ N such that Am = {n ∈ N : ϵm

2 − d(xn, xk(m)) /∈ intP} ∈ I for all
m ∈ N. Let us define inductively

B1 = clB(xk(1), ϵ1), Bm+1 = Bm ∩ clB(xk(m+1), ϵm+1),m ∈ N.

Let us prove that Bm ̸= ∅ for each m ∈ N. We have A1 ∈ I and xn ∈ B1 for
all n /∈ A1. Assume that m ∈ N and C ∈ I is a set such that xn ∈ Bm for
each n /∈ C. We have Am+1 ∈ I and xn ∈ Bm+1 for all n /∈ C ∪Am+1. Thus
Bm ̸= ∅ for each m.

Since additionally Bm+1 ⊂ Bm for all m and the diameter of Bm tends
to zero so there is an x ∈ X such that ∪m∈NBm = {x} by Lemma 2. Now
it suffices to show that I − limxn = x. Let ϵ ∈ E with 0 ≪ ϵ and pick an
m ∈ N such that ϵm < ϵ

2 . Let us put A(ϵ) = {n : ϵ − d(xn, x) ∈ intP}
and B(ϵ) = {n : ϵ − d(xn, xk(m)) − d(xk(m), x)} ∈ intP. Since d(xn, x) ≤
d(xn, xk(m)) + d(xk(m), x) and P be a normal cone with normal constant
k < 1 we have B(ϵ) ⊂ A(ϵ) that is Ac(ϵ) ⊂ Bc(ϵ). As x ∈ Bm we get
d(xk(m), x) ≤ ϵm < ϵ

2 . Therefore Ac(ϵ) ⊂ {n : ϵ
2 − d(xn, xk(m)) /∈ intP} ⊂

{n : ϵm − d(xn, xk(m)) /∈ intP} ⊂ Am ∈ I. Thus I − limn→∞xn = x. �
Theorem 8. If every I-Cauchy sequence in X is I-convergent in X then
X is complete.

The proof is parallel to the metric case and so is omitted.
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