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AN EXTENSION OF TWO RESULTS OF HARDY

B. E. RHOADES

Abstract. In this paper we extend two results of Hardy, dealing with
regular weighted mean matrices, to coregular factorable matrices.

A weighted mean matrix is a lower triangular infinite matrix with nonzero
entries pk/Pn, 0 ≤ k ≤ n, where {pk} is a nonnegative sequence with p0 > 0,
and Pn :=

∑n
k=0 pk. A factorable matrix is a lower triangular matrix with

nonnegative entries anbk, 0 ≤ k ≤ n. Obviously a weighted mean matrix is
a special case of a factorable matrix obtained by setting bk = pk, an = 1/Pn.

An infinite matrix is said to be regular if it is limit-preserving over c,
the space of convergent sequences. Necessary and sufficient conditions for
a matrix A = (ank) to be regular are the well-known Silverman-Toeplitz
conditions:

(i) ∥A∥ := supn
∑

k |ank| < ∞,
(ii) limn ank = 0 for each k,
(iii) limn

∑
k ank = 1.

An infinite matrix A is said to be conservative if A : c → c. The Silverman-
Toeplitz conditions for a matrix to be conservative are

(i′) ∥A∥ < ∞,
(ii′) αk exists for each k, where αk := limn ank,
(iii′) t := limn tn exists, where tn :=

∑
k ank.

A conservative matrix is called coregular if χ(A) := t−
∑

k αk ̸= 0.
It is a straightforward exercise to verify that a nonnegative conservative

factorable matrix A = (anbk) is coregular if and only if

lim
n

an = 0 and t = lim
n

anBn ̸= 0,

where Bn :=
∑n

k=0 bk. A weighted mean matrix is regular if and only if
limPn = ∞.
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Given an infinite matrix A and a sequence x, An(x) :=
∑

k ankxk. The
convergence domain of A, written cA, is defined by

cA = {x : lim
n

An(x) exists}.

Theorem 1. Let A = (anbk) be a nonnegative coregular factorable matrix.
Then cA = c if and only if

lim inf
bn+1

Bn
> 0. (1)

Proof. Note that, if an = 0 for an infinite number of values of n, say {ni},
then A is not coregular, since then tni = 0, which contradicts t ̸= 0.

If bk = 0 for an infinite sequence, say {kj}, then, for the sequence x
defined by xn = 0 for n ̸= kj , xkj = 1, An(x) = 0 and hence cA ̸= c. Thus, if
cA = c, then there are only a finite number of values of n for which an = 0
or bn = 0. On the other hand, if (1) holds, then clearly bn = 0 for only a
finite number of values of n. Thus the hypotheses of Theorem 1 ensure that
there are only a finite number of values of n for which an or bn is zero.

We now define a new factorable matrix D by

cn =

{
an, if an ̸= 0,

1, if an = 0,
dn =

{
bn, if bn ̸= 0,

1, if bn = 0.

Since there are only a finite number of values of n for which an = 0, D is
coregular since A is. Let N denote the largest value of n for which an = 0.
Then, with K := {k1, k2, . . . , kM}, where bk1 = bk2 = · · · = bkM = 0, for
n > N,

Dn(x) =

n∑
k=0

cndkxk =

n∑
k=0

anbkxk +
∑
k∈K

anbkxk

= An(x) + an
∑
k∈K

bkxk,

which implies that cA = cD.
Suppose that lim inf an−1bn = 0. Then there exists a subsequence {ni} of

N such that limi ani−1bni = 0. But

ani−1bni = ani−1Bni−1
bni

Bni−1
,

and limi ani−1Bni−1 = t ̸= 0, which implies that

lim inf
bni

Bni−1
= 0,

contradicting (1). Therefore (1) implies that

lim inf an−1bn > 0. (2)
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Now suppose that lim inf anbn = 0. Then there exists a subsequence {nj}
of N such that limj anjbnj = 0. Since

anjbnj = anjBnj

bnj

Bnj

,

and limj anjBnj = t ̸= 0, it follows that

lim
j

bnj

Bnj

= 0.

But, assuming that nj /∈ K,

Bnj

bnj

=
Bnj−1 + bnj

bnJ

=
Bnj−1

bnj

+ 1,

and hence limj bnj/Bnj = 0, again contradicting (1). Therefore (1) also
implies that

lim inf anbn ̸= 0. (3)

Since only a finite number of the an can be zero, conditions (2) and (3)
imply that

lim inf cn−1dn ̸= 0 and lim inf cndn ̸= 0. (4)

A triangle is a lower triangular matrix with all of the main diagonal entries
nonzero. Since D is a factorable triangle, it has a unique two sided inverse
D−1 and D−1 is bidiagonal with entries

d−1
nn =

1

cndn
, d−1

n,n−1 = − 1

cn−1dn
,

and d−1
nk = 0 otherwise. (See, e.g., Lemma 2.1 of [1].)

If cA = c then cD = c so that D−1 is conservative and the row norm
condition implies that (4) must hold. Writing, for sufficiently large n,

anbn+1 = anBn
bn+1

Bn
,

we see that (2) implies that (1) must hold by coregularity.
Conversely, if (1) holds, then (4) holds as above, and Theorem 3 of [8]

gives the fact that D−1 is conservative. Hence cD = c and so cA = c. �
Corollary 1. Let A be a regular weighted mean matrix. Then cA = c if and
only if

lim inf
pn

Pn−1
> 0. (5)

Proof. Since a weighted mean matrix is a factorable matrix with bn =
pn, an = 1/Pn, condition (1) becomes condition (5). pn/Pn−1 ≥ θ/2, and
pn/Pn ≥ θ/(2 + θ) for all n sufficiently large. Hence lim inf pn/Pn > 0. �
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Corollary 1 is Theorem 4 of [2].

Historical Note. Corollary 2 was originally proved by Cesáro [3] in 1888,
and was rediscovered by Hardy [4] in 1907.

Corollary 2. Let A be a regular weighted mean matrix. Then cA = c if and
only if

lim inf
Pn+1

Pn
= 1 + δ > 1, for some δ > 0. (6)

Proof. We may write
pn+1

Pn
=

Pn+1

Pn
− 1,

which implies that

lim inf
pn+1

Pn
= lim inf

Pn+1

Pn
− 1 = δ > 0.

Thus (6) is equivalent to (5), and the result follows from Corollary 1. �
Corollary 3. Let A be a regular weighted mean matrix. Then, if

Pn+1

Pn
≥ 1 + δ, for some δ > 0, (7)

cA = c.

Proof. The result follows from Corollary 2, since (7) implies (6), with a
possibly different δ. �

Corollary 3 is Theorem 15 of [5].

Theorem 2. Let A be a regular factorable matrix. If

lim
an
an−1

= 1, (8)

then x ∈ cA implies that xn = o(1/anbn).

Proof. Define

un = an

n∑
k=0

bkxk.

But, for sufficiently large n,
un
an

− un−1

an−1
= bnxn,

which, in turn implies that

un −
( an
an−1

)
un−1 = anbnxn,

from which (8) follows. �
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Corollary 4. Let A be a regular weighted mean matrix. If

lim
Pn−1

Pn
= 1, (9)

then x ∈ cA implies that xn = o(Pn/pn).

Proof. With an = 1/Pn, (9) is equivalent to (8). �
Corollary 4 is Theorem 13 of [5].
Theorem 2 also provides a limitation theorem for Cesáro summability.

The Cesáro matrix of order one, C, is a weighted mean matrix with pn = 1
for all n. Thus an = 1/(n + 1), so that condition (6) is automatically
satisfied. One then obtains xn = o(n), proving the following result.

Corollary 5. If a sequence x ∈ cC , then xn = o(n).

Let {λn} be a sequence satisfying

0 ≤ λ0 < λ1 < · · · < λn < · · ·
such that

∞∑
n=1

1

λn
= ∞.

For any sequence {µn}, an H-J generalized Hausdorff matrix is a lower
triangular matrix with entries

hnk =

{
λk+1 . . . λn[µk. . . . , µn], 0 ≤ k ≤ n

0, k > n,

where it is understood that λk+1 . . . λn = 1 when k = n.
Hausdorff [6] made this definition for λ0 = 0, and Jakimovski [7] extended

it to the cases in which λ0 > 0. If λn = n, then the definition reduces to
that of an ordinary Hausdorff matrix. It is therefore reasonable to call such
generalized Hausdorff matrices H-J matrices.

An H-J matrix is conservative if and only if the {µn} have the represen-
tation

µn =

∫ 1

0
tλndχ(t),

where χ(t) is a function of bounded variation over [0,1].
The H-J analogue of the Cesáro matrix of order one has

µn =

∫ 1

0
tλndt =

1

λn + 1
,

and the nonzero entries are

hnk =
λk+1 . . . λn∏n
i=k(λi + 1)

=
λ1 . . . λn∏n
i=0(λi + 1)

∏k−1
i=0 (λi + 1)

λ1 . . . λk
.
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Thus the matrix is a factorable triangle with

an =
λ1 . . . λn∏n
i=0(λi + 1)

, bk =

∏k−1
i=0 (λi + 1)

λ1 . . . λk
.

With un :=
∑n

k=0 hnkxk,
un
an

− un−1

an−1
= bnxn,

i.e., ∏n
i=0(λi + 1)

λ1 . . . λn
un −

∏n−1
i=0 (λi + 1)

λ1 . . . λn−1
=

∏n−1
i=0 (λi + 1)

λ1 . . . λn
xn,

or
(λn + 1)

λn
un − un−1 =

xn
λn

,

which gives rise to the following result.

Corollary 6. Let Hdenote the H-J Cesáro matrix of order one. Then x ∈
cH implies that xn = o(λn).

Corollary 5 can also be proved from Corollary 6 by setting λn = n.

Remark. The author takes this opportunity to thank the referee for the
careful reading of the manuscript and for the helpful suggestions that re-
sulted in the present form of Theorem 1.
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[3] E. Cesáro, Atti d. R. Acad. d Lincei Rend, 4 (4) (1888), 452-457.
[4] G. H. Hardy, On certain oscillating series, Quart. J. Math., 38 (1907), 269–288.
[5] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
[6] F. Hausdorff, Summationsmethoden und Momentfolgen, II, Math. Z., 9 (1921), 280–

299.
[7] A. Jakimovski, The product of summability methods; new classes of transformations

and their properties, II, Note No 4, Contract Number AF61-(052)-187, August, 1959.
[8] Albert Wilansky and Karl Zeller, The inverse matrix in summability: reversible ma-

trices, J. London Math. Soc., 32 (1957), 397–408.

(Received: February 24, 2012) Department of Mathematics
(Revised: June 11, 2012) Indiana University

Bloomington, IN 47405-7106
U.S.A.
E–mail: rhoades@indiana.edu


